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Abstract

Membrane transport is an essential component of pathogenesis for most infectious organisms.

In African trypanosomes, transport to and from the plasma membrane is closely coupled to

immune evasion and antigenic variation. In mammals and fungi an octameric exocyst complex

mediates late steps in exocytosis, but comparative genomics suggested that trypanosomes

retain only six canonical subunits, implying mechanistic divergence. We directly determined

the composition of the Trypanosoma brucei exocyst by affinity isolation and demonstrate that

the parasite complex is nonameric, retaining all eight canonical subunits (albeit highly diver-

gent at the sequence level) plus a novel essential subunit, Exo99. Exo99 and Sec15 knock-

downs have remarkably similar phenotypes in terms of viability and impact on morphology and

trafficking pathways. Significantly, both Sec15 and Exo99 have a clear function in endocytosis,

and global proteomic analysis indicates an important role in maintaining the surface proteome.

Taken together these data indicate additional exocyst functions in trypanosomes, which likely

include endocytosis, recycling and control of surface composition. Knockdowns in HeLa cells

suggest that the role in endocytosis is shared with metazoan cells. We conclude that, whilst

the trypanosome exocyst has novel components, overall functionality appears conserved, and

suggest that the unique subunit may provide therapeutic opportunities.

Author Summary

Trafficking is an important process in most eukaryotic cells, and has been adapted for spe-

cific species to accommodate their requirements. There is good evidence for the innova-

tion of novel routes and mechanisms in plants and animals in terms of the evolution of

lineage-specific proteins that function within the endocytic and exocytic pathways, and

emerging data indicates that similar novel features are also present in unicellular protozoa.

This suggests the likely presence of significant variation within membrane trafficking.

Here we have identified a novel component of the exocyst, a complex that is important in

PLOS Pathogens | DOI:10.1371/journal.ppat.1006063 January 23, 2017 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Boehm CM, Obado S, Gadelha C,

Kaupisch A, Manna PT, Gould GW, et al. (2017)

The Trypanosome Exocyst: A Conserved Structure

Revealing a New Role in Endocytosis. PLoS Pathog

13(1): e1006063. doi:10.1371/journal.

ppat.1006063

Editor: Markus Engstler, University Wuerzburg,

GERMANY

Received: May 4, 2016

Accepted: November 14, 2016

Published: January 23, 2017

Copyright: © 2017 Boehm et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by the

Wellcome Trust (program grant 082813 to MCF,

wellcome.ac.uk), Medical Research Council

(project grant G0900255 to MCF and CG, mrc.ac.

uk), National Institutes of Health (R21 AI096069,

U54 GM103511 to BTC and MPR, U01 GM098256

and P41 GM109824 to MPR, P41 GM103314 to

BTC, and GM068803 to MM www.nih.gov) and

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006063&domain=pdf&date_stamp=2017-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006063&domain=pdf&date_stamp=2017-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006063&domain=pdf&date_stamp=2017-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006063&domain=pdf&date_stamp=2017-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006063&domain=pdf&date_stamp=2017-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006063&domain=pdf&date_stamp=2017-01-23
http://creativecommons.org/licenses/by/4.0/
http://wellcome.ac.uk
http://mrc.ac.uk
http://mrc.ac.uk
http://www.nih.gov


late stages of protein secretion. Moreover, we also find evidence that the exocyst is

involved in endocytosis extending the functional reach of this complex.

Introduction

Nutrient uptake, immune evasion, developmental progression and sensitivity to several drugs

all require the action of the membrane transport system in trypanosomes [1]. In African try-

panosomes, maintaining the composition and homeostasis of the surface proteome is closely

connected to many of these processes, including clearance of acquired immune effectors from

the surface coat, resistance to innate immune factors, uptake of heme and iron together with

sensitivity to suramin and possibly additional trypanocides [2,1]. The membrane transport sys-

tem of Trypanosoma brucei is comparatively well studied, and whilst generally conserved with

other eukaryotes in overall architecture [3], the system has been adapted to the parasitic life

style and the specific challenges associated with survival in the mammalian bloodstream [4,5,1].

Endocytic mechanisms have received significantly more attention than secretory pathways due

in part to technical tractability, but despite the clear importance of secretory pathways for the

biosynthesis of the surface coat.

The membrane trafficking system is mediated by a core of paralogous protein families, spe-

cifically Rabs, SNAREs, vesicle coats and tethering complexes. For the most part these are well

conserved and play similar roles across eukaryotes [3]. The SNARE and Rab families are large,

and individual members associated with distinct subcellular organelles controling transport

between compartments [6–10]. In contrast, the multiple membrane-tethering complexes

(MTCs) have distinct compositions from each other, suggesting mechanistic differentiation

albeit with some evidence for common evolutionary descent through the CATCHR fold,

shared by several subunits in multiple complexes [11–16]. MTCs include TRAPP I, II and III,

COG, HOPS, CORVET, Dsl1, GARP and the exocyst, and mediate attachment of vesicles to

target membranes and/or homotypic fusion between organelles. Significantly, MTCs are regu-

lated by, and also seem to regulate, small GTPases and SNAREs. Significantly, none of the

MTC complexes have been studied in trypanosomes and hence their functions and composi-

tions remain uncharacterised.

The exocyst in Saccharomyces cerevisiae was originally described as comprising Sec3, 5, 6, 8,

10 and 15, with Sec15 binding Sec4, the yeast ortholog of Rab11 [17]. Exo70 and Exo84 were

subsequently discovered and the holocomplex demonstrated to be a stable 19.5S particle [18–

20]. Overall the exocyst forms a rod, and is likely monomeric, with the vast majority of proteins

adopting structures that are near exclusively α-helical bundles [19,21]. Based on interactions

with multiple plasma membrane GTPases [22], the exocyst is proposed to tether secretory vesi-

cles to the plasma membrane [15, 23]. Deliberate mistargeting of exocyst subunits to the mito-

chondrion recruits both additional exocyst subunits to this site and secretory cargo, supporting

an exocyst function in secretion [24]. Imaging studies indicate involvement in endocytic events,

as exocyst mutants display altered endocytic and post-Golgi vesicle dynamics [25], further sup-

ported by the spatial proximity of endocytic and exocytic sites in several organisms, including

Drosophila melanogaster, yeast, and trypanosomatids [25–28].

Despite a conserved basic system of Rabs and SNAREs and major coat proteins, there is

mounting evidence for divergence in trafficking mechanisms across eukaryotes, with multiple

examples of lineage-specific proteins or secondary losses now known [29–32]. In T. brucei,
which is highly divergent from animals and fungi, endocytosis is extremely rapid, and despite

being exclusively clathrin-mediated (CME), has several protein losses and gains compared to
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higher eukaryotes [4,5]. Previous comparative genomics studies found only six of the eight

canonical exocyst subunits in trypanosomes, with Sec5 and Exo84 evading identification [12],

suggesting an alternative, simplified exocyst complex in trypanosomatids with a distinct mech-

anism, a novel architecture or a failure to uncover highly divergent orthologs.

To directly address this question we investigated the composition and function of the try-

panosome exocyst and found evidence for all eight canonical subunits, together with a novel

ninth component that has a divergent architecture from the remaining eight conserved sub-

units. Further, we demonstrate a clear role in endocytosis, that extends between trypanosomes

and mammalian cells, suggesting a general role across eukaryotes.

