Anal. Chem. 2000, 72, 999—1005

A Statistical Basis for Testing the Significance of
Mass Spectrometric Protein Identification Results

Jan Eriksson, Brian T. Chait, and David Fenyt*

The Rockefeller University, 1230 York Avenue, New York, New York 10021

A method for testing the significance of mass spectromet-
ric (MS) protein identification results is presented. MS
proteolytic peptide mapping and genome database search-
ing provide a rapid, sensitive, and potentially accurate
means for identifying proteins. Database search algo-
rithms detect the matching between proteolytic peptide
masses from an MS peptide map and theoretical pro-
teolytic peptide masses of the proteins in a genome
database. The number of masses that matches is used to
compute a score, S, for each protein, and the protein that
yields the best score is assumed as the identification
result. There is a risk of obtaining a false result, because
masses determined by MS are not unique; i.e., each mass
in a peptide map can match randomly one or several
proteins in a genome database. A false result is obtained
when the score, S, due to random matching cannot be
discerned from the score due to matching with a real
protein in the sample. We therefore introduce the fre-
quency function, f(S), for false (random) identification
results as a basis for testing at what significance level, a,
one can reject a null hypothesis, Ho: “the result is false”.
The significance is tested by comparing an experimental
score, Sg, with a critical score, Sc, required for a signifi-
cant result at the level a.. If Sg > Sc, Hp is rejected. f(S)
and Sc were obtained by simulations utilizing random
tryptic peptide maps generated from a genome database.
The critical score, Sc, was studied as a function of the
number of masses in the peptide map, the mass accuracy,
the degree of incomplete enzymatic cleavage, the protein
mass range, and the size of the genome. With Sc known
for a variety of experimental constraints, significance
testing can be fully automated and integrated with data-
base searching software used for protein identification.

Protein identification by mass spectrometric (MS) peptide
mapping and genome database searching has become a method
of choice for the identification of proteins'~° from organisms with
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sequenced genomes.’%-13 The method is rapid, sensitive, and
suitable for automation, and has been applied to a variety of tasks
including the elucidation of protein function'*~18 and the deter-
mination of the composition of protein complexes.*=2! Despite
the central role that MS protein identification has assumed in
proteomic research, the problem of objectively assessing the
significance of identification results has remained unsolved. As
increasingly complex biological problems are explored, automated
identification procedures? become highly desirable. In such large-
scale automated procedures, it becomes critical to use objective
criteria for assessing the significance of each result. We report
here a robust statistical solution to the problem of testing the
significance of MS protein identification results.

The idea underlying MS protein identification is that a pattern
of masses provides a “fingerprint” of a particular protein and that
the pattern of masses can be recognized when a genome database
is searched. The fingerprint can be an MS proteolytic peptide
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map—i.e., a set of masses of peptides resulting from protein
digestion by an enzyme having high digestion specificity (e.g.,
trypsin). Identification algorithms compute the masses of peptides
that individual proteins in a database would yield if they were
cleaved by the same enzyme as was used in the experiment. The
number of matches between masses of the experimentally
obtained peptide map and the masses of the peptides from
individual proteins in a database is detected. A score characterizes
the result of each comparison. In some algorithms, the score is
simply the number of matches,?® whereas in other algorithms the
score is the result of a computation that utilizes the number of
matches as well as other criteria.2?* The protein or proteins
yielding the best score are identified. Independent of the type of
scoring system used, there is a risk of obtaining a false identifica-
tion result. False results are caused by random matching of
peptide masses. Each measured peptide mass can match the
masses of peptides from several different proteins; i.e., an
unmodified peptide will often yield random matches in addition
to the match with the protein actually present in the sample, and
a modified peptide will yield only random matches. A false result
is obtained when the score due to random matching cannot be
discerned from the score due to matching with a real protein in
the sample. Hence, the distribution of the frequency of scores
for protein identification by random matching must be known in
order to judge the significance of protein identification results.

