Fibrin deposited in the Alzheimer’s disease brain promotes neuronal degeneration

Marta Cortes-Canteli, Larissa Mattei, Allison T. Richards, Erin H. Norris, Sidney Strickland

Patricia and John Rosenwald, Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA

A R T I C L E I N F O

Article history:
Received 25 February 2014
Received in revised form 26 September 2014
Accepted 24 October 2014

Keywords:
Fibrinogen
Alzheimer’s disease
Coagulation
Neurodegeneration

A B S T R A C T

Alzheimer’s disease (AD) is the most common form of dementia and has no effective treatment. Besides the well-known pathologic characteristics, this disease also has a vascular component, and substantial evidence shows increased thrombosis as well as a critical role for fibrinogen in AD. This molecule has been implicated in neuroinflammation, neurovascular damage, blood-brain barrier permeability, vascular amyloid deposition, and memory deficits that are observed in AD. Here, we present evidence demonstrating that fibrin deposition increases in the AD brain and correlates with the degree of pathology. Moreover, we show that fibrinogen is present in areas of dystrophic neurites and that a modest decrease in fibrinogen levels improves neuronal health and ameliorates amyloid pathology in the subiculum of AD mice. Our results further characterize the important role of fibrinogen in this disease and support the design of therapeutic strategies aimed at blocking the interaction between fibrinogen and amyloid-ß (Aß) and/or normalizing the increased thrombosis present in AD.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Alzheimer’s disease (AD) is a multifactorial and severe neurodegenerative disorder for which there is no effective treatment available (Huang and Mucke, 2012). The 2009 World Alzheimer Report estimated that 35.6 million people worldwide were affected by dementia in 2010 and predicted more than 100 million people by 2050 (Prince and Jackson, 2009). Therefore, new therapeutic approaches are sorely needed. This disorder has brain pathologic hallmarks such as amyloid-β (Aβ) plaques and neurofibrillary tangles (Selkoe, 2011) and is characterized by a progressive reduction in cortical thickness and an overall decrease in brain volume with a loss of neurons (Duyckaerts et al., 2009; Gomez-Isla et al., 1996) and synapses (Terry et al., 1991). Besides the strong correlation with different vascular risk factors such as atherosclerosis, hypertension, hypercholesterolemia, and diabetes (de la Torre, 2002; Hummel, 2011), AD pathogenesis also involves cerebrovascular abnormalities such as alterations to the neurovascular unit (Jadecola, 2010) and decreases in cerebral blood flow (Austin et al., 2011; Mazza et al., 2011), suggesting that vascular disease influences AD pathogenesis (Kalaria et al., 2012).

Fibrinogen is a plasma glycoprotein that circulates at high concentration in the blood and is essential for coagulation as it is converted into fibrin in response to injury (Weisel, 2005). The balance between clot formation and degradation needs to be tightly regulated because alterations in this system can induce and exacerbate pathologic situations. Substantial evidence indicates a key role for fibrinogen and fibrin clot formation in AD pathogenesis. Increased fibrinogen deposition is present in the brain parenchyma and brain vessels of human AD patients (Cortes-Canteli et al., 2010, 2012; Cullen et al., 2005; Fiala et al., 2002; Lipinski and Sajdel-Sulkowska, 2006; Ryu and McLarnon, 2009; Viggars et al., 2011) and mouse models of AD (Cortes-Canteli et al., 2010; Paul et al., 2007). However, most of these studies involved the immunohistochemical analysis of fibrinogen in the AD brain using antibodies that fail to distinguish fibrinogen from other molecules (Ahn et al., 2010), making it impossible to know whether the deposits are composed of one or the other, or a mixture of the two. Fibrinogen co-localizes with Aß in the AD brain (Cortes-Canteli et al., 2010, 2012; Jantaratnotai et al., 2010; Paul et al., 2007; Ryu and McLarnon, 2009), strongly interacts with this peptide (Ahn et al., 2010), and makes fibrin clots more difficult to degrade (Cortes-Canteli et al., 2010; Zamolodchikov and Strickland, 2012). AD mice are at high risk of arterial thrombosis (Jarre et al., 2014), and evidence indicates that there is increased obstruction of the cerebral blood vessels in the AD brain, which could strongly affect overall cerebral circulation. For example, aged ArcAß AD mice have
increased occlusion of functional intracortical microvessels (Klohs et al., 2012). Similarly, TgCRND8 AD mice show evidence of increased clotting in their brains, and these fibrin clots are resistant to fibrinolysis (Cortes-Canteli et al., 2010). A prothrombotic state in AD patients is evidenced not only by increased clot formation but also by decreased fibrinolysis and elevated levels of activated coagulation factors and platelets (Cortes-Canteli et al., 2012). Indeed, reducing fibrinogen levels has beneficial effects in AD mice, such as decreasing blood-brain barrier permeability (Paul et al., 2007; Ryu and McLarnon, 2009), neurovascular damage (Paul et al., 2007), inflammation (Paul et al., 2007; Ryu and McLarnon, 2009), and cerebral amyloid angiopathy (Cortes-Canteli et al., 2010). This enhancement in vascular function likely improves cerebral blood flow and hence neuronal function and survival, leading to the amelioration of memory deficits observed in AD mice after fibrinogen reduction (Cortes-Canteli et al., 2010). However, no studies have shown direct evidence that the levels of fibrinogen have an effect on neuronal viability and function. Here, we demonstrate that fibrinogen is present in areas packed with dystrophic neurites and plays a key role in neuronal viability, because decreasing fibrinogen levels reduces the amount of neuronal loss, synaptic dysfunction, and amyloid pathology present in AD mice. We also report that insoluble fibrin accumulates in human and mouse AD brains and correlates with the degree of pathology. These results further characterize the role of fibrinogen in AD pathophysiology and support the design of therapeutic strategies aimed at normalizing the irregular clotting observed in AD.

