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Protein Ladder Sequencing
Brian T. Chait, Rong Wang, Ronald C. Beavis,

Stephen B. H. Kent*
A new approach to protein sequencing is described. It consists of two steps: (i) ladder-
generating chemistry, the controlled generation from a polypeptide chain by wet chemistry
of a family of sequence-defining peptide fragments, each differing from the next by one
amino acid; and (ii) data readout, a one-step readout of the resulting protein sequencing
ladder by matrix-assisted laser-desorption mass spectrometry. Each amino acid was
identified from the mass difference between successive peaks, and the position in the data
set defined the sequence of the original peptide chain. This method was used to directly
locate a phosphoserine residue in a phosphopeptide. The protein ladder sequencing
method lends itself to very high sample throughput at very low per cycle cost.

Direct experimental determination of the
amino acid sequence of a polypeptide chain
usually gives partial sequence data only.
Partial amino acid sequence data may be
used to identify isolated proteins (1), and
are useful in cloning genes (2). The com-

plete amino acid sequence of a protein is
most often determined by nucleic acid se-

quencing at the cDNA level. However,
posttranslational modifications (3) must be
characterized at the polypeptide level.

Most direct sequence determination of
peptides and proteins is done by automated
Edman degradation (4), in which a two-

part chemical reaction is used to remove

one amino acid at a time from the amino
terminal. After release, each amino acid
derivative is converted to a stable form and
is then identified by analytical reverse-

phase high-performance liquid chromatog-
raphy. Currently such sequencing is limited
to less than -50 residues per day (5). Also,
most posttranslational modifications are not
identified. Thus, there is a great need for
more rapid and versatile protein sequencing
methods (6).

The recent advent of matrix-assisted la-
ser-desorption mass spectrometry (LDMS)
(7) and the development of improved ma-

trix materials (8) has facilitated the accu-

rate measurement of the mass of intact
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polypeptide chains. Subpicomole amounts
of total sample can be analyzed in seconds
with a mass accuracy of up to 1 part in
10,000 (9). Thus the polypeptide itself can
be analyzed more readily, with greater
speed, sensitivity, and precision, than the
amino acid derivative released by stepwise
sequencing (10).
We describe a new principle in protein

sequencing that combines multiple steps of
wet degradation chemistry with a final,
single-step mass spectrometric (MS) read-
out of the amino acid sequence. First, a

sequence-defining concatenated set of pep-
tide fragments, each differing from the next

by a single residue, is chemically generated
in a controlled fashion. Second, matrix-
assisted LDMS is used to read out the
complete fragment set in a single operation,
as a "protein sequencing ladder" data set.
A concatenated set of peptide fragments

can be generated in a controlled fashion (11)
by carrying out rapid stepwise degradation in
the presence of a small amount of terminat-
ing agent, a procedure we call "ladder-gen-
erating chemistry" (Fig. 1). A small propor-
tion of peptide chain blocked at the amino
terminus is generated at each cycle. A pre-
determined number of cycles is performed
without intermediate separation or analysis
of the released amino acid derivatives. The
resulting mixture is read out in a single
operation by matrix-assisted LDMS (12).
The mass spectrum contains molecule ions
corresponding to each terminated polypep-
tide species present. The mass differences
between consecutive peaks each correspond
to an amino acid residue (13), and their
order of occurrence in the data set defines
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the sequence of amino acids in the original
peptide chain (14).
We sequenced the 14-residue peptide

[Glut]fibrinopeptide B (15) to illustrate the
new method. Eight cycles of manual ladder-
generating chemistry were carried out (16),
and the resulting product mixture of termi-
nated peptides read out (17) by matrix-
assisted LDMS (Fig. 2). All the major com-
ponents present in the mass spectrum were

readily identified, and the data could be
simply interpreted to give the sequence of
the eight amino-terminal residues of the
peptide. The two consecutive peaks with the
highest mass differ by 129.1 daltons, identi-
fying the amino-terminal amino acid as a
Glu residue (calculated residue mass 129.1).
The identities of the next seven residues
were read off in a similar fashion (18).