Results

The exocyst of trypanosomes is conserved

Evidence for the exocyst complex as a distinct octameric biochemical entity was provided by

immunoprecipitation and velocity gradient centrifugation [17, 19, 20, 21] with no evidence for

additional stable subunits. In contrast, there is good evidence for interactions with several

GTPases (Sec4/Rab11, Rho1 and 3 and Cdc42), SNAREs, Sec1 and multiple cytoskeletal com-

ponents, although these are weakly bound and/or transiently interacting [22, 33–41]. An ear-

lier in silico study identified only six of eight canonical subunits in trypanosomatids [12],

suggesting that either the two subunits Sec5 and Exo84, are genuinely missing, or too divergent

to identify.

We purified the exocyst from T. brucei by affinity isolation and cryomilling (see methods)

using a genomically-tagged TbSec15::GFP fusion protein as an affinity handle [42]. Initially,

immunoprecipitations (IPs) were performed using various buffers and analysed by SDS-

PAGE. Ultimately IPs using two comparatively stringent conditions, 20mM HEPES pH 7.4,

500mM NaCl, 0.5% (w/v) Triton X-100 and 20mM HEPES pH 7.4, 250mM NaCitrate, 0.5%

(w/v) CHAPS were analysed by LCMS2 or MALDI-ToF/MS. From these purifications, orthologs

to all eight mammalian and fungal exocyst subunits were identified, including Sec5 (Tb927.7.4

490) and Exo84 (Tb927.7.5150). Trypanosome Sec5 and Exo84 are significantly larger than their

animal or fungal orthologs, and have very limited regions of homology and low BLAST scores,

explaining the failure to identify these subunits earlier. Based on Coomassie staining all subunits

appear to be present at similar levels and predicted molecular weights were consistent with the

electrophoretic migration positions for all subunits (Fig 1A). Further, only Sec15::GFP, and not

untagged Sec15, was recovered, suggesting isolation of monomeric exocyst complexes.

Exo99, a novel component of the trypanosome exocyst

We also identified a 99 kDa protein containing a predicted central WD40 domain encoded by

Tb927.10.420. This protein co-purified with similar abundance to the canonical exocyst sub-

units; therefore we designated it as Exo99. To confirm Exo99 as an exocyst component, we co-

purified the entire nonameric exocyst using Exo99::GFP as the affinity handle, which was

strong evidence for stable association and assignment as a bona fide component (Fig 1A). Seek-

ing other potential exocyst interacting proteins, Sec15::GFP and Exo99::GFP IPs were analysed

by LCMS2, with or without dynamic exclusion, to maximise depth and provide semi-quantita-

tive data on complex composition. Significantly, without dynamic exclusion all exocyst sub-

units, including Exo99, were recovered as top scoring identifications alongside frequent

contaminants and two hypothetical proteins, Tb927.8.5580 and Tb927.11.11010 (formerly

Tb11.01.2800) (S1 Table), that were later tested for exocyst interaction (see below). The archi-

tecture of Exo99 demonstrates both similarities and divergences from the canonical exocyst

subunits: specifically retaining a significant degree of α-helical structure, but also carrying an
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Fig 1. Identification of nine exocyst subunits in trypanosomes. (A) Immunoisolation from PCF cells constitutively expressing Sec15::GFP or

Exo99::GFP. Pullouts were performed with the following buffers; (1) 20mM HEPES pH 7.4, 500mM NaCl 5% Triton and protease inhibitors; (2) 20mM

HEPES pH 7.4, 250mM NaCitrate 5% CHAPS and protease inhibitors. (B) Immunofluorescence microscopy of PCF cells expressing Sec15::GFP and

Exo99::GFP (green), BSF cells expressing Sec15::HA and Exo99::HA (red) and PCF cells co-expressing Sec15::GFP and Exo99::HA. DAPI was used

to visualise DNA (blue). Scale bar, 5 μm. In both lifecycle stages Sec15 and Exo99 localise to the region between the nucleus and kinetoplast where the

organelles of the endocytic and secretory pathways are found. (C) Immunofluorescence of PCF cells expressing Sec5::GFP and Exo84::GFP (green).

Sec5 and Exo99 localise to the same region which indicates that they are part of the same complex. (D) Predicted secondary structure of Exo99

according to PSIPRED. The horizontal black line represents the polypeptide span with the N-terminus to the left, the y-axis indicates the confidence

score of predicted secondary structure. Predicted α-helix are shown in red, predicted β-sheet in blue.

doi:10.1371/journal.ppat.1006063.g001

The Trypanosome Exocyst

PLOS Pathogens | DOI:10.1371/journal.ppat.1006063 January 23, 2017 4 / 25



additional predicted complete β-propeller domain, and which may suggest roles in novel pro-

tein-protein interactions.

Exo99 co-localises with the exocyst at the flagellar pocket region

To further verify Exo99 as an exocyst subunit, we epitope-tagged Sec15 and Exo99 and exam-

ined their localisation by immunofluorescence (IF) in both lifecycle stages. Sec15::GFP specifi-

cally localised to the flagellar pocket region, the sole site of exocytosis in T. brucei, and at high

resolution appears to encompass much of the pocket membrane (S1 Movie); [36]. Indeed,

both Sec15 and Exo99 localise to one or two discrete puncta by conventional IF juxtaposed to

the kinetoplast (the mitochondrial DNA of the parasite) in both procyclic (PCF) and blood-

stream form (BSF) cells and with a distinct epitope tag (Fig 1B). Tagging Sec15 and Exo99 in

PCF cells showed overlap between Sec15::GFP and Exo99::HA, further suggesting that these

proteins are components of the same complex, and that it is unlikely that the tag influences tar-

geting (Fig 1B). Additional fluorescence signal in regions distal to the kinetoplast may reflect

the presence of exocyst components elsewhere, where they may participate in assembly and

loading onto transport vesicles, as reported for mammalian cells [43,44]. Further, the locations

of Sec5 and Exo84 as analysed by epitope-tagging and IF were indistinguishable from Sec15 or

Exo99, providing additional evidence that all are most likely bona fide trypanosome exocyst

components (Fig 1C).

We also assessed if the products of Tb927.8.5580 and Tb927.11.11010, identified in the

Exo99 pullout, are potential exocyst partners, by determining their locations. Tb927.8.5580

encodes a 526kDa protein orthologous to Vps13, and localises to the membrane-trafficking

active region between the kinetoplast and nucleus and is therefore a candidate interaction part-

ner for Exo99 (S1 Fig). Vps13 is highly conserved across the eukaryotic lineage and plays a role

in late or post-Golgi trafficking [45]. By contrast, Tb927.11.11010 did not co-localise with

Exo99 and is therefore unlikely to be an exocyst component or binding partner (S1 Fig). Col-

lectively, these data suggest that in trypanosomatids the exocyst is a nonameric complex with a

possible interaction with the Golgi complex via Vps13. Whilst previous data indicates an inter-

action between trypanosome Sec15 and Rab11, no evidence for interactions with additional

small GTPases was obtained here [36].

Sec15 and Exo99 are essential

We used RNAi to ablate either Sec15 or Exo99 and to investigate possible roles for the exocyst

in trypanosomes. Levels of both proteins were reduced by >50% within two days of RNAi

induction, and a clear proliferation defect was observed (Fig 2). 12% and 25% of Sec15 and

Exo99 RNAi cells respectively exhibited an enlarged flagellar pocket or ‘Big Eye’ (Fig 2A). This

morphology, first described from clathrin knockdown, is characteristically induced by blocked

endocytosis and/or a disruption in trafficking homeostasis [26].

