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Chapter 8

Modeling Mass Spectrometry-Based Protein Analysis

Jan Eriksson and David Fenyö 

Abstract

The success of mass spectrometry based proteomics depends on efficient methods for data analysis. These 
methods require a detailed understanding of the information value of the data. Here, we describe how 
the information value can be elucidated by performing simulations using synthetic data.
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Mass spectrometry based proteomics is a method of choice for 
identifying, characterizing, and quantifying proteins. Proteomics 
samples are often complex and the range of protein amounts is 
typically large (>106), whereas the dynamic range of mass spec-
trometers is limited (<103) (1). Because of this mismatch, it is 
necessary to process the protein samples so that the protein mix-
ture that reaches the mass spectrometer at any given time is much 
less complex. This is often achieved by first separating the pro-
teins, followed by digestion, and separation of the peptides. The 
peptides are subsequently analyzed in the mass spectrometer.

With mass spectrometry, it is possible to measure the mass 
and the intensity of peptide ions and their fragments. To identify 
proteins and to characterize their posttranslational modifica-
tions, the mass measurements are used (2–4) and sometimes to 
lesser degree the intensity measurements can also be used (5, 6). 
For quantification, the intensity measurements can be used, but 
only if the intensity scale is calibrated for each peptide, because 
the intensity of a peptide ion signal depends strongly on its 
sequence.

1. �Introduction
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The two most common types of analysis are peptide mass 
fingerprinting and tandem mass spectrometry. In both these 
approaches, the proteins are digested with an enzyme having high 
digestion specificity (usually trypsin) prior to the mass spectro-
metric analysis. The digestion results in mixtures of proteolytic 
peptides. In peptide mass fingerprinting the mass spectrometer 
detects ions of the proteolytic peptides and measures their respec-
tive mass. The mass of a proteolytic peptide is typically not unique 
(7) and therefore observation of several proteolytic peptides from 
a single protein is needed to generate a peptide mass fingerprint 
that is useful for protein identification. The peptide mass finger-
printing approach is usually used for samples where the protein of 
interest can be purified quite well, because peptide ion signals 
from different proteins can interfere with each other in an indi-
vidual mass spectrum and the inclusion of mass values of peptides 
from more than one protein reduces the specificity of the peptide 
mass fingerprint. In tandem mass spectrometry, individual prote-
olytic peptide ion species are isolated in the mass spectrometer 
and are subjected to fragmentation. The masses of the proteolytic 
peptides and their fragments are measured, making it more appli-
cable to complex mixtures, because a large amount of informa-
tion is obtained for each peptide and the interference from 
peptides originating from other proteins is reduced.

Here we describe a few methods for generating synthetic 
mass spectra, including peptide mass fingerprints and tandem mass 
spectra. We also give a few examples of how these synthetic 
mass spectra can be used to better understand the dependence of 
the value of information in mass spectra on the nature and accu-
racy of the measurements.

In peptide mass fingerprinting, protein identification is achieved 
by comparing the experimentally obtained peptide mass finger-
print to masses calculated from theoretical proteolytic digests of 
protein sequences from a sequence collection. Each sequence in 
the collection that has some extent of matching with the experi-
mental peptide mass fingerprint is given a score, the statistical 
significance of the high scoring matches is tested, and the statisti-
cally significant proteins are reported. The statistical significance 
is tested by generating a distribution of scores for false and ran-
dom matches. The score of the high-scoring proteins are then 
compared to the distribution of scores for false and random 
matches, and the significance level of the match is calculated. The 
distribution of scores for false and random matches can be 
obtained by direct calculations (8), by collecting statistics during 

2. Methods

2.1. Peptide Mass 
Fingerprinting



111Modeling Mass Spectrometry-Based Protein Analysis

the search (9, 10), or by simulations using random synthetic 
peptide mass fingerprints (11). Here we describe a method for 
generation of synthetic random peptide mass fingerprints to 
obtain a distribution of scores for false and random identification 
that can be used to test the significance of protein identification 
results (11) (Fig. 1):

	 1.	Analyze the experimental data to obtain information about 
the parameter space that the synthetic random peptide mass 
fingerprints should cover, including number of peaks, inten-
sity distribution, mass distribution, and mass accuracy.