2. Methods

2.1. Mice

TgCRND8 mice express a double mutant form of the amyloid precursor protein 695 (KM670/671NL + V717F) (Chishti et al., 2001). These mice are on a mixed background (C57xCH3/C57) and develop age-dependent Aβ pathology and memory deficits (provided by Drs M.A. Chishti and D. Westaway, University of Toronto, Canada). Four-, 15-, 58-, and 82-week-old TgCRND8 mice and their wild-type littermates (n = 3–7 mice/group) were thoroughly perfused with saline heparin. Brains were removed, and one hemisphere was embedded, frozen in OCT, and processed for triple immunofluorescence analysis, whereas the cortex and hippocampus of the other hemisphere were dissected out and frozen for subsequent fibrin extraction.

Mice heterozygous for the fibrinogen Aa chain (fbg^{+/−}) (Suh et al., 1995) were crossed with TgCRND8 mice. TgCRND8; fbg^{+/−} mice and their littermate controls were thoroughly perfused with saline heparin, and brains were fixed in 4% paraformaldehyde, cryo-protected in 30% sucrose, frozen, and processed for NeuN, lysosomal-associated membrane protein-1 (LAMP-1), and Congo red determination.

All mice were genotyped twice, at time of weaning and at sacrifice. Mice were housed at The Rockefeller University’s Comparative Biosciences Center and treated in accordance with IACUC-approved protocols.

2.2. Human samples

Human postmortem tissue was obtained from the Harvard Brain Tissue Resource Center. Blocks of frozen tissue from the superior frontal cortex (n = 4 control and 15 AD cases), the anterior hippocampus with entorhinal cortex (n = 4 control and 16 AD cases), and the hippocampal formation with parahippocampal gyrus (n = 8 control and 29 AD cases) were sliced by cryostat (10-μm sections) for subsequent immunohistochemical analysis. Several sections were also collected in an Eppendorf tube for subsequent fibrin determination.

2.3. Fibrin extraction and Western blot

Mouse and human frozen tissue was homogenized in 5 volumes (g/mL) of phosphate-buffered saline (PBS) containing 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS, and protease inhibitor cocktail (Roche). The homogenate was centrifuged at 4 °C at 10,000g for 10 minutes, and the supernatant (soluble fraction) was transferred to a different tube. After several rounds of extraction, the insoluble (fibrin-containing) fraction was extracted as in Tabrizi et al. (1999) with slight modifications. Briefly, the pellet was homogenized in 3 M urea, vortexed for 2 hours at 37 °C, and centrifuged at 14,000g for 15 minutes. The supernatant was collected in a different tube, and the pellet was resuspended and vortexed at 65 °C for 30 minutes in reducing SDS loading buffer. Equal amounts were run on a 4%–20% gradient polyacrylamide Criterion gel (Bio-Rad), transferred to a polyvinylidene fluoride membrane (Pall), and incubated with the following antibodies: rabbit polyclonal anti-fibrinogen antibody (gift from Dr J. L. Degen, Cincinnati, OH, USA), mouse monoclonal anti-fibrin antibody (59D8; Hui et al., 1983), gift from Dr T. Renne, Karolinska Institutet, Sweden), mouse monoclonal anti-Aβ antibody (6E10, Covance), and rat monoclonal anti-tubulin antibody (YOL1/34, Abcam). Tubulin was used as loading control because it is present in different fractions after sequential solubilization steps and extensive rounds of extraction in the rat brain (Schindler et al., 2006). In vitro human or mouse fibrin clots were prepared as positive controls (Cortes-Canteli et al., 2010; Zamolodchikov and Strickland, 2012) and run in parallel with the samples. Samples were subjected to Western blot analysis 4–5 different times. Fibrin β-chain and tubulin bands were quantified using NIH Image J 1.46o software, and the ratio of fibrin:tubulin was plotted on a graph.

2.4. Human brain staining

Frozen human AD and control brain sections (10 μm) were fixed in 4% paraformaldehyde and treated with proteinase K (Dako) before performing the following staining protocols.