Several features of the protein ladder
sequencing experiment are immediately ap-
parent. The mass accuracy obtained (9) was
sufficient to unambiguously distinguish Asp
[calculated residue mass 115.1] (13) and
Asn (calculated residue mass 114.1); Glu
[calculated residue mass 129.1] was also
identified with sufficient accuracy to distin-
guish it from Gin [calculated residue mass

128.1]. The arbitrary ratio of degradation-
to-terminating reagents and the minimal

AA1-AA-AA3-AA4-AA5- -AAM

PITC+5% PIC

PTC-AA,-AA-AA-AA4-AA5- -AAn
PC-AA -AA2-AA3-AA-AA5- -AAkq

Acid (TFA)

ATZ(AA1)+ AA2-AA-AA4-AA5- -AAn
PC-AA -AA2-AA-AA4-AA- -AAM

Further
cycles
(without
separation)

I
I

After m cycles

PC-1 -AA2-AA3-AA4-AA5 -AAn
PC-AA2.AA3.AA4-AA5- -AA, npadderPC-AA3-M-AA--AA,-sequence

data

PC-AA -AAn
Fig. 1. Protein ladder sequencing principle
exemplified by the generation of a set of se-

quence-determining fragments from an intact
peptide chain with controlled ladder-generat-
ing chemistry. A stepwise degradation (32) is
carried out with a small amount of terminating
agent present in the coupling step. In this case,
5% phenylisocyanate (PIC) was added to the
phenylisothiocyanate (PITC). The phenylcar-
bamyl (PC) peptides formed are stable to the
trifluoroacetic acid (TFA) used to cyclize and
cleave the terminal amino acid (AA) from the
phenylthiocarbamyl (PTC) peptide. Successive
cycles of ladder-generating chemistry are per-
formed without intermediate isolation or analy-
sis of released amino acid derivatives. Finally,
the mixture of PC peptides is read out in one

step by matrix-assisted LDMS.

89

128 by 128; pixel size, 0.75 arc sec; effective
resolution, 2 arc sec.

31. Observed with the FAST camera on the European
South Observatory-Max Planck Institute 2.2-m
telescope at La Silla, Chile (27). In Sb array, 62 by
58; pixel size, 0.78 arc sec; effective resolution, 2
arc sec.

32. Obtained with the Hat Creek interferometer (12).
Effective resolution, 7.5 arc sec. The absolute
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reaction conditions employed have yielded
a simple, useful sequencing ladder. No ef-
fort was made to optimize coupling or cleav-
age yields in the chemical degradation be-
cause the accuracy of protein ladder se-
quencing is unaffected by the relative abun-
dance, over a wide range, of individual
terminated fragments. Obtaining high reac-
tion yields is not critical, and the degrada-
tion protocols can be simple and fast. In
contrast, extreme (prolonged and forcing)
reaction conditions are used in the standard
stepwise Edman degradation (19).

Fig. 2. Protein ladder sequencing of [Glu1]fibri-
nopeptide B (15). The peptide, of sequence
Glu1-Gly-Val-Asn-AspS-Asn-Glu-Glu-Gly-Phe10-
Phe-Ser-Ala-Arg14, was subjected to eight cy-
cles of ladder-generating chemistry (Fig. 1)
(16). The matrix-assisted LDMS readout (17) of
the resulting sequence-defining set of frag-
ments is shown in two forms: A standard inten-
sity versus mass (33) plot; the data is plotted
from high to low mass, so that the amino acid
sequence reads from the amino terminal. The
upper horizontal lines show the different lengths
blocked peptide species present and their re-
lation to the MS data.

A second example illustrates the ladde
sequence analysis of both phosphorylate,
and unphosphorylated forms of a 16-residu
peptide containing a Ser residue (20). Afte
10 cycles of ladder-generating chemistry o0
each form of the peptide (21), the tw,
separate sequence-defining fragment mix
tures were each read out in a single matrix
assisted LDMS experiment (Fig. 3). Th
protein ladder sequencing method directl
identified and located a Ser(Pi) at positiol
five in the peptide (22). There was n,
detectable loss of phosphate from the phos
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phoserine residue, which has been regarded
as the most sensitive and unstable of the
phosphorylated amino acids (23).