We derive here score frequency functions, f(S), for false
(random) protein identifications by simulating many protein
identifications using random tryptic peptide maps generated from
a genome database. With the null hypothesis Hy, “the result is
false”, and with f(S) known, one can determine the score Sc
required to reject Hy at significance level o. To test the significance
of an identification result, the experimentally obtained score, Sg,
is used as the test variable. If Sg > Sc, Hy is rejected. We have
estimated frequency functions and the score Sc required for
various significance levels for a variety of experimental constraints
and for two different identification algorithms.

Significance testing can be fully automated and integrated with
database searching software used for protein identification and is
a general method that can be applied to any algorithm for which
f(S) has been determined. Hence, by using significance testing
and assigning the result only by a significance level, potential
confusion caused by the use of different scoring systems will be
removed. The replacement of the score by the objective signifi-
cance level criterion leads us to predict that significance testing
will greatly facilitate automated protein identification.

MATERIALS AND METHODS
The method designed to estimate frequency functions for false

protein identification involves two steps: (1) generation of random
proteolytic peptide maps from a genome and (2) simulation of
protein identification by searching a genome database and using
the random proteolytic peptide maps as data.

Random Tryptic Peptide Maps. Random tryptic peptide
maps (trypsin cleaves with high specificity at the carboxyl side
of lysine and arginine residues) were generated from tryptic
peptide masses predicted from the open reading frames (ORFs)
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of a genome database. In each map, each tryptic peptide mass
was randomly chosen from a different randomly chosen protein
in the database. This design of maps proves to be optimal for our
purpose (see the Appendix for a background to the design). Six
different sizes of maps were generated in the range of 6—80
peptides per map. A large number (=1000) of random tryptic
peptide maps were generated for each peptide map size. The
genome databases used were Haemophilus influenzae, Saccharo-
myces cerevisiae, and Caenorhabditis elegans, containing, respec-
tively, 1718 (complete), 6403 (complete), and 16 332 (November
1998 release used, now complete) ORFs. The S. cerevisiae
database was used for the majority of the present studies, while
the other two databases were used to study the influence of the
size of the genome on the frequency function for false protein
identification.

Simulation of Protein Identification due to Random
Matching. Each random tryptic peptide map was subjected to
protein identification by database searching. Two different iden-
tification algorithms were employed that will be referred to as
algorithm 1 and algorithm 2. Algorithm 1 ranks proteins simply
by their number of matches with tryptic peptide masses in the
peptide map. Algorithm 2 is a streamlined version of the “Pro-
Found” algorithm (publicly available through the World Wide
Web, http://prowl.rockefeller.edu/),®* which ranks proteins ac-
cording to a Bayesian probability calculated by comparing the
measured peptide map with theoretical maps generated from the
database proteins. The differences between ProFound and algo-
rithm 2 are listed in ref 25. Algorithm 2 and ProFound take into
account the number of matches between a database protein and
the peptide map within the accuracy of the mass measurement,
but also weigh in indirectly the protein mass as well as the
assumed efficiency of the protease used in an experiment.?> In
the simulations, the score and the name of the highest ranked
protein as well as the name of the source protein of each random
tryptic peptide mass were stored for each random tryptic peptide
map. This information allows “random and false” identifications
to be distinguished from rare “random and true” results. If more
than one protein was identified (algorithm 1 can yield two proteins
with the same number of matches) and their sequences were not
similar, the result was interpreted as false. A simulation with a
set of different random peptide maps of the same size yields a
distribution of the score for random protein identifications
characteristic for that peptide map size and other constraints used
in the database search. The typical parameters used in the
simulations are summarized in Table 1. However, the experimen-
tally pertinent parameters were varied systematically, one by one,
to measure their respective influence on the identification score
distribution.

(25) ProFound uses Bayes’ theorem: P(k|DI) = P(k|I)-P(D|kl)/P(D|I), where
P(k|DI) is the probability that the hypothesis k (protein k is the correct
protein) is true given the data, D, and additional information, 1. P(k|I) is
the prior probability, and P(D|I) is a normalization factor. P(D[kI) is the
likelihood that the data, D, are observed for the given protein, k, and
information, I. For protein identification by peptide mapping, P(k|DI) O
P(DIkI) O (const)'(Am ")((N — r)!/N)WFpaern, Where r is the number of
matches, N is the number of peptides in the protein, W computes a weighing
factor based on the respective difference between a measured mass and
the matching theoretical mass, and Fpaern gives extra weight to particular
peptide sequence patterns.?* Algorithm 2 does not take into account W,
Fratern, and the normalization factor. The score (S) of algorithm 2 is calculated
as S = log((const)" (Am~")((N — r)!I/N!)).