Fibrin immunohistochemistry: sections were immersed in methanol/H₂O₂ to inactivate endogenous peroxidases, blocked in Tris buffer with 2% donkey:horse serum (1:1), and incubated overnight with the mouse monoclonal antibody 59D8 that specifically detects human fibrin (Hui et al., 1983). The following morning, sections were incubated with a biotinylated horse anti-mouse antibody, amplified by the VECTASTAIN Elite ABC Ready-to-Use Reagent, and developed using ImmPACT DAB Peroxidase Substrate (all from Vector Laboratories). Sections were then dehydrated, mounted, and imaged using a Zeiss Axiosvert 200 microscope.

Triple immunofluorescence: sections were blocked in Tris buffer with 2% goat serum followed by overnight incubation with a mouse monoclonal anti-human LAMP-1 antibody (clone H4A3, Developmental Studies Hybridoma Bank) and a rabbit polyclonal anti-human fibrinogen antibody (Dako). Then, the sections were incubated for 1 hour at RT with the highly cross-adsorbed secondary fluorescent antibodies CF405M goat anti-rabbit and CF555 goat anti-mouse (Biotium), rinsed, and incubated overnight with anti-Aβ monoclonal antibody 6E10 labeled with Alexa Fluor 488 (Covance). The tissue was incubated with 0.3% Sudan Black B in 70% ethanol to block lipofuscin autofluorescence and finally covered with Vectashield (Vector Laboratories). Secondary controls omitting primary antibodies as well as controls using each individual primary antibody alone were carried out in parallel. An inverted TCS SP8 laser scanning microscope.
confocal microscope (Leica) equipped with a fully tunable white light laser, a 405 nm laser, 3 HyD detectors, and an HCX PL APO CS 40×1.10 water objective, available at The Rockefeller University Bio-Imaging Resource Center, was used to acquire the images. Sixteen bit images of areas rich in amyloid were taken sequentially at 1024 × 1024, at 600 Hz scan speed and keeping laser and exposure conditions constant in all 3 channels. An average of 3–4 pictures per section was taken, and the percentage of colocalization between the different markers was analyzed using MetaMorph software (Molecular Devices). The region of interest, comprised Aβ staining, was marked, and then images were separated into the 3 channels (blue, green, and red), thresholded, and transformed to binary. The total number of pixels in each of these original binary images was recorded. Images were then combined using “logical AND,” first in pairs (blue-green, blue-red, and green-blue) and then in a trio (blue-green-red). The resulting binary images show only those pixels positive in the combined channels; and therefore, the percentage of colocalization and tri-localization was calculated by comparing these with the total number of pixels in each of the original binary images.

2.5. Mouse brain staining

Triple immunofluorescence: frozen coronal sections (20 μm) from 4-, 15-, 58-, and 82-week-old TgCRND8 mice and their wild-type littermates (n = 3–8 mice/group) were fixed in cold ethanol and treated for 2 minutes with Proteinase K (Dako) diluted 1:4 in Tris buffer. Fibrinogen immunohistochemistry was performed using a rabbit polyclonal biotinylated anti-fibrinogen antibody (Abcam) and the Tyramide Signal Amplification system (Perkin Elmer), according to manufacturer’s instructions. A control using biotinylated rabbit IgG in place of anti-fibrinogen antibody was included to verify the specificity of the antibody. Fibrinogen was visualized using CF405M streptavidin (Biotium). Sections then were blocked for 1 hour in PBS containing 0.25% Triton X-100 and 3% goat serum (Vector Laboratories) and incubated overnight at 4 °C with rat monoclonal anti-mouse LAMP-1 antibody (clone 1D4B, Developmental Studies Hybridoma Bank) and 6E10 Alexa Fluor 488-conjugated anti-Aβ mouse monoclonal antibody (Covance). Sections were then incubated for 2 hours with Alexa Fluor 594 goat anti-rat secondary antibody and coverslipped with Vectashield (Vector Laboratories). Secondary controls omitting primary antibodies as well as controls using each individual primary antibody alone were carried out in parallel. Images from the cortex and hippocampus were taken and quantified as described previously for the triple immunofluorescence performed in human sections.

NeuN immunohistochemistry and quantification: floating-coronal sections (20 μm) from 82-week-old TgCRND8; fb g−/− mice, TgCRND8; fb g−/+ mice, and their wild-type littermate controls (n = 3–7 mice/group) were processed for immunohistochemistry using a mouse monoclonal NeuN antibody (Chemicon) to identify neurons. The Vector Mouse-on-Mouse kit (Vector Laboratories) was used according to the manufacturer’s instructions to decrease nonspecific staining because of endogenous immunoglobulins. The diaminobenzidine method was used for development. Counterstaining with 0.5% Thioflavin S (Sigma) was performed to identify amyloid (not shown). Low magnification images were captured to identify the corresponding Bregma of each section analyzed. High magnification images of the entire dorsal subiculum area were taken using a 20× objective to avoid oversampling errors. The dorsal subiculum is adjacent to the CA1 layer and expands from Bregma −2.54 mm to −3.80 mm (Franklin and Paxinos, 2008). Because its shape, size, and structure change substantially along its anatomy, we focused our study on the central region of the dorsal subiculum. NeuN-positive cells were quantified in every approximately fourth coronal section covering the unilateral dorsal subiculum from Bregma −2.7 mm to −3.4 mm. The total number of NeuN-positive cells and the area analyzed were measured in each section using Image J. A total of 160 sections (approximately 8 sections/mouse) were analyzed, averaged per group, and plotted relative to the wild-type control. To avoid differences in neuronal density among the different Bregmas, the average of analyzed sections per mouse and per group was maintained at Bregma −3.0 mm.