We quantified the frequency of cells at various points along the cell cycle by staining both

induced and uninduced cells with 4-,6-diamidino-2-phenylindole (DAPI) to track DNA-con-

taining organelles. We observed in the Sec15::RNAi line a significant increase in the propor-

tion of cells in early mitosis with two kinetoplasts and one nucleus (2K1N) and cells in late

mitosis with two kinetoplasts and two nuclei (2K2N) (Fig 2B). A similar but more pronounced

phenotype was observed in the Exo99::RNA line. These findings most likely reflect a defect in

cytokinesis whilst the FP enlargement is a common phenotype associated with intracellular

transport defects. The similarity of the phenotypes for Sec15 and Exo99 knockdowns supports

the hypothesis that both are essential exocyst subunits.

The Trypanosome Exocyst
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Fig 2. The exocyst is required for cell cycle progression in trypanosomes. (A) Cumulative growth curves of uninduced (solid line) and induced

(dashed line) Sec15 and Exo99::RNAi lines. Sec15 and Exo99 depletion leads to a severe proliferative defect, further ~12% and *25% of Sec15 and

Exo99::RNAi cells respectively have an enlarged flagellar pocket by 48h post induction. (B) Cell cycle analysis of Sec15 and Exo99::RNAi cells. For

Exo99::RNAi cells a modest disruption in cell cycle progression manifested as an accumulation of 2K2N late-mitotic cells within 24 (D1) and 48h (D2) post

induction; this defect is more severe in Sec15::RNAi cells. Representative result based on analysis of >100 cells. (C) Immunofluorescence microscopy of

Sec15 and Exo99 depletion in BSF Sec15::HA and Exo99::HA cell lines. Sec15::RNAi cells show a *50% decrease of Sec15::HA signal (red), while the

relative expression level of Exo99 remains unaltered, and vice versa. DAPI used to visualise DNA (blue). Scale bar, 5 μm. N = 50 G1 cells. (D) Western

blot of Sec15 and Exo99::RNAi in BSF Sec15::HA and Exo99::HA cell lines. Sec15::RNAi cells have a *50% decrease to Sec15::HA 48h post induction,

whilst expression of Exo99 remains stable, and vice versa. N = 3 independent experiments normalized to tubulin. Control: SMB cells uninduced; D1: 24 hr

post induction; 48 hr post induction.

doi:10.1371/journal.ppat.1006063.g002
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In trans effects on complex stability can result from subunit depletion; for example, silenc-

ing one subunit in the trypanosome AP-1 complex leads to decreased expression of the other

protein subunits [26]. However, silencing Sec15 did not affect localisation or expression level

of Exo99 and vice versa (Fig 2C). Sec15 RNAi cells showed a *50% decrease of Sec15::HA sig-

nal but the relative level of Exo99::HA remained stable. Conversely, Exo99 RNAi cells showed

a *50% decrease in Exo99::HA but the Sec15::HA expression level was unaltered (Fig 2C and

2D). These data suggest that, despite loss of function obtained from knockdown of individual

subunits, the phenotype obtained is not due to overall decrease in complex abundance but

rather appears as a result of loss of the individual subunits.

Given the proliferative defect encountered from Sec15 or Exo99 silencing, we probed for a

role in maintaining endomembrane compartments and distributions of clathrin and the Sec15

interactor Rab11. No impact on the locations of Golgi or lysosomal markers (GRASP and p67

respectively) was observed, at least in G1 (1K1N) cells that retained normal cellular morphol-

ogy (Fig 3). Neither were there perturbations to localisation or expression levels of clathrin or

Rab11, indicating that these proteins are not dependent on the exocyst for targeting (Fig 3).

Some proteins associated with flagellar function were identified by mass spectrometry analysis

of Exo99 pullouts e.g. PFR1, PFR2, BILBO1. Therefore we asked if suppression of Sec15 and

Exo99 affected flagellum integrity by monitoring overall morphology and expression levels of

the flagellar marker PFR2. No detectable alterations in the flagellum of RNAi mutants were

observed, suggesting that the exocyst is not intimately involved with this organelle (S1 Fig).

The exocyst has a role in endocytosis

Electron microscopy of RNAi mutants confirmed the ‘Big Eye’ effect upon silencing of Sec15 or

Exo99 (Fig 4). Enlarged flagellar pockets contained sizable variant surface glycoprotein (VSG)-

coated vesicles and also clathrin-coated membrane surrounding exocytic/recycling vesicles (Fig

4), suggesting that trafficking to and from the flagellar pocket is not completely abolished.

Clathrin was also seen associated to the flagellar pocket membrane itself, of both Sec15 and

Exo99 RNAi mutants, as slightly curved coated pit or flat coated lattices (Fig 4B, 4F and 4G;

Fig 5D). This demonstrates that the impaired endocytosis in these mutants may not necessarily

be caused by a failure in recruiting clathrin triskelions to the pocket membrane, or in assem-

bling a functional clathrin coat around pits and lattices, but in proceeding to highly-curved

pits and vesicle budding. In that regard, we have previously reported on a similar, post-recruit-

ment phenotype upon ablation of clathrin interactors and adaptors [4,5], whereby a reduction

in clathrin-coated pit density due to enlargement of the flagellar pocket volume was observed.

Organelles of the endocytic pathway appeared normal (Fig 3), although in Sec15-depleted

cells ~15% showed an enlarged ER (Fig 4H). Ultrastructural analysis also confirmed the defect

in cytokinesis, since the proportion of cells with multiple nuclei was significantly increased

(Fig 4D and 4I). The presence of vesicles within the FP lumen is most likely a specific stress

response, being a frequent observation in cells where trafficking is defective, but may also rep-

resent induction of an exosome pathway [46].

Since the appearance of the ‘Big Eye’ phenotype is characteristic of an endocytic defect, we

studied the dynamics of endocytosis in Sec15 and Exo99 knockdown cells. VSG is the domi-

nant mannose-containing protein at the trypanosome surface and binds the lectin Concanava-

lin A (ConA), which essentially reports on uptake of>90% of surface proteins. Cells were

incubated with ConA at temperatures that allow internalisation into distinct endocytic com-

partments [47]: at 4˚C ConA localises at the flagellar pocket; at 12˚C ConA locates to both the

flagellar pocket and early endosomes; while at 37˚C ConA reaches the lysosome (here co-

stained with anti-p67).

The Trypanosome Exocyst
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Cells depleted of Sec15 or Exo99 showed one discrete spot at the flagellar pocket at 4˚C,

consistent with cold block of endocytosis. However, at 12˚C and at 37˚C, ConA remained

mostly localised at the flagellar pocket, indicating delays in trafficking events from the cell sur-

face to the lysosome (Fig 5). Analysis of the dynamics of ConA uptake confirmed that both

knockdown lines had substantial delays in all stages of endocytosis, from uptake at the flagellar

pocket to lysosomal delivery. After 30 min, *80% of control cells showed greater than 50%

signal overlap of ConA and p67, whereas only *20% of Sec15 and Exo99 RNAi cells displayed

such signal overlap (Fig 5). Collectively, these results imply that knockdown of Sec15 or Exo99

generates a significant endocytic and lysosomal delivery defect without affecting lysosomal

morphology. Interestingly, electron microscopy demonstrated clathrin-coated pits at the sur-

face membrane and, together with unaltered clathrin distribution in Sec15 and Exo99 RNAi

cells, suggests that the endocytic delay is not the result of failure to recruit clathrin to the

Fig 3. The exocyst is not required for endomembrane system maintenance or morphology. Immuno-

fluorescence microscopy analysis of selected organelle markers or trafficking pathways for Sec15::RNAi and

Exo99::RNAi cells at 24 (D1) and 48h (D2) post induction. Cells were stained with specific antibodies against

GRASP (red), p67 (green), clathrin heavy chain (red) or Rab11 (red) and counter-stained with DAPI to visualise

DNA (blue). The morphology and protein expression levels of all molecular markers remained stable. Scale bar,

5 μm.

doi:10.1371/journal.ppat.1006063.g003
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flagellar pocket membrane, but that the flux through this step is impacted. We cannot, how-

ever, exclude the possibility that some of the decreased endocytic flux is a result of the genera-

tion of intralumenal vesicles. But given that the entire cell surface of trypanosomes turns over

in ~7 minutes [48], this is likely a minor contributory factor.