Table 1. Typical Data and Typical Database Search
Parameters Used in the Protein Identification
Simulations

genome S. cerevisiae
no. of tryptic peptides in a map n

no. of uncleaved sites in map peptides 0

mass range in tryptic peptide maps 800—4500 Da

no. of proteins contributing to a map n
no. of maps used in a simulation >1000
maximum no. of missed cleavage sites allowed in 2
the database search
mass accuracy in database searches (Da) 0.1
maximum protein mass in data generation and 100
database searches (kDa)

The code for generating peptide maps as well as for the
simulation of protein identification was written in C. A script
written in Perl was employed for processing the simulation results.
All simulations were performed on a Dell XPS (300 MHz Pentium
1) personal computer.

RESULTS
Significance Testing. A knowledge of the frequency functions,

f(S), for false results is the basis for testing the significance of
protein identification results. Examples of f(S) simulated from the
S. cerevisiae database using random tryptic peptide maps are
shown in Figure 1 (top panels). f(S) is obtained if the absolute
frequencies of the various scores for false results are divided by
the number of random tryptic peptide maps used in the simulation.

In the simplest form of significance testing, a null hypothesis,
Ho, is either rejected or not rejected at some significance level,
o.? Here, we defined Hy as “the result is false”. The problem of
testing if a protein identification result deviates significantly from
Ho falls naturally into the category of one-sided significance testing
using the protein identification score Sg resulting from the
experiment as the test variable. If S > S, Hy is rejected; otherwise
Ho is not rejected. Sc will be referred to as the critical score and
is derived from the relation

f(S) = a

S=S¢

(for a discrete distribution), where a is a significance level (shaded
area under f(S) in Figure 1) chosen prior to the significance test.%
o represents the statistical risk (probability) that Hy would be
rejected by the test if it actually were true. o should be small,
and often the values 0.05, 0.01, and 0.001 are chosen.?

Critical Score. Knowledge of the critical score, Sc, is a
necessary and sufficient condition for performing a significance
test of a protein identification result. However, Sc must be known
for the particular conditions of a given experiment. In the following
paragraphs, we therefore show how Sc depends on various
pertinent experimental constraints (number of mass peaks, mass
accuracy, etc.) for the two algorithms used in the simulations. S¢
can also be used to illustrate how the information content in an
MS proteolytic peptide map depends on different experimental
constraints. The information content is a measure of how easily a

(26) Davies, O. L.; Goldsmith, P. L. Statistical Methods in Research and Production;
Longman Group Ltd.: London, 1976; 0-582-03040-4.

0.6 i
a) Algorithm 1 d) Algorithm 2
0.5 0.06
0.4
—_ 0.04
€Nno03
ha -
0.2
0.02
0.1
Z A
0 4 o} T T \// -
0 S8 16 0 10 s 20 30
. S [number of matches] S [arb. tfnit]
1
3 0.8 0.8
°
>
$o6 06
@
Q
=
g o4 0.4
£
)
202 02 -
0 NN
‘ — 0 ‘ / N
0 8 1 20 N\ 30
Sc/[number of matche\s}\ 0 SO [arb. uni(tj] N\
c
\,
0.08 F—
c)
8 0.05
g 006 - 0.05
@
i o[ e
[
20.04 0.03
[
L L
=
)
& 0.02
0.01
0 0