Lamp-1 and Congo red staining and quantification: floating-coronal sections (20 μm) from 82-week-old TgCRND8; fb g−/− and TgCRND8; fb g−/+ mice were washed in PBS, blocked for 1 hour in PBS containing 0.25% Triton X-100 and 3% goat serum (Vector Laboratories), and incubated overnight at 4 °C with rat monoclonal anti-mouse LAMP-1 antibody (clone 1D4B, Developmental Studies Hybridoma Bank) and mouse monoclonal anti-NeuN antibody. Sections were then incubated for 2 hours with Alexa Fluor 488 goat anti-rat and Alexa Fluor 647 goat anti-mouse secondary antibodies (Invitrogen), mounted, and counterstained with 0.2% Congo red (Sigma) dissolved in 70% isopropanol. Sections were coverslipped with Vectashield and imaged using an inverted Leica TCS SPS laser scanning confocal microscope equipped with a fully tunable white light laser, 2 HyD detectors, 1 PMT detector, and a super-Z stage for rapid tiling, available at The Rockefeller University Bio-Imaging Resource Center. Z-stack tile-scans covering the subicular area (identified by NeuN staining) were acquired in all 3 channels using an HCX PL APO CS 40×0.1X1.0 water objective. Twelve bit images were taken at 1024 × 1024, at 600 Hz scan speed. Laser and exposure conditions were kept constant between genotypes. Reconstructed tile-scan images were thresholded in Image J, and the LAMP-1- and Congo red-positive areas were quantified in each individual plane. The total LAMP-1- and Congo red-positive areas in the subiculum were then calculated in each section, averaged, and compared between groups.

2.6. Statistics

All numerical values are presented as mean ± standard error of the mean. Statistical analysis in human samples was performed using the nonparametric Mann-Whitney test. Statistical significance in mouse samples was determined using 2-tailed t test analysis comparing the different experimental groups. Two-way analysis of variance and Bonferroni posttest were also performed to determine whether the effect of genotype and treatment were considered significant. p-values < 0.05 were considered significant.

3. Results

3.1. Fibrin is present in the AD brain and correlates with the degree of pathology

Fibrinogen is abnormally deposited in the AD brain. It is important to know whether these deposits are composed of fibrinogen, fibrin, or a mixture of the two. It is also critical to understand whether fibrinogen accumulation correlates with the degree of AD pathology and to quantify the actual level of fibrinogen deposition compared with controls. To that end, we extracted the insoluble protein fraction, where fibrin is located (Tabrizi et al., 1999), from different regions of human postmortem brain samples and compared nondemented controls with AD patients. As shown in top panels of Fig. 1A–C, fibrin is present in the brains of human AD patients. The main product detected, fibrin-β chain at approximately 52 kDa, is significantly increased in AD samples in all the areas of the brain analyzed compared with nondemented control samples (Fig. 1D–F). As expected, control patients present with very low amounts of insoluble fibrin in the brain. We detected more than
A 100-fold increase in fibrin deposition in the superior frontal cortex (Fig. 1D; 0.12 ± 0.05 control vs. 13.45 ± 11.6 AD; *p < 0.05), a 23-fold increase in the anterior hippocampus (Fig. 1E; 0.04 ± 0.01 control vs. 0.99 ± 0.3 AD; **p < 0.01), and more than a 20-fold increase in the hippocampus (Fig. 1F; 0.06 ± 0.01 control vs. 1.3 ± 0.3 AD; ***p < 0.001) of AD patients compared with nondemented control subjects. We reprobed the membrane with a specific monoclonal antibody against human fibrin, clone 59D8 (Hui et al., 1983).
Fig. 2. Fibrin deposition is increased in the brains of AD mice and correlates with Aβ pathol-ogy. (A) To detect fibrin deposited in the mouse brain, we used cortical and hippocampal samples from 4-, 15-, 58- and 82-week-old TgCRND8 mice (AD) and their wild-type (WT) littermate controls (n = 3–7/group). The insoluble (fibrin-containing) fraction was extracted, analyzed by Western blot, and probed with antibodies specific for murine fibrinogen (top panels). Fibrinogen immunoreactivity was not detected because soluble fibrinogen was removed during the extraction protocol. The blots were reprobed with 6E10 antibody to detect Aβ pathology (middle panels) and with anti-tubulin antibody as loading control (bottom panels). Each lane corresponds to an individual mouse. Samples were run 5 times, quantified, averaged, and plotted by age and genotype. (B) Quantification indicates that the amount of fibrin β-chain (approximately 52 kDa, arrow in A) is significantly increased in the brains of 58- and 82-week-old AD mice compared with their WT littermates. This increase in fibrin deposition correlates with Aβ pathology. An in vitro fibrin clot prepared with mouse fibrinogen was used as positive control (+). Graph shows mean ± SEM and Student t test *p < 0.01 comparing AD versus WT. Two-way ANOVA and Bonferroni posttest analysis also showed the effect of genotype (p = 0.0003) and age (p = 0.0001) are significant. (C) Double immunofluorescence was performed on the same set of TgCRND8 mice and WT littermates used in A. Representative confocal images from the cortex and hippocampus show that fibrinogen (blue) and Aβ (green) staining increase with age and co-localize in the AD mouse brain. Scale bar, 40 μm. Abbreviations: Aβ, amyloid-β; AD, Alzheimer’s disease; ANOVA, analysis of variance; SEM, standard error of the mean.
reproducing the results obtained in Fig. 2A, and that fibrin(ogen) deposits co-localize with Aβ in amyloid plaques (Fig. 2C).