A role for the exocyst in maintaining cell surface components

As a further probe of trafficking, we analysed the impact of Sec15 and Exo99 RNAi on the

major surface trans-membrane domain glycoproteins ISG65 and ISG75. These antigens have

distinct trafficking itineraries, both from each other and VSG. However both proteins require

ubiquitylation for turnover and endosomal targeting, and are sensitive to a number of endocy-

tosis and recycling blockades [49–51]. Both Exo99 and Sec15 knockdown lines had signifi-

cantly increased internal ISG pools (Fig 6), suggesting defects in late, pre-lysosomal events

and/or recycling pathways [50]. Furthermore, ISG65 and ISG75 steady-state levels as assessed

by Western blot were increased by *30% following Sec15 silencing (Fig 6), consistent with

defective endocytic trafficking.

To provide an orthogonal, unbiased analysis of the surface proteome, we performed quanti-

tative proteomics on whole cell lysates. A Sec15 RNAi line was generated using pRPaSLi cells to

increase RNAi penetrance and decrease clonal variability [52]. On induction the pRPaSLi

Sec15 RNAi line had an indistinguishable phenotype to the p2T7 Sec15 RNAi line described

above, albeit with a more rapid onset. Up to 80% Big Eye cells were observed at 36hr post

induction. Induced and uninduced pRPaSLi Sec15::RNAi cells were grown in the presence of

either light L-arginine and L-lysine (HMI11-R0K0), or L-arginine U-13C6 and L-lysine

4,4,5,5-2H4 (HMI11-R6K4) for 24 and 36h, as described in [51]. Whole cell lysates were

resolved by 1D SDS-PAGE and subjected to proteomic analysis. Across all replicates we

detected>1700 unique protein groups, amounting to ~25% of the predicted trypanosome pro-

teome (S1 Table).

We considered significant only those proteins where changes were seen at both time points

and where the change increased in a time-dependent manner. The impact of the Sec15

Fig 4. The exocyst is required for normal membrane trafficking. Representative transmission electron micrographs showing the effect of

exocist subunit ablation 48h post-RNAi induction in BSF cells. The steady-state flagellar pocket has a small overall volume (A); ablation of Exo99

and Sec15 causes pocket enlargement (B, E), over-production of large VSG-coated vesicles inside the flagellar pocket (C, F, G), failure in

cytokinesis (as illustrated by multiple nuclei in panels D and I) and ER hypertrophy (H). Despite large flagellar pocket volumes, indicative of

endocytosis defect, clathrin is recruited to the surface membrane and able to assemble into coated pits and lattices (B, F).

doi:10.1371/journal.ppat.1006063.g004

The Trypanosome Exocyst
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Fig 5. The exocyst is required for endocytosis. (A) Uninduced and induced Sec15 and Exo99::RNAi cells

were allowed to accumulate FITC-conjugated ConA at the indicated temperatures. Fixed cells counterstained

with DAPI (blue) and anti-p67 antibody for the lysosome (green). Both Sec15 and Exo99::RNAi lines show

a defect in delivery of ConA to the lysosome: at 12˚C and 37˚C ConA remains predominantly localised at

the flagellar pocket. (B) Dynamics of ConA uptake at 37˚C 48h post RNAi induction. In control cells, ConA

accumulates in a p67-positive compartment within 30 min. By contrast Sec15 and Exo99::RNAi cells exhibit a

marked delay in delivery of ConA to the lysosome. In all images DAPI was used to visualise DNA (blue). Scale

bar, 5 μm. (C) Quantitation of ConA lysosomal delivery at 37˚C 48h post induction. N = 25 cells per time point

per duplicate experiment. (D) Representative electron micrograph of curved flagellar pocket membrane

coated by clathrin. Arrowheads point at clathrin coat.

doi:10.1371/journal.ppat.1006063.g005
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Fig 6. Exocyst mediates control of invariant surface glycoprotein expression levels. (A) The localisation and relative expression level of the

intracellular ISG65 and ISG75 pool were assessed by immunofluorescence microscopy with specific antibodies (red), in control cells and in Sec15

and Exo99 RNAi cells at 24 and 48h post induction. In both RNAi lines the intracellular ISG pool is significant increased. Scale bar, 5 μm (B)

Expression of total ISG65 and ISG75 in Sec15 RNAi cells at 24 (D1) and 48h (D2) post induction detected by Western blot. Steady-state ISG

expression is significantly increased in Sec15 RNAi cells compared to control. N = 3 independent experiments normalized to tubulin signal.

doi:10.1371/journal.ppat.1006063.g006
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knockdown on ISG65 and ISG75 levels was in good agreement with Western blot analysis;

Sec15 RNAi increased ISG75 abundance by *45–70%. For ISG65, four paralogues were

increased by *50%. Interestingly, ISG64, another member of the ISG protein superfamily, also

increased in abundance by ~65% together with three proteins with more distant ISG homology

by 50–90%. Overall this quantitative analysis suggests a similar and significant impact on ISG

and ISG-like protein families, potentially reflecting protection from degradation [51].

In addition to ISGs, several other surface proteins had increased abundance (Fig 7), includ-

ing a VSG-domain containing protein (Tb927.7.180), GRESAG5 (Tb927.7.6860), aquaglycero-

porin1 (Tb927.6.1520), PAD1 and a predicted surface receptor from the plexin superfamily

(Tb927.10.11140). Increased abundance of several additional proteins, predicted to function in

mitochondrial pathways (especially the Krebs’ cycle) or key players of differentiation from

bloodstream to procyclic form (PAD1 and a PTP1-interacting protein) [53, 54, 55] suggests

that a differentiation switch was being activated or partially activated in these Sec15-depleted

cells [56,57]. By contrast, no key endocytosis or cytoskeletal components were significantly

altered, suggesting that the endocytosis block is not a direct result of decreased abundance of

endocytic protein components.

Fig 7. Quantitative proteomics by SILAC identifies altered surface protein expression mediated by exocyst

knockdown. (A) Volcano plot of protein abundance changes at 36h post Sec15 RNAi induction. -log10 transformed

SILAC ratios are plotted against -log10 transformed standard deviation. Data points representing protein groups

significantly altered after 36 hours are labeled; ISG65 and ISG75 paralogs in dark green, other potential surface proteins

in light green, mitochondrial proteins in red, cytoplasmic proteins in blue, lysosomal proteins in yellow, others in grey.