The inability to directly identify, locate,
and quantify phosphorylated residues is a

o major shortcoming of standard sequencing
:- methods and has imposed major limitations
- on currently important areas of biological

e research, such as mechanisms of signal
y transduction. Protein ladder sequencing has
n general application to the direct identifica-
o tion of posttranslational modifications pres-

ent in a peptide chain being sequenced. A
modified amino acid residue that is stable
(23) to the conditions used in the ladder-
generating chemistry reveals itself as an
additional mass difference at the site of the
covalent modification. Frequently, this will
lead to unambiguous identification of the
chemical nature of the posttranslational
modification (3). The utility of protein
ladder sequencing in this regard would ap-
ply even to large modifying entities, such as
carbohydrate moieties in glycopeptides.

To explore the capabilities and limita-
tions of the ladder sequencing readout by
matrix-assisted LDMS, measurements were
carried out on sets of sequence-defining
unblocked synthetic peptides. This set of

o peptides was obtained during the course of a
total chemical synthesis of the 99-amino

Fig. 3. (left) Protein 100iA
ladder sequencing of
the 16-residue syn-
thetic peptide: Leu- L, R a,A. p65.GC L L.L Y
Arg-Arg-Ala-Ser(P,)- a) (I) (

-Leu-e-Tyr-An-v| 113.4 1559 156. ;7L3 1667 57.0 113. 13.0 :164 11Gly-Leu-lle-Tyr-Asn-:156. 9
Asn-Pro-Leu-Met-Ala-
Arg.amide. (A) Phos- -
phorylated peptide.
(B) Unphosphoryl-
ated peptide. Each 1 |I
peptide sample was _
subjected to 10 cy- C =i
cles of ladder-gen- S~ L L llr
erating chemistry. 2200 1700 1200
Data defining the 11 .o100B
amino-terminal resi-

mm

dues (21) are shown.
The Ser(P,) residue L, a R.A.S5G. L.L Y
was characterized by (I) * (I) (i)i)I! 113.3 156.2 156.1 '71.'r70: :113.0:113.2: 163.0 1a mass difference of sJ
166.7 daltons (Ser, 2. .
calculated residue
mass 87.1; Ser(P,) cal-
culated residue mass
167.1) observed in I
position five. There isi
no evidence for loss 1
of phosphate (35). 0-"-,... . J
Fig. 4. (right) Extend- 2200 1700 ( 1200
ed MS readout of se- Mass (daltons)
quence-defining sets
of polypeptide fragments. Consecutive samples, after each amino acid
addition, were taken during stepwise solid-phase assembly of the 99-
residue monomer sequence of HIV-1 protease (24). After release from the
solid support and deprotection, pooled peptide samples corresponding to
residues 67 to 99 and 33 to 66 were analyzed by matrix-assisted LDMS

1001

(17). Observed mass differences for each amino acid residue are given in
Table 1.
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acid monomer polypeptide chain of the
human immunodeficiency virus-1 (HIV-1)
protease (24). The target sequence was
assembled by solid-phase synthesis in step-
wise fashion from the resin-bound carboxyl-
terminal residue Phe99. Samples of peptide
resin were taken after addition of each
amino acid, from residue 98 to residue 33.
The different length peptide resins were
pooled in two batches of more than 30
consecutive samples, and the two mixtures
were separately deprotected and cleaved
(25). The resulting sets of sequence-defin-
ing fragments with masses up to 7400 dal-

Table 1. Measured mass differences between
adjacent peaks of the protein sequencing lad-
ders shown in Fig. 4. The deviation from the
calculated value is given in parentheses; Aba,
a-amino-n-butyric acid.