Overall, these results demonstrated that fibrin, the main protein component of blood clots, accumulates in the human and mouse AD brain where it appears to correlate with the degree of Aβ pathology.

3.2. Fibrin(ogen) is present in areas of dystrophic neurites and amyloid pathology in the AD brain

We investigated whether fibrin(ogen) is present in areas of synaptic dysfunction, one of the first and most important pathologic hallmarks of AD that correlates very well with cognitive decline (Terry et al., 1991). Because lysosomes and other autophagy-related organelles are part of the neuritic dystrophy observed in AD (Lee et al., 2011; Nixon et al., 2005), we stained for LAMP-1 to identify areas of synaptic dysfunction. This marker is highly upregulated in the human AD brain (Barrachina et al., 2006) and cerebrospinal fluid (Armstrong et al., 2014), as well as highly enriched in the dystrophic areas surrounding amyloid plaques in AD mice (Condello et al., 2011; Hashimoto et al., 2010) and human AD patient brains (Barrachina et al., 2006; Perez-Gracia et al., 2008). Human postmortem hippocampal sections were co-stained for fibrin(ogen), LAMP-1, and Aβ (Fig. 3A). Fibrin(ogen) was present in areas of dystrophic neurites along with Aβ deposition. Several patterns of fibrin(ogen) deposition were found in the different AD patients. Fibrin(ogen) was present in the core of fibrillar plaques (arrows in AD patient 1, Fig. 3A), diffuse amyloid (arrowheads in AD patient 1, Fig. 3A) and was also found co-localized with Aβ staining and areas of synaptic dysfunction in the vicinity of blood vessels (arrow in AD patient 2, Fig. 3A). Confocal analysis and subsequent quantification revealed that 16.7% (±4.1) of the fibrin(ogen) staining present in amyloid areas in the human AD brain was co-localized with Aβ and 37.1% (±4.6) with LAMP-1. The amount of fibrin(ogen) co-localized with both markers had an average of 9.7% (±2.2) overlap of pixels from all 3 molecules, with a maximum in some areas of 49.9% tri-localization. Nevertheless, it should be emphasized that the 3 markers do not need to be fully overlapping to impact each other’s function and play a role in AD pathophysiology. For example, fibrin(ogen) is a strong proinflammatory molecule (Davalos and Akassoglou, 2012), and therefore its presence in abnormal deposits in or around amyloid plaques could exacerbate the inflammatory response already present in AD and promote neuronal dysfunction (Solito and Sastre, 2012). To do this, fibrin(ogen) does not need to be co-localized with these markers but rather be in the same area.

We next investigated whether the abnormal accumulation of fibrin(ogen) present in the AD mouse brain (Fig. 2) coincided with areas of synaptic dysfunction. Triple immunofluorescence analysis...
showed that fibrinogen accumulated in areas rich in LAMP-1 as well as Aβ staining in the brains of 82-week-old TgCRND8 AD mice (Fig. 3B). The accumulation pattern was more homogenous than what was found in the human AD brain, with most of the fibrinogen observed in patches that often coincided with areas of dystrophic neurites as well as Aβ pathology (arrows in Fig. 3B). Quantification analysis showed that 29.6% (±6.2) of fibrinogen staining present in amyloid areas co-localized with Aβ and 36.1% (±5.8) with LAMP-1. The percentage of pixels with tri-localization had an average of 13.3% (±2.7), with a maximum in some areas of 53.8% tri-localization.

These results provide further evidence that fibrinogen is not only abnormally present in the AD brain colocalizing with Aβ but is also found in areas fully packed with dystrophic neurites.

3.3. Decreasing fibrinogen levels reduces neuronal death in the dorsal subiculum of AD mice

Because significant amounts of fibrin are found in the AD mouse brain (Fig. 2), and fibrinogen is present in areas of synaptic dysfunction and Aβ pathology (Fig. 3), we investigated whether modulating fibrinogen levels could affect the characteristic loss of neurons present in AD. Although most of the AD mouse models do not present robust and widespread neuronal death as the human AD brain model (Duyckaerts et al., 2008; Gomez-Isla et al., 1996), localized neurodegeneration has been reported in some AD mouse lines (Wirths and Bayer, 2010) in areas such as the subiculum (Oakley et al., 2006). The subiculum is a relatively well-defined structure of the hippocampus that plays an essential role in memory processing (O’Mara, 2005) and is profoundly affected in AD (Falke et al., 2003). Immunohistochemical analysis using the specific neuronal marker NeuN showed a dramatic reduction in the number of neurons present in the dorsal subiculum of 82-week-old TgCRND8 AD mice (Fig. 4A vs. C). We quantified the extent of neuronal loss in this area, revealing that 82-week-old TgCRND8 mice have approximately 25% fewer subicular neurons than their wild-type littermates (Fig. 4E). This result is in line with stereological studies performed on the human AD hippocampus (Zilkova et al., 2006).