AQP1: Aquaporin1, TryS: trypanothione synthetase; PTP1 interactor: Protein-tyrosine-phosphatase1-interacting protein;

PAD1: Protein associated with differentiation 1; CoA transferase: Succinyl-coA:3-ketoacid-coenzyme A transferase;

GCVL-2: Dihydrolipoyl dehydrogenase. (B) Predicted cellular localisation of proteins upregulated in Sec15 RNAi cells 36h

post induction as reported by GO terms or as predicted by TMHMM2 for trans-membrane domains and PredGPI for GPI-

anchor addition C-terminal signal sequences [89, 90]. Numbers of proteins in each category are in parenthesis.

doi:10.1371/journal.ppat.1006063.g007
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Few proteins were significantly decreased by Sec15 depletion. Tb927.7.3220, a ChaC-like

protein (member of the γ-glutamyl cyclotransferase-like superfamily) was decreased ~55% at

36hr post RNAi induction. Trypanothione synthetase (TryS), on the other hand, was increased

~25% at 24h and ~100% at 36h post induction. Altered expression levels of both proteins most

likely represent defence against oxidant damage and may also be part of the cell differentiation

process affected by Sec15 knockdown [58].

The exocyst functions in endocytosis in metazoan cells

While there is growing circumstantial evidence for roles for the exocyst in recycling and endocy-

tosis in metazoan cells, this has not been directly measured. The extreme level of endocytosis in

trypanosomes made this aspect of exocyst function quite obvious, so we asked if a similar func-

tion is present in mammalian cells. EXOC6, the human Sec15 ortholog, was depleted by EXOC6

siRNA smart pool transfection in HeLa cells, alongside transfection of scrambled siRNA as con-

trol. EXOC6 was depleted to ~15% at 48h post transfection (quantified as a ratio of EXOC6/

GAPDH by Western blot; Fig 8A). Labelled transferrin uptake by HeLa was analysed at 48h post

Fig 8. The exocyst functions in endocytosis in human cells. (A) Immunoblots of lysates prepared from HeLa cells treated with either

scrambled or EXOC6 siRNA smart pools as shown in panel B, probed with anti-EXOC6 or anti-GAPDH as indicated. Knockdown levels of

EXOC6 were quantified from 3 experiments of this type and are presented as a ratio of EXOC6/GAPDH signals. (B) HeLa cells depicting

transferrin uptake. Cells treated with either scrambled or EXOC6 siRNA were imaged after the uptake of labelled transferrin (10 min).

Representative fields of cells from 3 independent replicates. (C) The fluorescence intensity of >100 cells for each condition was determined

using ImageJ and the data compared using an unpaired t test. *** P value < 0.0001. (D) The image intensity of >100 cells of each condition

were binned into two groups, those with a signal intensity >500 arbitrary units, and those <500. Knockdown of EXOC6 was found to

significantly increase the fraction of cells with a signal intensity <500 (** P value <0.01), consistent with a decrease in transferrin endocytosis.

doi:10.1371/journal.ppat.1006063.g008
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transfection with EXOC6 or scrambled siRNA by rendering cells quiescent for two hours in

serum-free medium followed by incubation with 1ug/ml Alexa Fluor 488 conjugated transferrin

for 10 minutes (Fig 8B). The fluorescence intensity of>100 cells for each sample showed a

decrease in the transferrin signal to 25% in EXOC6 knockdown cells compared to scrambled

siRNA (Fig 8C). The image intensity from each condition were binned into two cohorts, those

with signal intensity>500 arbitrary units, and those<500. Knockdown of EXOC6 was found

to significantly increase the fraction of cells with a signal intensity<500 by ~40%, consistent

with a decrease in transferrin endocytosis (Fig 8D), confirming a role of exocyst in endocytotic

events not only in the Kinetoplastida, but also in human cells. Although detailed kinetic analysis

of this effect has not been undertaken here and we recognise that cell surface levels of transferrin

receptor may be reduced (although total levels are unchanged (S2 Fig), these data strongly sug-

gest a functional correlation of the effects observed in Kinetoplastida with effects in higher

Eukarya [59].

Discussion

Cellular complexity was revolutionised by the development of an endomembrane system dur-

ing eukaryogenesis. The intervening period of over a billion years subsequently moulded these

ancestral transport systems by both losses and gains to those now present in living cells [60].

Secondary loss of ancestral components is quite common,and likely a response to the require-

ments of individual organisms or lineages, and are reasonably easy to identify by comparative

genomics [61]. By contrast, lineage-specific modifications, which are potentially very com-

mon, are difficult to identify in silico. The absence of extensive direct data in protozoa and

many other taxa has precluded the full appreciation of how extensive a contribution lineage-

specific innovations make to trafficking systems, and their biological consequences. We previ-

ously demonstrated many gains and losses in the endocytic system and surface proteome of

trypanosomes [4, 5, 62, 63], which prompted analysis of the exocyst, originally identified as a

component of late exocytic transport in budding yeast [17].

To address the question of composition and lineage-specific subunits, we purified the exo-

cyst holocomplex. Replication of this isolation in S. cerevisiae [21] suggests that this is a gener-

alisable purification strategy, but that surprisingly the trypanosome exocyst is nonameric,

containing all canonical subunits plus Exo99. The earlier prediction of a simpler exocyst was

likely due to extreme divergence for two subunits, but their direct identification provides

robust evidence for their presence in the trypanosome exocyst, which likely suggests a signifi-

cant level of mechanistic conservation. Indeed, whilst this work was in progress, Sec5 was pre-

dicted in trypanosomes using more sensitive modern algorithms [64]. However, the discovery

of a ninth subunit, and one with a clear predicted protein interaction domain (i.e. an intact β-

propeller) does suggest that additional and specific interactions may subtend the trypanosome

exocyst and not the host complex. These may induce the Vps13 ortholog Tb927.8.5580 for

example, which has not been suggested to interact with the yeast or mammalian exocyst and

provides an additional connection to the Golgi complex.

Evidence that Exo99 is a bona fide exocyst subunit includes localisation, reverse immuno-

precipitation and similarity of function indicated by knockdowns of Sec15 and Exo99. The

presence of Exo99 also raises the possibility that the exocyst in other lineages contains non-

canonical subunits, and the presence of an additional exocyst subunit further highlights evolu-

tionary modifications in membrane trafficking pathways, underscoring the flexibility of these

pathways across evolution [4, 5].

The exocyst displays extensive protein interactions but we did not detect stable interactions

with GTPases or the cytoskeleton for example. For trypanosomes the GTPase complement at
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the plasma membrane is likely less complex than in animals and fungi as there is only a single

Rho-like protein RHP [65], but such interactions were also not identified robustly in yeast for

example [21]. We previously demonstrated an interaction between Sec15 and Rab11 in try-

panosomes by yeast two hybrid, which likely reflects the difficulty in maintaining such connec-

tions biochemically [36]. In yeast, actin disruption leads to mistargeting of many exocyst

subunits, suggesting that actin trafficking is needed for their targeting [66], but such evidence

is not yet available for trypanosomes. Sec3 and Exo84 interact with WASH, suggesting that

both WASH and exocyst control actin at endosomes in mammalian cancer cells [67]. Addi-

tional roles in cytokinesis in multiple organisms have also been described, for example a role

for Exo70 in targeting Rab11 to the mammalian cleavage furrow [68], whilst in vascular plants

there is an emerging role for Exo70 in an ER-to-vacuole pathway analogous to autophagy [69].

The connection with actin and the targeting of exocyst to endosomes via Rab11 has how-

ever suggested a role for exocyst in endocytic pathways, which was recently also supported by

imaging of membrane trafficking in yeast [70]. An endocytic role for the trypanosome exocyst

is supported by multiple lines of evidence: enlargement of the flagellar pocket, decreased turn-

over of multiple surface proteins and delayed delivery of endocytic probes to the lysosome. Sig-

nificantly, both Sec15 and Exo99 generate this phenotype, suggesting that both subunits are

required and, similarly to the canonical subunits, all nine are required by the trypanosome.