7 8 9 10 11 16

Sc [number of matches] 20

18

Sc [arb. unit]
Figure 1. (a) Frequency function, (S), for false protein identification
results from S. cerevisiae obtained by simulation with random tryptic
peptide maps and algorithm 1. The area « of the shaded region under
f{S= Sc) represents the probability that a false result has a score > Sc.
In significance testing, o is the significance level and is defined prior
to the significance test. A protein identification result characterized
by a score S is significant if S > Sc, where Sc is a critical score and
corresponds, e.g., to a = 0.05, 0.01, or 0.001. A conclusion that a
result is significant (S = Sc) is equivalent to a rejection of the
hypothesis Ho: “the result is false”. The risk of rejecting Ho if Ho were
actually true is a (the test error risk). (b) Significance level a as a
function of Sc. (c) Magnified portion of (b) with horizontal lines
indicating the significance levels 0.05, 0.01, and 0.001 and vertical
lines indicating the corresponding critical scores. (d—f) Parallels (a—
c), but with protein identification based on algorithm 2. (d) The
structure in f(S) reflects that the computation of the score involves
the number of matches. (f) The nondiscrete nature of the score
variable of algorithm 2 makes it easier to determine accurately the
score Sc that corresponds to a chosen a.

significant result can be achieved in a given experiment. We define
the information content as Sigea — Sc, Where Sigea IS a score
computed by assuming ideal data (n completely cleaved tryptic
peptides from a single protein) and using the same constraints
as for deriving Sc.

Number of Masses in the Peptide Map. The number of
proteolytic peptides present in a map can vary considerably
between different experiments. The influence of the number of
peptide mass peaks on the score Sc required for a significant result
is illustrated in Figure 2. For both algorithms, Sc increases with
increasing number of peptides in a map. However, the information
content also increases with the size of a map. It is seen in Figure
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Figure 2. Top panel: f(S) obtained by simulations using 3000
different random peptide maps from S. cerevisiae composed of 20
and 80 tryptic peptide masses, respectively. Bottom panel: Critical
scores, Sc, corresponding to three different significance levels (o =
0.05, 0.01, and 0.001) as a function of the number of tryptic peptide
masses in a peptide map. The lines through the simulated data points
represent least-squares fits of second-order polynomial functions.
Inset (left): Fraction of peptides in the peptide maps that match (when
o = 0.01) as a function of the number of peptides in the maps.

2 (inset, bottom left-hand panel) that the fraction of peptides in a
map that match randomly decreases as a function of the number
of peptides in the map. If a map is small (<6 peptides), almost all
the masses must match to obtain a significant result. If the map
is large, containing, e.g., 80 peptides, the result is significant (o
= 0.01) if only about 20% of the peptides match (note that these
fractions change depending on the database search constraints).

Mass Accuracy. The mass accuracy, Am, in an experiment
is usually entered as a parameter in the database search.
Therefore, the influence of Am on the critical score, Sc, must be
known in order to allow significance testing of any given
identification result. We probed the influence of Am on S¢ by
varying Am between 0.006 and 1 Da in different simulations (state-
of-the-art mass spectrometers can provide Am < 0.1 Da for
peptides). It is seen from the top panel of Figure 3 (where Sc is
plotted versus Am for algorithm 1) that the number of peptides
that randomly match the identified protein decreases sharply with
decreasing Am for 0.8 < Am < 1 and for Am < 0.1 Da. The
observed Am dependence of the random matching of peptide
masses can be understood from the fact that peptides are
composed of only a few different types of atoms that when
combined always yield peptide masses that cluster in mass regions
~0.25 Da wide, with a ~0.75 Da mass region between the clusters
devoid of peptide masses.?2 The decrease of Sc around 1 Da is
due to discrimination against adjacent mass clusters, while the
decrease below 0.1 Da arises because a decreasing fraction of
the masses within a cluster can match. For algorithm 1, the score
corresponding to ideal data, Sigea, is independent of Am (Figure
3, top; all n peptides in the map match). For algorithm 2, Sigea
and Sc depend on Am (Figure 3, bottom). Sigea O N log(Am~—1)?*
and S¢ O I'rangom 10g(Am™1), Where random iS the number of random

(27) Mann, M. 43rd ASMS Conference on Mass Spectrometry and Allied Topics;
Atlanta, Georgia, May 21—26, 1995.
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Figure 3. Critical score, Sc, corresponding to oo = 0.01 as a function
of the mass accuracy for tryptic peptide maps from S. cerevisiae with
20 and 50 peptide masses. Scores corresponding to ideal data, Sigeal
(see the text), are shown for comparison. Also shown is a plot of
Sideal — Sc, demonstrating that higher accuracy (i.e., lower Am)
facilitates significant protein identification. Top: Algorithm 1. Bot-
tom: Algorithm 2. Scores for ideal data and algorithm 2 were
computed for a 45 kDa protein.

matches. Since ryngom < N, the information content (Sigeas — Sc)
always increases with decreasing Am. Hence, for both algorithms
a reduction of Am facilitates significant protein identification.