Amino A Mass Amino A Mass
acid (daltons) acid (daltons)
Leu33 113.3 (0.1) Asp60 114.8 (-0.3)
Glu34 129.7 (0.6) Gin61 128.7 (0.6)
Glu35 129.5 (0.4) lie62 113.2 (0.0)
Met36 130.8 (-0.4) Pro63 97.0 (-0.1)
Asn37 115.0 (0.9) Va164 99.4 (0.3)
Leu38 112.4 (-0.8) Glu65 128.6 (-0.5)
Pro39 97.9 (0.8) lie66 113.3 (0.1)
Gly40 56.1 (-0.9) Aba67 84.9(-0.2)
Lys41 128.1 (0.0) Gly68 57.0 (0.0)
Trp42 186.4 (0.2) His69 137.3 (0.2)
Lys43 128.2 (0.0) Lys70 127.8 (-0.4)
Pro44 97.1 (0.0) Ala71 71.4 (0.3)
Lys45 128.0 (-0.2) lie72 113.4 (0.2)
Met46 131.9 (0.7) Gly73 56.8 (-0.2)
lie47 112.6 (-0.6) Thr74 101.1 (0.0)
Gly48 57.9 (0.9) Va175 99.2 (0.1)
Gly49 56.3 (-0.7) Leu76 113.1 (-0.1)
lie50 112.4 (-0.8) Va177 99.1 (0.0)
Gly51 57.6 (0.6) Gly78 57.1 (0.1)
Gly52 57.5 (0.5) Pro79 97.2 (0.1)
Phe53 147.3 (0.1) Thr80 101.1 (0.0)
lie54 112.5 (-0.7) Pro81 97.1 (0.0)
Lys55 128.9 (0.8) Va182 99.2 (0.1)
Va156 99.0 (-0.1) Asn83 113.8 (-0.3)
Arg57 156.2 (0.0) lie84 113.4 (0.2)
Gin58 128.4 (0.3) lie85 113.1 (0.0)
Tyr59 162.6 (-0.6) Gly86 57.1 (0.0)

Fig. 5. High-sensitivity protein lad-
der sequencing readout demon-
strated by serial dilution (1 to
1000) of the sample used in Fig. 2.
No more than -25 fmol total pep-
tide was present in the mass spec-
trometer, that is, <-5 fmol per
component. Data were obtained
as described (17). Note that only a
slight diminution of signal-to-noise
ratio was observed compared with
readout at 25-pmol total peptide
amounts (see Fig. 2) [* = impuri-
ty].

100-

a,

tons were read out by matrix-assisted LDMS
(26) (Fig. 4 and Table 1).

The impact of the average uncertainty
in measured mass becomes more significant
as the molecular mass increases. Below
3500 daltons, the mass deviation is less
than ±0.3 dalton, and there is no ambigu-
ity in distinguishing even the most closely
related pairs of amino acids [Leu/Ile have
identical mass (13)]. However, above 3500
daltons, uncertainties of 0.4 to 0.9 dalton
introduce certain ambiguities in the identi-
fication of amino acids of closely similar
residue masses (13).

These results illustrate the potential for
extended sequence determination with the
protein ladder approach with existing ma-
trix-assisted LDMS readout. Out to more
than 30 residues, the simple mass differ-
ences directly define the amino acid se-
quence. However, for peptides approxi-
mately 35 to 65 residues in length, current
instrumental mass accuracy of up to 1 part
in 10,000 is not sufficient to unambiguously
identify every amino acid residue based on
simple mass differences (27). Direct appli-
cability to peptide chains of less than 60
residues is currently a limitation of protein
ladder sequencing and means that sequence
data cannot be directly obtained from in-
tact proteins larger than -6500 daltons.
However, extensive sequence data can be
obtained from larger proteins by the com-
monly used tactic of chemical or enzymatic
cleavage combined with (protein ladder)
sequencing of the resulting fragments, by
analogy with existing methods (28).

Most current protein sequence determi-
nation is carried out with 10 to 100 pmol of
sample (5, 19) and extended automated
Edman degradation has been demonstrated
on <10 pmol samples (29). We can read
out a protein sequencing ladder data set
containing 2 to 5 fmol of individual com-
ponents (Fig. 5). We have adapted the
protein ladder method to obtain sequence
data from low picomole total amounts of
peptide samples (30). Thus, the demon-

,G, V N

56.7 99.1 114.4

1800

D N E

115.2 11: 129.2

Mass (daltons)
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strated sensitivity of protein ladder se-
quencing is comparable to that of existing
Edman methods, with potential for far
greater sensitivity.

Protein ladder sequencing lends itself to
very high sample throughput. If the ladder-
generating chemistry can be carried out in
parallel on multiple samples (30), then a
total throughput of > 100 residues per hour
could potentially be achieved at very low
per cycle cost. Such a rapid, inexpensive
sequencing technology of enhanced accura-
cy and generality could vastly expand the
applications and use of protein sequence
determination in biological research (31).
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