Detection of an endocytic defect was aided by extreme flux in mammalian-infective trypano-

some cells. The presence of vesicles within the FP lumen is further evidence for the importance

of the exocyst in maintaining membrane trafficking and is potentially connected with genera-

tion of exosomes, as these vehicles are coated with VSG [46], but this remains speculative at

present.

However, we could confirm an endocytic effect in mammalian cells using conventional

transport assays, and suggest that regulation of endocytosis is likely an ancient, conserved exo-

cyst function [59]. Hence, dual roles in transport to and from the cell surface, and integration

with the cytoskeleton and multiple GTPases, confirms that exocyst is indeed a major hub con-

trolling intracellular trafficking [25].

Exocyst subunit knockdown also provides new insight into the dynamics of the trypano-

some cell surface. Two major cohorts of proteins, surface proteins/receptors and proteins

involved in mitochondrial pathways, were found to increase in abundance upon ablation of

Sec15. Whilst a VSG-related protein with unknown function and ISGs are clearly increased,

the expression level of VSG itself was unaltered. This suggests that proteins that are rapidly

transiting the recycling system are affected by exocyst function. This also indicates that several

other ISG protein families are indeed expressed at the surface. Further, two components of the

differentiation pathway from the bloodstream to the procyclic stage–the surface receptor

PAD1 and an interactor of the cytosolic phosphatase PTP1 –were increased, suggesting a con-

nection between exocyst-dependent trafficking pathways and bloodstream-to-procyclic differ-

entiation. Significantly, this is consistent with an increase in abundance of a significant

proportion of proteins involved in mitochondrial pathways, also a feature of this differentia-

tion pathway [53, 54, 55, 56, 57].

In conclusion, we reveal new roles for the exocyst in endocytosis across eukaryotes and

developmental pathways in trypanosomes, and demonstrate considerable evolutionary flexibil-

ity in retention of exocyst. The identification of Exo99 in trypanosomes also raises the possibil-

ity of additional, lineage-specific subunits in taxa that remain to be uncovered. Exo99 may

provide opportunities for specific blockade to parasite exocytosis and endocytosis as this pro-

tein is present in the trypanosome and not the host.

The Trypanosome Exocyst

PLOS Pathogens | DOI:10.1371/journal.ppat.1006063 January 23, 2017 15 / 25



Methods

Plasmid constructs for RNA interference and chromosome tagging

Primers for amplification of RNAi target fragments were designed using RNAit [71] to amplify a

region unique to the gene of interest compared with the rest of the T. brucei genome. RNAi target

fragments were PCR amplified using Taq DNA polymerase with gene-specific primers: Sec15for:

AAGTCCCGTCATCGTTTCAC; Sec15rev: GCTCCCCTAGCCTTCTTTCGT; Exo99for: TGCG

AAACGTTTGCTCATAG; Exo99rev: CATTCTCGCACTCCAACTGA and cloned into the tetra-

cycline-inducible RNAi expression vector p2T7TAblue [72], that was linearised with Eam1105I.

Chromosome tagging with hemagglutinin (HA) or green fluorescent protein (GFP) was per-

formed using the protocol and vectors described in [73] with the following gene-specific primers:

Sec15for: CGGTTCCCCCTGAACCCGACGCAAATTGCGGATGATCTGTTAGCGTGGA

TCGCAAATAAGGAGGCCGCGCTAAAGCGAACTTTAGGTACCGGGCCCCCCCTCGAG;

Sec15rev: TCCAACGTTGCAAGAGTGCACGCCGCCACCTTGAGAGCAACCATCCGCGA

TGTTCAGCCCATCAACCGTCAGACATGGATGTGGCGGCCGCTCTAGAACTAGTGGAT;

Exo99for: TCGAAGAAAGGCGGTGACGAAATGTTAAATGAAATACTCGACACATGTGA

CGAGTTCTTTGACAGAGTTGCTGAAGATGCTGATGGTACCGGGCCCCCCCTCGAG;

Exo99rev: CGGTAACATTCCCCTCACTGTGGGATTGGAACTGCCTTTGACGCCGAACA

CCTACGAAGGGCAAATATGAACTTTTAGAACTGGCGGCCGCTCTAGAACTAGTGGAT;

Exo84for: CGAACAGGAGGTGACACCAGTAAAGGAGGTGTGACACTGTTTCACGTG TA

CAATATGTTGCTACACTACCTTGCGCCGCTAACAGGTACCGGGCCCCCCCTCGAG;

Exo84rev: GCAACGGAAATATCTGCGTATGGCATTCCCCTGTATGGTATTTTTCAGTAC

CCCGTCAGAACCCTTCTATTCTCTTTCCGGTGGCGGCCGCTCTAGAACTAGTGGAT;

Sec5for: ACTTTTTTGCCATCAGCTGCTGCCACTACCCCATTTGGTGGTGGTAAAACATC

TACCCGTGCTTTCAAGAGATCAATACTACATGGTACCGGGCCCCCTGAG; Sec5rev: GG

CACCTAAGGGACATCAGCGTAAAAGCAAACAAAAATAAACCAACAGGGCAAAACCA

AAGCCACGAGCTGAAACAATCACTGGCGGCCGCTCTAGAACTAGTGGAT; Tb927.8.55

80for: GGATGGGAATACGTTGGAAAAGAGAGTCACACCTCTACCGAGTTGAGGCGCCG

TTGCTGGAAGCGAAGAATCCGAAAGGTGCTGGGTACCGGGCCCCCCCTCGAG; Tb92

7.8.5580rev: ACTATACGTCCCCCCCCCTTCGTACACTGCTTCAGCATCCAATAGACCCTC

ACCCGCTTAAACCAAAGCAACCAAAAACCATGGCGGCCGCTCTAGAATAGTGGAT;

Tb927.11.11010for: GAGCAGCGGAAGCAATACCGTGAAGAGCTCATGAAGCAAATGCGC

GAGAAATACGAATGGCAACTGAGCCACTTAGATGGTGTGGGTACCGGGCCCCCCCTC

GAG; Tb927.11.11010rev: CTGGGACCACAACGTAAGGGGAACACGCGCGTGGGAGGCTT

GGCCAG GCAGTACATCTGCATGTGCCCCTCCGGGCTCACTGGCGGCCGCTCTAG AA

CTAGTGGAT.

Cell culture

Bloodstream form (BSF) T. brucei brucei MITat 1.2 (M221 strain) and procyclic form (PCF)

T. b. brucei MITat 1.2 (Lister 427) were grown as previously described [74, 75]. Single marker

BSF (SMB) cell lines were used for expression of tetracycline-inducible constructs. Expression

of plasmid constructs was maintained using antibiotic selection at the following concentra-

tions: G418 and hygromycin B at 1 μg/ml and phleomycin at 0.1 μg/ml for BSF, and G418 at

20 μg/ml and hygromycin B at 25 μg/ml for PCF.

Transfection of T. brucei

Cells were harvested at 4˚C, and for BSF the Amaxa nucleofector protocol [76] was followed

using 10–25 μg of linearized DNA (either linearized plasmid for the RNAi lines, or ethanol-
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precipitated PCR product for chromosome-tagged lines). For PCF electroporation was per-

formed with 5–15 μg of DNA using a Bio-Rad Gene Pulser II (1.5 kV and 25 μF).