Incomplete Enzymatic Cleavage. Enzymatic digestion is
often incomplete. Therefore, the expected highest number u of
specific sites not cleaved in a peptide is typically entered as a
constraint in the database search. The influence of u on the critical
score, S¢, must therefore be established to allow significance
testing of any given identification result. In the present work, u
was varied between 0 and 4 in different simulations. It is seen
from the results in Figure 4 (top panel), where S¢ for algorithm
1is plotted as a function of u, that the more complete the cleavage
the lower the number of random matches characterizing the false
results. Sc for algorithm 2 (Figure 4, bottom panel) saturates with
increasing u due to an intrinsic moderation of the computed score,
S, by the number, N, of possible proteolytic peptide masses in
each individual database protein. N 0 1 + u and S O log((N —
r)!/N!) ~ log(N~"), where r is the number of matches.?* Assuming
n matches for ideal data (n completely cleaved peptides from a
single protein) and ryngom Matches for random data yield Sigeal —
Sc O (N = Trandom) (const + log((1 + u)1), which decreases slowly
with increasing u (Figure 4, bottom panel).

For both algorithms, it is observed that the change of Sc is
most pronounced at low values of u and that complete cleavage
facilitates significant protein identification. However, we note that
the use of specific mass patterns that sometimes arise from
incomplete cleavage can yield additional information that proves
to be highly constraining for protein identification by MS pro-
teolytic peptide mapping.24%

(29) Jensen, O. N.; Vorm, O.; Mann, M. Electrophoresis 1996, 17, 938—44.
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cleavage sites, u, that was allowed in the S. cerevisiae database
search. Scores corresponding to ideal data, Sigear (S€€ the text), are
shown for comparison. Top: Algorithm 1. Bottom: Algorithm 2. Scores
for ideal data and algorithm 2 were computed for a 45 kDa protein.

Protein Mass. The protein mass can be used as a constraint
in the database search. This constraint is usually obtained from
SDS—gel electrophoresis and should be used with caution, since
protein degradation and anomalous migration of modified proteins
can yield misleading molecular weights. For simplicity, most of
our simulations were restricted to protein masses of 100 kDa (for
generating the peptide maps as well as for the database search).
About 95% of S. cerevisiae proteins are within this mass range.
To cover the remaining 5% of the proteins, we studied the influence
on the critical score, Sc, as a function of the protein mass range.
Figure 5 shows that algorithm 1 yields a high degree of random
matching with high-mass proteins, whereas Sc for algorithm 2 is
less sensitive to an increased protein mass range. A larger protein
mass implies a larger number, N, of possible proteolytic peptides.
As discussed above, algorithm 2 moderates the score with
increasing N. Algorithm 1 lacks this feature and therefore favors
false identification of large proteins.

Genome Size. The critical score, S¢, was studied as a function
of the size of the genome. The results shown in Figure 6 are based
on data (random tryptic peptide maps) from a prokaryote, H.
influenzae, a single-cell eukaryote, S. cerevisiae (budding yeast),
and a multicellular organism, C. elegans (nematode). It is seen
from Figure 6 that Sc increases with the size of the genome. The
increase of Sc is steeper the lower the size of the genome. The
small difference between the respective Sc values for S. cerevisiae
and C. elegans implies that protein identification by peptide
mapping can also be accomplished for larger genomes without
necessarily reaching problematic frequencies of false results. A
reduced database of C. elegans proteins was generated by
randomly selecting 6.4 x 10° ORFs (the same number as in the
entire S. cerevisiae genome) from the C. elegans genome. Simula-
tions with the reduced C. elegans database yielded a value of S¢
indistinguishable from that of S. cerevisiae (data not shown). This
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Figure 5. Critical score, Sc, that yields a. = 0.01 for tryptic peptide
maps with 20 and 50 masses as a function of the maximum protein
mass that was allowed in the S. cerevisiae database search. Top:
Algorithm 1. Bottom: Algorithm 2.