	 2.	Select a protein sequence collection, digest it with the enzyme 
used in the experiment, and calculate the masses of the prote-
olytic peptides.

	 3.	Randomly pick a set of masses from the proteolytic peptide 
masses of the sequence collection according to the distribu-
tions obtained from the analysis of experimental data, and 
making sure that no more than one peptide is picked from 
each protein (see Note 1).

	 4.	Add a mass error sampled from the expected error 
distribution.

	 5.	Assign intensities to each mass (see Note 2).
	 6.	Search the protein sequence collection and record the highest 

score.
	 7.	Repeat steps 3–6 until sufficient statistics are obtained, and 

construct a distribution of scores for false and random 
identifications.

Search

Distribution of 
Scores for Random 

and False 
Identifications

M/Z

Measured
Mass Spectrum

Candidates

Test 
Significance

Candidates With
Significance Levels

Score Distribution 
for False Protein 

Identifications

0

0.02

0.04

0.06

0 10 20 30S

0

0.2

0.4

0.6

0.8

1

0 10 20 30SC

S
ig

n
if

ic
an

ce
 L

ev
el

0

0.01

0.03

0.05

16 18 20
SC

0.1%
1%

5%

S
ig

n
if

ic
an

ce
 L

ev
el

Fig. 1. Left panel : The principle of significance testing utilizing the distribution of scores for random and false identifications. 
Right panel : Detailed view of a simulated score distribution for random and false identifications (adapted from (11)).
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	 8.	Use the score distribution generated in step 7 to convert the 
scores from the search with the experimental data to a signifi-
cance level.

For investigating other aspects of protein identification, it is 
useful to construct nonrandom peptide mass fingerprints. This 
can be achieved by modifying step 3:

	3a.	Select one or more proteins.
	3b.	For each of the selected proteins, pick a few peptides (see 

Note 3).
	3c.	Add background peaks by randomly picking a set of masses 

from the entire set of proteolytic peptide masses of the 
sequence collection according to the distributions obtained 
from the analysis of experimental data, and making sure that 
no more than one peptide is picked from each protein.

These nonrandom synthetic peptide mass fingerprints can be 
used to for example improve or compare algorithms, and investi-
gate the effect of search parameters including mass accuracy, enzyme 
specificity, number missed cleavage sites, and size of sequence col-
lection searched (8, 12). Nonrandom synthetic peptide mass finger-
prints have also been used to investigate the potential of identifying 
complex mixtures of proteins by peptide mass fingerprinting (13). 
It was concluded that mass fingerprinting could be applied to 
complex mixtures of a few hundred proteins, if the mass accuracy 
and the dynamic range of the measurement are sufficient (Fig. 2). 
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Fig. 2. The statistical significance of proteins identified by peptide mass fingerprinting in 
a mixture of 300 proteins using an iterative method. The inset displays a magnified por-
tion of the graph for the 280–300th protein identified (Source: ref. 13).
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In most practical cases, however, the dynamic range of the measure-
ment is severely limiting and only a few proteins can be identified by 
peptide mass fingerprinting (14).

The method of choice for complex protein mixtures is to 
search sequence collections using the observed mass of an 
intact individual peptide ion species together with the masses 
of the fragment ions observed upon inducing fragmentation of 
the peptide in the mass spectrometer. This method requires 
much lower sequence coverage, and in some cases, even one 
peptide can be sufficient to identify a protein. Synthetic pep-
tide tandem mass spectra can be generated by the following 
method:

	 1.	Analyze the experimental data to obtain information about 
the parameter space of interest (see Note 4 and Fig. 3).

	 2.	Select a protein sequence collection and digest it with the 
enzyme used in the experiment.

	 3.	Randomly pick a peptide and calculate the peptide mass.
	 4.	Add to the peptide mass an error sampled from the expected 

error distribution.
	 5.	Calculate the mass of all expected fragment ions.
	 6.	Randomly pick a set of fragment ion masses (Fig. 3a, b).
	 7.	Add to the fragment ion masses an error sampled from the 

expected error distribution.
	 8.	Assign intensities to each fragment ion mass sampled from 

the expected error distribution (Fig. 3e).
	 9.	Add background ions by randomly picking peptides that have 

similar mass as the peptide in step 3, and randomly picking 
one fragment ion mass from each (Fig. 3c, d).