Comparative genomics of candidate exocyst components in eukaryotes

Candidate exocyst components were identified by scanning a panel of eukaryotic pre-

dicted proteomes with known exocyst component sequence queries using BLAST [77]. For

each component, six queries were selected from the following species: Homo sapiens, Sac-
charomyces cerevisiae, Trypanosoma brucei, Dictyostelium discoideum, a chromalveolate

(Phytophthora capsici/Albugo laibachii/Phytophthora sojae/Phytophthora ramorum), an

Archaeplastida (Arabidopsis thaliana/Chlamydomonas reinhardtii/Selaginella moellendorf-
fii). The top BLAST hits (an e value that gave greater than 100 hits was used as a selection

threshold) from each of the six scans were pooled in a neighbour-joining tree after align-

ment with ClustalW [78]. Alignments were created using MUSCLE [79].

Transfection of HeLa cells

HeLa cells (ATCC CCL-2TM, LGC, UK) were cultured as previously described [80]. For the

knockdown cells were seeded out into 6-well plates onto 13mm glass coverslips and grown at

37˚C until 50% confluent. siRNA Silencer Select EXOC6 or Silencer Select Negative Control

#2 siRNA (Life technologies, UK) were transfected following the instructions for Dharmafect

4 (GE Healthcare, UK). Reduction in the extent of Tf accumulation were evident at 5 and 20

minutes of uptake (S2 Fig) in addition to the 10 minute time shown in Fig 8. Total cell transfer-

rin receptor levels were not reduced by knockdown of EXOC6 (S2 Fig)

Interactome analysis

Protein-protein interactions between Sec15/Exo99 and other trypanosome proteins were ana-

lyzed by immunoisolation after cryomilling of parasites. In brief 5x1010 procyclic cells habour-

ing Sec15 or Exo99 genetically tagged at the C-terminus with GFP were lysed by mechanical

milling in a Retsch Planetary Ball Mill PM200 using liquid nitrogen cooling (Retsch, United

Kingdom). Aliquots of powder were thawed in the presence of solubilization buffer (20 mM 4-

(2-hydroxyethyl)-1-piperazineethanesulfonic acid [HEPES], pH 7.4, 500 mM NaCl, 0.5% Triton

or 20 mM HEPES, pH 7.4, 250 mM NaCitrate, 0.5% CHAPS) and Sec15::GFP/Exo99::GFP were

isolated using llama anti-GFP antibodies coupled to Dynabeads. Affinity isolates were reduced

in 50 mM DTT and alkylated using 75 mM iodoacetamide, fractionated by SDS-PAGE and ana-

lysed by mass spectrometry [81, 82]. Peptides generated by tryptic digest were identified using a

SCIEX prOTOF 2000 matrix-assisted laser desorption/ionization orthogonal time-of-flight Pro-

teomics Mass Spectrometer (PerkinElmer, Akron, OH) and peak lists were submitted to Pro-

Found and searched against an in-house-curated T. brucei database using data from GeneDB

(www.genedb.org). Alternatively liquid chromatography-tandem mass spectrometry was per-

formed on a Velos Orbitrap (Thermo Electron, Waltham, MA) and proteins identified on the

Global Proteome Machine database (www.thegpm.org) as described previously [82].

Immunofluorescence microscopy

T. brucei cells were prepared as previously described [31]. Antibodies were used at the follow-

ing concentrations: mouse anti-HA (Santa Cruz Biotechnology, Heidelberg, Germany) 1:1000;

mouse anti-tubulin clone KMX-1 (Millipore, Watford, UK) 1:1000; mouse anti-p67 (from J.

Bangs, University of Wisconsin-Madison) 1:1000; rabbit anti-GRASP (from Graham Warren,

Vienna, Austria) 1:500; rabbit anti-clathrin 1:500; rabbit anti-Rab11 1:500; rabbit anti-PFR2
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(L8C4 from Keith Gull, Oxford, United Kingdom) at 1:100; and rabbit anti- ISG65 and rabbit

anti-ISG75 (from Mark Carrington, Cambridge, United Kingdom) 1:1000 in PBS. Widefield

epifluorescence images were acquired using a Nikon Eclipse E600 epifluorescence microscope

equipped with a Hamamatsu ORCA charge-coupled device camera, and data were captured

using MetaMorph (Universal Imaging, Marlow, UK). Quantitation was performed on raw

images gathered under nonsaturating conditions using ImageJ [83] software. HeLa cells on

glass coverslips were immunostained as outlined in [84] and images acquired using a Zeiss

LSM5 confocal microscope and Pascal software (release version 4), with a 63x oil immersion,

1.4 numerical aperture lens.

Fast, isothermal fixation and electron microscopy

To minimise perturbations to endocytosis due to live cell handling, all cell lines analysed ultra-

structurally were fixed in culture by the addition of isothermal glutaraldehyde to the culture flask

to a final concentration of 2.5%, as previously described [85]. The culture flask was gently rocked

for 10 min at 37˚C, after which time fixed cells in medium were harvested by centrifugation at

800 g for 10 min and resuspended in buffered 2.5% glutaraldehyde for 30 min at room tempera-

ture. Fixed cells were post-fixed in 1% osmium tetroxide for 30 min at room temperature, en-

bloc-stained with 1% aqueous uranyl acetate, dehydrated through acetone and embedded in

epoxy resin. Ultra-thin sections (70 nm) were post-stained with 2% aqueous uranyl acetate and

lead citrate. Electron micrographs were taken using a Tecnai G2 (FEI) operating at 80kV.

Western immunoblotting

T. brucei whole cell lysate of 107cells/lane was resolved by SDS-PAGE and transferred to poly-

vinylidene fluoride membranes (Millipore). Antigens were visualized using standard methods.

Primary antibodies were used at the following concentrations: mouse anti-HA (Santa Cruz

Biotechnology, Heidelberg, Germany) at 1:10000 and rabbit anti- ISG65 and rabbit anti-ISG75

(from Mark Carrington, Cambridge, United Kingdom) 1:10000 in TBST (Tris-buffered saline

+ 0.05% Tween 20); Primary antibody binding was detected using secondary anti-IgG horse-

radish peroxidase (HRP) conjugates (Sigma-Aldrich) at 1:10000. Detection of HRP-conjugated

secondary antibodies was by chemiluminescence using luminol (Sigma-Aldrich) and X-ray

film (Kodak).

HeLa cells were washed three times in ice-cold PBS on ice, then lysed in ice-cold lysis buffer

(50mM Hepes pH 7.2, 100mM KCl, 5mM NaCl, 1mM MgCl2, 0.5mM EGTA, 1mM EDTA,

0.1% (v/v) Triton X100, 1 tablet cOmplete EDTA-free (Sigma-Aldrich, UK), 1mM DTT). The

lysate was passed through a 26 gauge needle 10 times, rested on ice for 20 min and homogeni-

sation repeated. Insoluble cell debris was sedimented at 16,000xg for 15 minutes at 4˚C, and

the supernatant denatured in Laemmli buffer for 5 minutes at 95˚C. 20–40 ug solubilized pro-

tein were subjected to 10% SDS-PAGE and subsequently transferred onto Nitrocellulose mem-

brane. Mouse anti–glyceraldehyde-3-phosphate dehydrogenase (Ambion, UK) was used

1:80,000 and exocyst component complex 6 (Sigma Aldrich, UK) was used 1:1,000, Secondary

antibodies, LI-COR antibodies rabbit IRDye 680RD and mouse IRDye 800CW (LI-COR, Lin-

coln, USA) were diluted in Odyssey Blocking Buffer (LI-COR, Lincoln, USA) and used in a

1:10,000 dilution. The blots were visualised with a LI-COR Odyssey-SA and quantified using

ImageJ.