![Fig. 4. Decreasing fibrinogen levels ameliorates neuronal death in AD mice.](image)

Neuronal death was analyzed in TgCRND8 mice (AD; fbg+/+). TgCRND8 mice heterozygous for a mutation in the fibrinogen Aα-chain gene, TgCRND8; fbg+/− mice, that have an approximately 30% decrease in fibrinogen levels (Suh et al., 1995). We focused our studies on 82-week-old TgCRND8; fbg+/− mice because fibrin levels peaked at that age (Fig. 2). NeuN immunohistochemistry and subsequent quantification showed that AD mice with only 1 copy of the fibrinogen gene had significantly more neurons in the dorsal subiculum than AD littermate controls (Fig. 4C vs. D and E; 73.3% ± 1.7% TgCRND8; fbg+/− mice versus 78.2% ± 1.3% TgCRND8; fbg+/+ mice; *p < 0.05). Bearing 1 copy of the fibrinogen gene did not affect the overall amount of neurons in the subiculum of wild-type littermates (Fig. 4A vs. B and E). These results indicate that fibrinogen levels affect the neuronal loss observed in the AD mouse brain.

3.4. Decreasing fibrinogen levels ameliorates synaptic dysfunction and amyloid pathology in the subiculum of AD mice

Because neuronal loss is accompanied by a reduction in synapses, we investigated if reducing fibrinogen levels could ameliorate the degree of synaptic dysfunction in the AD brain. As in Fig. 3, we used LAMP-1 as a marker of dystrophic neurites because it provides an excellent contrast with the surrounding tissue (Condello et al., 2011) and thus allows for quantification of the dystrophic area. In addition to LAMP-1, we co-stained brain sections with anti-NeuN antibody to identify the dorsal subiculum and with Congo red to detect amyloid plaques. We acquired high resolution confocal Z-stack tile-scans covering the subicular area in all 3 channels (Fig. 5A–F). The total LAMP-1-positive area was quantified within the subiculum and compared between 82-week-old TgCRND8; fbg+/+ mice and TgCRND8; fbg+/− mice. We found a 25% decrease in the amount of dystrophic neurites in the dorsal subiculum of AD mice with just 1 copy of the fibrinogen gene (Fig. 5G; 100% ± 10.7% TgCRND8; fbg+/− mice vs. 74.5% ± 7% TgCRND8; fbg+/+ mice; *p < 0.05). We also observed that reducing fibrinogen levels provoked a marked reduction in the amount of amyloid pathology present in that area (Fig. 5H; 100% ± 11.6% TgCRND8; fbg+/− mice vs. 58.2% ± 5.9% TgCRND8; fbg+/+ mice; **p < 0.01). These results indicate that...
fi
brinogen plays a role in synaptic degeneration as well as Aβ accumulation in the AD brain.

4. Discussion

AD is a multifactorial disease with a vascular component, and increasing evidence suggests that fibrinogen and fibrin clot formation contribute to this disorder. Here, we further investigated the role of this plasma protein in AD pathogenesis using human post-mortem AD samples and AD mice. High levels of fibrin were found in the brains of AD patients and AD mice, and these levels appeared to correlate with the degree of Aβ pathology. We also observed that fibrinogen was present in areas where neurons were degenerating and losing their synapses, affecting neuronal health. These findings advance our understanding of fibrinogen’s contribution to the pathophysiology of AD.

To find a therapeutic strategy aimed at normalizing the increased thrombosis present in AD, it is critical to know which are the key players as well as their localization and partners. We found that the insoluble fibrin polymer, the end point of the coagulation cascade, is abnormally present in different areas of the human AD brain intravascularly and extravascularly (Fig. 1), as well as in the brains of AD mice where it increases over time and correlates with the level of Aβ deposition (Fig. 2). Having large vessels lined with fibrin or capillaries completely blocked by its deposition (Fig. 1G–J) can alter the cerebral blood flow, especially if these vascular occlusions occur chronically over the course of many years. This could play a substantial role on the hypoperfusion present in AD patients (Austin et al., 2011; Mazza et al., 2011). Also, extravascular fibrin deposition (Fig. 1K–N) could exacerbate the chronic inflammation present in the AD brain, recruit different cell types, and promote processes such as extracellular matrix binding as well as platelet and endothelial cell spreading (Mosesson, 2005). All these events could have a deleterious effect on the brain’s balanced activity.

We noticed the distribution as well as the amount of fibrin present in the brain was variable within AD patients. The AD population is very heterogenous because different pathways are affected in this disease, which could explain why we identified only a subpopulation of AD patients with increased thrombosis. We believe this variability reinforces the fact that this disease is multifactorial and stresses the importance of developing individualized diagnosis and treatment depending on the different pathologies present in each specific AD patient.