	10.	Add to the background masses an error sampled from the 
expected error distribution.

	11.	Assign intensities to background fragment ions sampled from 
the expected intensity distribution (Fig. 3f).

	12.	Search the protein sequence collection and record the highest 
score.

	13.	Repeat steps 6–12 until sufficient statistics are obtained.
	14.	Repeat steps 3–13 to cover the desired parameter space.

Random synthetic tandem mass spectra can be constructed 
by skipping steps 3–8 above. These random synthetic tandem 
mass spectra can be used for significance testing in a similar way 
as for peptide mass fingerprinting (15).

Nonrandom synthetic tandem mass spectra can, for example, 
be used to answer the question: How many fragment ions are 
needed for identification? By generating nonrandom synthetic 

2.2. Tandem Mass 
Spectrometry
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tandem mass spectra containing varying amounts of sequence 
information the number of matching fragments needed for iden-
tification can be determined (see Note 5 and Fig. 4). In this way 
it is possible to investigate how many fragment ions are needed 
for identification depending on the precursor mass, precursor 
and fragment mass errors, background levels, and modification 
states (16).
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Fig. 3. Properties of tandem mass spectra with significant matches to a dataset acquired with an LTQ-Orbitrap (Thermo Fisher, 
San Jose, CA): (a) the average number and (b) the standard deviation of peaks matching the sequence as a function of peptide 
mass; (c) the average number and (d) the standard deviation of background peaks as a function of the number of peaks match-
ing the sequence; (e) the intensity distribution of matching peaks; and (f) the intensity distribution of background peaks.
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	 1.	The distribution of peptide masses is far from uniform, 
because peptides contain only a few different types of atoms, 
and it is, therefore, important to use actual peptide masses in 
simulations. The distribution of peptide masses consists of 
peaks with centroids approximately 1 Da apart, and regions in 
between the peaks that are devoid of peptide masses. Using a 
uniform mass distribution would therefore result in unrealis-
tic synthetic peptide mass fingerprints.

	 2.	The intensities are often set to the same value for all masses. 
Alternatively, an intensity distribution derived from experi-
mental data can be used.

	 3.	The number of peptides to pick can for example be deter-
mined by selecting a target coverage for the proteins, and 
then randomly picking peptides until that coverage is 
reached.

	 4.	An example of the kind of information that can be extracted 
from experiments is shown in Fig. 3. First the data acquired 

3. �Notes

Fig. 4. The chance of success of identification, i.e., the fraction of the spectra that yield 
a true result and an e-value below a desired threshold, as a function of the number of 
fragment masses in the spectra. Each data point represents the mean value with stan-
dard error of the results for 50 randomly selected peptides and with 20 different ran-
domly generated spectra from each peptide. The chance of success is low for few 
matching fragment and high for many matching fragments. The critical number of frag-
ment masses is defined as the number of fragment masses that yield a 50% chance of 
success.
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on an LTQ-Orbitrap was searched using X! Tandem and all 
peptides with expectation value <10−3 were used to character-
ize the data set. The average and the standard deviation of the 
number of ions that match the peptide sequence first increases 
with mass, and at masses above 1,500 Da the average satu-
rates (Fig. 3a, b). The average number of background peaks 
increases with the number of matching peaks up to about 15 
matching peaks, and then saturates (Fig. 3c). The standard 
deviation of the number of background peaks is constant 
within the uncertainty of the measurement (Fig.  3d). The 
matching peaks dominate at high intensity, but even though 
the majority of peaks with low relative intensity are back-
ground (<20% of the base peak), there are still a considerable 
number of low-intensity peaks that match the sequence 
(Fig. 3e, f).

	 5.	Tryptic peptides were randomly selected from a proteome, 
and a set of fragment mass spectra was generated for each 
selected peptide assuming that they were unmodified or phos-
phorylated. These fragment mass spectra were constructed by 
randomly selecting fragment ions, and the number of frag-
ments selected was varied over a wide range. The fragment 
mass spectra were searched against the proteome using X! 
Tandem and the probability of successful peptide identifica-
tion was obtained as a function of the number of fragment 
ions in the spectra. From these curves, the critical number of 
fragment masses was derived for a given experimental condi-
tion, i.e., the number of fragment masses needed for success-
fully identifying half of the peptides.
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