finding implies that the saturation of Sc as a function of genome
size is not due to any special feature of C. elegans or S. cerevisiae
proteins. The score frequency function for all results (false and
true) was essentially independent of whether maps generated from
the reduced C. elegans database were used to search the S.
cerevisiae database or the reduced C. elegans database. This result
is due to the highly similar distribution of tryptic peptide masses
for different genomes.? Therefore, the dependence of S¢ on the
genome size shown here can be used to estimate Sc for any
genome within the size range studied.

DISCUSSION
Statistical Uncertainties. The number of protein identifica-

tions simulated and the shape of the score frequency function
can influence the accuracy of Sc, the score required for a
significant result. We probed how Sc varied due to statistical
fluctuations by (1) repeated simulation with the same number of
maps using identical conditions except for the set of random
numbers employed to generate the maps and (2) by varying the
number of random peptide maps used per simulation. The
pronounced discrete nature of the frequency function of algorithm
1 implies an inherent sensitivity to statistical fluctuations in the
simulations. If Sc is statistically well determined, it should
converge to a particular value as the number of maps in the
simulation is increased. This was not observed for algorithm 1
for oo = 0.01 or a = 0.001. Instead, Sc fluctuated by one match as
the number of maps used was increased in six steps from 250 to
15 000. In these instances, the highest S¢ observed was assumed
as the result. The relative importance of this uncertainty decreases
with increasing size of the peptide maps, because of the larger
number of random matches (Figure 2).

The approach of fitting analytical functions to frequency
functions could be a means of reducing difficulties associated with
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Figure 6. Influence of the size of the genome database on the
critical score, Sc, required for a = 0.01 and tryptic peptide maps with
20 and 50 masses. The simulated data were obtained by using the
H. influenzae, S. cerevisiae (yeast), and C. elegans databases. The
data point between H. influenzae and yeast was obtained by randomly
dividing the yeast genome into two parts of equal size. Top: Algorithm
1. Bottom: Algorithm 2.

discrete distributions and statistical fluctuations. Although this
approach has been employed for determination of scores required
for significance in sequence or structure comparison algorithms,®
it remains to be explored for simulation of random protein
identification.

The nondiscrete nature of algorithm 2 allows even minor
statistical fluctuations to be resolved and examined by performing
multiple simulations under identical conditions using peptide maps
generated from different series of random numbers. Thus, the
fluctuation of Sc due to different responses to different random
data could be probed. The standard deviation of the mean Sc
derived from five different simulations decreased sharply when
the number of maps used per simulation was increased from 500
to 1000, and then changed very slowly when the number of maps
was further increased to 15 000. For five simulations each using
1000 maps with 20 random tryptic peptide masses, the relative
standard deviation from the mean Sc was 0.6%, 1.5%, and 2.5% for
the 0.05, 0.01, and 0.001 significance levels, respectively. Hence,
for algorithm 2 the magnitude of Sc appears to be well established
at 1000 maps per simulation.

Exploring a Large Parameter Space. The results presented
in Figures 1—6 are based on a large number of simulations
involving >10° protein identifications. Although these simulations
represent only a small fraction of the range of search parameters

(30) Levitt, M.; Gerstein, M. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 5913—20.
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studied, we found that estimation based on the derived functions
that describe how Sc varies in the parameter space (Figures 2—6)
provides an accurate procedure to assess Sc in an arbitrary point
in the parameter space. We tested this approach by comparing
such estimations of Sc with values of Sc derived from direct
simulations for randomly chosen points in the parameter space
using algorithm 2. The deviations between the estimated and the
simulated values of S¢ were within the observed standard deviation
of S¢ discussed above.