Fig. 5. Decreasing fibrinogen levels reduces synaptic dysfunction and amyloid pathology in AD mice. Triple staining was performed on sections from TgCRND8 AD mice (AD; fbgt/+) and AD mice heterozygous for a mutation in the fibrinogen Aα-chain gene (AD; fbgt/−). Anti-LAMP-1 antibody (A and D, green) and Congo red staining (B and E, red) were used to identify dystrophic neurites and amyloid pathology, respectively. Sections were also analyzed with anti-NeuN antibody to observe neuronal bodies and identify the area of the subiculum (C and F, blue). Confocal Z-stacks of the subicular area were taken in all 3 channels, keeping constant conditions between groups. Each individual plane was quantified using NIH Image J software. Representative maximum projection tile-scan images are shown. Graphs represent the percentage of LAMP-1–(G) or Congo red–(H) positive area versus the total subicular area analyzed, relative to the AD group. AD; fbgt/− mice presented a significant reduction in the amount of synaptic dysfunction as well as amyloid pathology in the subiculum (n = 2–4 mice/group, 2–3 sections/mouse). Graph shows mean ± SEM and Student t test **p < 0.01; *p < 0.05. Scale bar, 100 μm. Abbreviations: AD, Alzheimer’s disease; SEM, standard error of the mean.
Altered expression of postsynaptic (Gylys et al., 2004) as well as presynaptic proteins (Masliah et al., 1994) occurs in human AD patients as well as in AD mouse lines (Oakley et al., 2006). Neurodegeneration is also an important pathologic component of AD as loss of neurons occurs in multiples areas of the human AD brain (Duyckaerts et al., 2009). We report that fibrinogen is present in areas packed with dystrophic neurites (Fig. 3), and more importantly, reducing fibrinogen levels increased the amount of subicular neurons by 5% (Fig. 4), decreased synaptic dysfunction by 25% (Fig. 5), and reduced amyloid pathology by more than 40% (Fig. 5). These results strongly suggest that the presence of fibrinogen might be neurotoxic in this region. However, it is possible that decreasing fibrinogen levels also affects the balance of other blood- or vessel-derived proteins known to be present in microhemorrhages close to amyloid plaques (Cullen et al., 2005, 2006). Therefore, neuronal dysfunction near fibrinogen-positive areas may be because of direct fibrin toxicity and/or may also be the result of a chronic vascular disease. It is possible that we did not see a bigger effect, because the reduction in plasma fibrinogen levels in these mice is only approximately 30%, and fibrinogen is certainly not the only factor affecting amyloid deposition and neuronal dysfunction in AD pathology. However, even the modest 5% increase in neurons we observed because of decreasing fibrinogen levels represents approximately 300 subicular neurons/mm², which together with the reduction in dystrophic neurites and amyloid pathology, could have a significant impact on AD progression. Because the AD brain atrophies at a rate of nearly 3% per year (Hua et al., 2013), identifying therapeutic strategies that can decrease that rate could delay disease progression considerably. Interventions with a modest interruption in disease onset and progression by 1 year could translate into avoiding 9 million AD cases by 2050 (Brookmeyer et al., 2007).

The present studies confirm the increased thrombosis present in the AD brain, which can profoundly affect brain physiology. Several factors in AD could be responsible for this increased thrombosis. Because there is an extensive cross talk between inflammation and hemostasis (Levi et al., 2004), the widespread inflammatory response present in AD (Lee et al., 2010) may lead to a procoagulant state which in turn sustains inflammation. Indeed, increased thrombin generation as well as elevated levels of activated coagulation factors and activated platelets are present in the AD circulation and brain (Cortes-Canteli et al., 2012). In addition, episodes of microhemorrhages can occur in the AD brain (Cullen et al., 2005, 2006), suggesting that blood-derived proteins, including fibrinogen, are able to cross the blood-brain barrier over long periods of time and deposit in the AD brain. Because of this prothrombotic state, it is possible that when fibrinogen extravasates into the brain, it is converted into fibrin, where it might persist, because the fibrinolytic system is reduced in the AD brain (Ledesma et al., 2000; Melchor et al., 2003). Moreover, the presence of elevated Aβ in the brain would promote its binding to fibrinogen (Ahn et al., 2010) and incorporate into fibrin clots, further delaying fibrinolysis (Cortes-Canteli et al., 2010; Zamolodchikov and Strickland, 2012). This fibrin deposition could then decrease cerebral blood flow, promote inflammation, and affect neuronal function, ultimately leading to cell death and cognitive deficits.

It remains to be clarified whether fibrin(ogen) deposition is a cause or a consequence of AD. High levels of fibrinogen in plasma increase the risk for dementia (Van Oijen et al., 2005; Xu et al., 2008) and fibrinogen in cerebrospinal fluid (Craig-Schapiro et al., 2011; Vafadari-Isfahani et al., 2012) and plasma (Thambisetty et al., 2011; Yang et al., 2014) has been proposed as a useful biomarker to identify AD progression. Interestingly, fibrinogen has recently been found to be one of the few blood-based biomarkers specific for AD and not for other brain disorders (Chiam et al., 2014).