ConA uptake assay

The assay was described previously [31]. Briefly 1.5 x 106 cells were harvested at 800 g for 10

min at 4˚C, washed with serum-free HMI-9 medium supplemented with 1% bovine serum
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albumin (BSA), and incubated in serum-free HMI-9 medium with 1% BSA for 20 min at 4˚C,

12˚C, or 37˚C. Fluorescein isothiocyanate (FITC)-conjugated concanavalin A (ConA) (Molec-

ular Probes, 5 μg/ml) was added, and the cells were incubated for a further 30 min at the above

temperatures to allow uptake. Cells were washed with PBS and harvested by centrifugation at

800 g for 10 min at 4˚C, fixed, and counter-stained for immunofluorescence as described

above. To check ConA uptake dynamics, the same procedure was followed, except that cells

were harvested by centrifugation, fixed, and stained after 0, 10, 20, 30, and 60 min of ConA

incubation at 37˚C. Images were captured using METAMORPH software (Universal Imaging

Corp.) Quantification of the areas of fluorescence was performed on raw images, from identi-

cal exposures under non-saturating conditions with the Metamorph Region Measurements

function.

Transferin uptake assay HeLa cells

Cells were rendered quiescent for 2h in serum-free medium, followed by addition of 1ug/ml

Alexa Fluor 488 conjugated transferrin (Molecular Probes, UK) for 10 min. Cells were rapidly

washed in ice-cold PBS and fixed as described above. The uptake of transferrin into the cells

was measured using ImageJ to determine the level of fluorescence intensity in a drawn region.

For each condition a total of 100–150 cells were measured and the integrated density was

divided by area (intden/area).

SILAC labeling

HMI11 for SILAC was prepared as described in [86]: IMDM depleted of L-Arginine and

L-Lysine (Thermo) was supplemented with 10% dialyzed (10 kDa molecular weight cutoff)

fetal bovine serum (Dundee Cell Products), 4 μg/ml folic acid, 110 μg/ml pyruvic acid, 39 μg/

ml thymidine, 2.8 μg/ml bathocuproinedisulfonic acid, 182 μg/ml L-cysteine, 13.6 μg/ml hypo-

xanthine, 200 uM β-mercaptoethanol, 0.5 μg/ml Phleomycin and 2.5 μg/ml Hygromycin.

Finally either normal L-Arginine and L-Lysine (HMI11-R0K0), or L-Arginine U−13C6 and

L-Lysine 4,4,5,5-2H4 (HMI11-R6K4) (Cambridge Isotope Laboratories) were added at 120 μM

and 240 μM respectively. RNAi was induced by addition of 1 μg/ml tetracycline and at the

indicated times equal numbers of induced and uninduced cells were mixed, harvested by cen-

trifugation, washed twice with PBS containing Complete mini-protease inhibitor cocktail

(Roche) and resuspended in Laemmli sample buffer containing 1 mM dithiothreitol. Samples

were generated in duplicate, sonicated and aliquots containing 5x106 cells were separated on a

NuPAGE bis-tris 4–12% gradient polyacrylamide gel (Invitrogen) under reducing conditions.

The Coomassie-stained gel lane was excised in eight, destained, then subjected to tryptic digest

and reductive alkylation. The eight fractions were subjected to LC-MS/MS and mass spectra

analysed using MaxQuant version 1.5 [87] searching the T. brucei 927 annotated protein data-

base (release 8.1) from TriTrypDB [88]. Minimum peptide length was set at six amino acids,

isoleucine and leucine were considered indistinguishable and false discovery rates (FDR) of

0.01 were calculated at the levels of peptides, proteins and modification sites based on the

number of hits against the reversed sequence database. SILAC ratios were calculated using

only peptides that could be uniquely mapped to a given protein. If the identified peptide

sequence set of one protein contained the peptide set of another protein, these two proteins

were assigned to the same protein group.

Supporting Information

S1 Fig. (A) Tb927.8.5580, a Vps13 homolog in trypanosomes, is a candidate interactor of

Exo99. Tb927.8.5580 and Tb927.11.11010, identified in Exo99 immunoisolations, were
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genomically-tagged with HA (red) in PCF cells. The intracellular location was determined by

immunofluorescence, and cells were counterstained with DAPI for DNA (blue) Scale bar,

5 μm. Vps13 localises to the region between nucleus and kinetoplast supporting its possible

interaction with Exo99. Tb927.11.11010, a hypothetical protein, shows a cytosolic localisation

and is therefore not validated as an interaction partner. (B) Sec15 and Exo99 knockdown does

not affect relative expression level of PFR2 or flagellar morphology. Immunofluorescence of

fixed Sec15::RNAi and Exo99::RNAi cells 48h post induction with a specific antibody against

PFR2 (green) shows no obvious alteration in either flagellum morphology or signal intensity.

PFR2: paraflagellar rod protein 2.

(PDF)

S2 Fig. Quantitation of Transferrin levels in EXO6 knockdowns. Panel A: Western blots for

expression levels of transferrin receptor (TfR), GAPDH (as loading control) and EXO6 (exo-

cyst target) monitored in whole HeLa cell extracts exposed to either scrambled (Scr) or

EXOC6 siRNA smartpools. Panel B: HeLa cells treated with either scrambled (Scr) or EXOC6

siRNA smartpools were examined for fluorescent transferrin uptake after exposure of cells to

fluorescent transferrin for the times indicated. The fluorescence intensity of 50–100 cells for

each time point was determined using ImageJ and the average fluorescence intensity in

EXOC6 knockdown cells expressed as a percentage of the corresponding value in the scram-

bled siRNA-treated group (Scr). Shown above is a typical experiment, and the values reported

are mean ± s.d. Based on such data, a more extensive analysis of uptake was performed as out-

lined in Fig 8 at ten minutes as a representative time point.

(PSD)

S1 Table. Sec15 and Exo99-interacting proteins and abundance of selected protein groups

following knockdown against Sec15. Worksheets (A-C) The most significant 50 protein iden-

tifications from an LC-ESI/MS2 analysis from a Sec15::GFP immunoisolation (A) with and (B)

without dynamic exclusion and (C) from a Exo99::GFP immunoisolation without dynamic

exclusion. Protein IDs are ranked by the expectation value according to ProFound. Canonical

exocyst subunits and Exo99 are highlighted in red, and other proteins studied further in this

work are in blue. Worksheets D and E: SILAC analysis of whole cell proteome at 24 and 36

hours knockdown of Sec15. Values represent average percentage protein abundance relative to

uninduced cells ± standard deviation. In several cases abundance for specific peptides falls

below the detection limit—for protein groups that are part of a multigene family such as ISGs

this frequently reflects assignment of specific spectra to a single accession number. Worksheet

F: List of proteins significantly upregulated in Sec15::RNAi cells 24 and 36h post induction

with biological function as assigned in GO:term and cellular localisation as assigned in GO:

terms or predicted by SignalP [91] and TMHMM [89].

(XLSM)

S1 Movie. In the flagellar pocket of bloodstream form trypanosomes endocytic and exocy-

tic sites are in close proximity but do not overlap. OMX super-resolution image of fixed

Sec15::GFP (red) bloodstream form cells. Clathrin was visualised with a specific antibody

against the clathrin heavy chain (green) and DAPI was used to visualise DNA (blue), and

shows the location of the nucleus (large structure) and kinetoplast (small structure). The kinet-

oplast is located very close to the flagellar pocket and connected via physical interaction to the

flagellum.

(AVI)
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