Use of Significance Testing. We will discuss briefly what
significance testing can do as well as what it cannot do when
applied to protein identification. In contrast with the identification
score, the significance level of a protein identification result gives
an objective view of the quality of the result. However, it should
be noted that significance testing can never definitively prove
whether a result is true or false. A significant result is either false
or true, as is a nonsignificant result. The significance level is the
calculated risk of obtaining a false result in a single identification.
The relative frequency of false results for a group of identifications
depends on the data as well as on the significance level chosen.
If ais decreased, the relative frequency of false results is expected
to decrease. However, choosing a very low o can sometimes lead
to an increase of the relative frequency of true results considered
nonsignificant. Optimized protein identification requires (1) the
use of an identification algorithm that maximizes the relative
frequency of true identifications and (2) the use of significance
testing at an appropriate significance level to discriminate against
false identifications. We will discuss the details of such optimiza-
tion in a separate paper.s! Here, we simply emphasize that
significance testing has the potential to reduce the relative
frequency of false identifications independent of the identification
algorithm used.

If significant protein identification is not achieved directly by
the described peptide mapping procedure, a researcher can try
to obtain further additional experimental information that provides
additional identification constraints. A good source of such
information is tandem mass spectrometry,®2-3 which utilizes
fragmentation of given proteolytic peptide ions in the mass
spectrometer followed by analysis of the resulting fragment ion
masses and database searching. Results obtained from tandem
MS (and other experimental constraints used) should also be
subjected to significance testing once a statistical basis has been
established by simulation.

CONCLUSIONS

We have shown that computer simulations of random protein
identifications can provide a statistical basis for testing the
significance of protein identification results. The frequency func-
tion for false results derived from the simulations can be employed
to find the score Sc required to reject a hypothesis of false protein
identification at some significance level. We have investigated how
Sc varies with various pertinent experimental constraints, and have
established that these functions can be used to estimate the value

(31) Eriksson, J.; Chait, B. T.; Fenyo, D. Manuscript in preparation.

(32) Yates, J. R., llI; Eng, J. K.; McCormack, A. L.; Schieltz, D. Anal. Chem. 1995,
67 (7), 1426—36.

(33) Haynes, P. A.; Fripp, N.; Aebersold, R. Electrophoresis 1998, 19, 939—45.

(34) McLafferty, F. W.; Kelleher, N. L.; Begley, T. P.; Fridriksson, E. K.; Zubarev,
R. A;; Horn, D. M. Curr. Opin. Chem. Biol. 1998, 2, 571-8.



of Sc. Hence, the statistical framework presented here can be
integrated with protein identification algorithms and fully auto-
mated. We envision that, in the future, protein identification results
will be characterized by a significance level rather than by a score.
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APPENDIX
Design of Tryptic Peptide Maps. The computer-generated

data used in our protein identification simulations were random
tryptic peptide maps, i.e., maps where each tryptic peptide mass
was randomly generated from a different randomly selected
protein. These maps were used with the specific goal of elucidating
the score frequency function, f(S), for false (random) identification
results.

A completely different but formally correct alternative way of
studying the scores of false results is to construct ideal proteolytic
peptide maps, each with all masses from a single randomly selected
protein, perform simulations, and use the score frequencies of
the second highest ranked protein resulting from the database
search as an estimate of f(S). In Figure 7, f(S) derived from the
second highest ranked proteins when using ideal maps with 20
tryptic peptides is compared with f(S) derived from the scores of
the highest ranked proteins identified on the basis of random tryptic
peptide maps with 20 tryptic peptides. It is seen that the two
approaches yield very similar results. However, if the number of
peptide masses of the ideal maps is large, only high-mass proteins
can contribute to the maps (maximum number of tryptic peptides
~ protein mass [Da]/1500 [Da]). High-mass proteins have low
abundance in a genome, and therefore, the number of different
large ideal maps is limited. This limitation would obscure the
statistical quality of the score distribution for random matching.
In contrast, random tryptic peptide maps can be generated from
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Figure 7. Score frequencies due to random matching from two
different simulation models using algorithm 1. Similar score frequen-
cies are obtained for the highest ranked protein when using random
tryptic peptide maps (each tryptic peptide mass from a different
protein) as are obtained for the second highest ranked protein when
using different ideal tryptic peptide maps (all tryptic peptide masses
from a single randomly selected protein). We note that the latter
method is not practical for use with large peptide maps (see the text
for details).

the entire database. We therefore chose the approach with random
tryptic peptide maps in our simulations.
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