However, whether fibrin(ogen) deposition and fibrin clot formation precedes or follows AD pathology is still an open question as is whether this disorder is caused by primary or secondary cerebral blood flow deficiency (Austin et al., 2011; Mazza et al., 2011). What is clear is that fibrinogen and fibrin clot formation contribute to AD pathogenesis by increasing neurovascular damage (Paul et al., 2007), neuroinflammation (Paul et al., 2007), cerebral amyloid angiopathy (Cortes-Canteli et al., 2010), and neuronal degeneration (present study). Therefore, therapeutic strategies aimed at blocking the interaction between fibrinogen and Aβ (Ahn et al., 2014) or at normalizing thrombosis and decreasing the accumulation of fibrinogen in the AD brain could prove useful in improving cerebral blood flow, neuronal function, and survival, which in turn could have significant long-term benefits for AD patients.

Disclosure statement

The authors declare no conflicts of interest.

Acknowledgements

This work was supported by the BrightFocus Foundation (grant number A2011310), NIH (grant number NS050537), Litwin Foundation, May and Samuel Rudin Family Foundation, Blanchette Hooker Rockefeller Fund, Mellam Family Foundation, and John A. Hermann, Jr. The authors thank Drs M. Azhar Chishti and David Westaway (University of Toronto, Toronto, Canada) for providing the TgCRND8 mice, and Dr Jay L. Degen (Cincinnati, OH, USA) and Dr T. Renne (Karolinska Institutet, Sweden) for providing the fibrin(-ogen) and fibrin antibodies, respectively. They thank Strickland Laboratory members for thoughtful discussions, particularly Daria Zamolodchikov for her expert advice on the detection of fibrin by Western blot and Andrew Lawson for his hard work and discussions during his summer project. They thank Jose Miguel Cortes and Shane Abbani for technical help, and The Rockefeller University’s Bio-Imaging Resource Center members for their help and support. Human brain samples were provided by the Harvard Brain Tissue Resource Center, which is supported in part by PHS (grant number R24 MH068855). Monoclonal LAMP-1 antibodies (1D4B and H4A3) developed by J. Thomas August and James E.K. Hildreth (Johns Hopkins University School of Medicine, Baltimore, MD) were obtained from the Developmental Studies Hybridoma Bank developed under auspices of the NICHD and maintained by The University of Iowa (Department of Biology, Iowa City, IA 52242).

References

M. Cortes-Canteli et al. / Neurobiology of Aging xxx (2014) 1–10
Klohs, J., Baltes, C., Princz-Kranz, F., Ratering, D., Nitsch, R.M., Knuesel, I., Rudin, M.,
Ledesma, M.D., Da Silva, J.S., Crassaerts, K., Delacourte, A., De Strooper, B., Dotti, C.G.,
Lee, Y.J., Han, S.B., Nam, S.Y., Oh, K.W., Hong, J.T., 2010. In Alzheimer disease models and hu-
Iadecola, C., 2010. The overlap between neurodegenerative and vascular factors in
Hui, K.Y., Haber, E., Matsueda, G.R., 1983. Monoclonal antibodies to a synthetic
Fiala, M., Liu, Q.N., Sayre, J., Pop, V., Brahmandam, V., Graves, M.C., Vinters, H.V.,
Duyckaerts, C., Potier, M.C., Delatour, B., 2008. Alzheimer disease models and hu-
Craig-Schapiro, R., Kuhn, M., Xiong, C., Pickering, E.H., Liu, J., Misko, T.P., Perrin, R.J.,
Davalos, D., Akassoglou, K., 2012. Fibrinogen as a key regulator of in
Hashimoto, T., Ogino, K., Shin, R.W., Kitamoto, T., Kikuchi, T., Shimizu, N., 2010. Age-
Masliah, E., Mallory, M., Hansen, L., DeTeresa, R., Alford, M.,erry, R., 1994. Synthetic and
Levy, M., van der Poll, T., Buller, H.R., 2004. Bidirectional relation between inflam-
Masliah, E., Mallory, M., Hansen, L., DeTeresa, R., Alford, M.,erry, R., 1994. Synthetic and
Levy, M., van der Poll, T., Buller, H.R., 2004. Bidirectional relation between inflam-
Masliah, E., Mallory, M., Hansen, L., DeTeresa, R., Alford, M.,erry, R., 1994. Synthetic and
Levy, M., van der Poll, T., Buller, H.R., 2004. Bidirectional relation between inflam-
Masliah, E., Mallory, M., Hansen, L., DeTeresa, R., Alford, M.,erry, R., 1994. Synthetic and
Levy, M., van der Poll, T., Buller, H.R., 2004. Bidirectional relation between inflam-
Masliah, E., Mallory, M., Hansen, L., DeTeresa, R., Alford, M.,erry, R., 1994. Synthetic and
Levy, M., van der Poll, T., Buller, H.R., 2004. Bidirectional relation between inflam-