Movement of Plasma-Membrane-Associated Clathrin Spots Along the Microtubule Cytoskeleton

Joshua Z. Rappoport¹, Bushra W. Taha¹ and Sanford M. Simon¹,*

¹The Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, Box 304, New York, New York, 10021, USA
* Corresponding author: Sanford M. Simon, simon@rockefeller.edu

The current understanding of the role of plasma-membrane-associated clathrin suggests that clathrin-coated pits form at the sites of activated receptors and then, following internalization, the clathrin coat is rapidly shed. Utilizing total internal reflection fluorescence microscopy (TIR-FM), we have documented linear lateral motion of cell-surface-associated dsRed-clathrin spots parallel to the plasma membrane. Clathrin spot motility was observed in multiple cell lines (MDCK, CHO, Cos-7 and HeLa). In MDCK cells dsRed-clathrin spots moved along linear pathways up to 4 μm in length with rates of approximately 0.8 μm/s. Spots did not generally undergo internalization during movement. The motion of these puncta was coincident with the microtubule cytoskeleton, and depolymerization of microtubules reduced spot motility over 10-fold. Over-expression of the microtubule-associated protein tau-EGFP decreased spot run length by 40% without affecting the rate of movement. Thus dsRed-clathrin puncta move along the microtubule cytoskeleton parallel to the cell surface.

Key words: clathrin, evanescent wave microscopy, microtubules, tau, total internal reflection fluorescence microscopy (TIR-FM)

Received 31 January 2003, revised and accepted for publication 31 March 2003

The current understanding of the biophysical role of plasma membrane clathrin does not predict motion of clathrin-coated structures parallel to the plane of the cell surface. In the case of endocytosis it is believed that clathrin triskelions polymerize at the sites of activated receptors and, subsequent to pit formation and fission, the clathrin coat is rapidly shed (2,12,19). The suggestion that the formation and dissolution of clathrin coats occur at the sites of endocytosis immediately prior to and following internalization, respectively, implies that the functional role of the clathrin coat does not go beyond the budding process.

TIR-FM has permitted us to evaluate the behavior of plasma-membrane-associated clathrin puncta. In studies previously performed in migrating MDCK cells clathrin puncta, bound to dynamin2, were observed to exist for extended periods on the plasma membrane prior to endocytosis (20). A subset of clathrin spots was observed to move laterally, parallel to the membrane surface. In this study we report the lateral movement of clathrin puncta in multiple cell lines (MDCK, CHO, Cos-7 and HeLa). These dsRed-clathrin puncta moved along the microtubule...
cytoskeleton. Further, the lateral motility of clathrin spots was sensitive to disruption of microtubules by nocodazole treatment. Over-expression of the microtubule-associated protein tau decreased the run length of the clathrin puncta, but not the velocity. These results suggest that clathrin coats may not exist as inert, transient structural configurations, and that the current understanding of the role of plasma-membrane-associated clathrin may be incomplete.

Results and Discussion

Both dsRed-clathrin and GFP-clathrin have been previously observed to exist in puncta adjacent to the plasma membrane which occasionally disappear, presumably via endocytosis (10,20,21). Additionally, these studies suggest that labeled clathrin light chain can assemble into functional clathrin-coated pits: labeled clathrin colocalizes with endogenous clathrin and AP2 and is capable of functioning in assays for transferrin uptake (10,20,21). In experiments previously performed in migrating MDCK cells, a subset of clathrin spots was observed to move laterally along linear trajectories within the evanescent field (20). The population of clathrin puncta moving along linear trajectories had not previously been detailed by other studies analyzing the dynamics of clathrin-mediated endocytosis in living cells (10,21).

To determine if lateral spot motility is a phenomenon common to non-migrating cells, MDCK, CHO, Cos-7 and HeLa cells were evaluated by TIR-FM subsequent to transfection with dsRed-clathrin. Laterally motile spots were observed in non-migrating MDCK cells (Video 1, available in the Video Gallery at www.traffic.dk.) and in each of the other cell lines evaluated: CHO (Figure 1), Cos-7 (data not shown) and HeLa (data not shown). In CHO cells 2% of spots demonstrated linear lateral motion per minute (84 out of 4535 spots from 10 cells).

In some cases multiple clathrin spots were observed to travel along the same trajectory (Video 1). The average length of the trajectories of 21 laterally motile clathrin spots sampled from four MDCK cells was $2.30 \pm 0.21 \mu m$ and the average rate of motion was $0.81 \pm 0.06 \mu m/s$. These values are similar to those previously observed for rates of vesicle movement along the microtubules in the cytosol (12) and along the microtubules adjacent to the plasma membrane (22). This movement was not expected in light of models for the behavior of clathrin adjacent to the cell surface that suggest that coat components polymerize at the sites of endocytosis and that the clathrin coat is rapidly shed following internalization (2,6,12,19).

Excitation in TIR-FM decreases exponentially with distance from the coverglass. As the depth of penetration of the evanescent field (~100 nm) is on the same scale as the diameter of a clathrin-coated vesicle, internalization of clathrin-coated pits is marked by a rapid decrease in fluorescence (10,20). To determine if the laterally motile population of dsRed-clathrin puncta moves during internalization, 37 spots from a total of seven cells were tracked throughout the duration of motion. Only 8% of the spots analyzed disappeared from the evanescent field while undergoing lateral motion; the large majority of spots (34 out of 37) remained in the plasma-membrane-associated region during and immediately following spot movement.
Our analyses of both migrating and stationary cells demonstrate that lateral motion immediately prior to internalization is not a prerequisite for endocytosis. Rather, motile spots remain within the evanescent field throughout, and immediately following, the period of motility.

To test whether there was a relation between movement of clathrin puncta and microtubules, we tested whether:

(i) movement of clathrin was coincident with the microtubule cytoskeleton; (ii) expression of a microtubule-associated protein affected the movement of clathrin.

Figure 2: Motility of dsRed-clathrin spots along the MDCK cell microtubule cytoskeleton.

A. MDCK cell cotransfected with dsRed-clathrin and tau-EGFP showing the region imaged in B–D. The scale bar equals 5 μm.

B–D. Sequential frames from TIRFM video microscopy of the region outlines in A sampled at 300 ms per frame. B depicts the overlap of the dsRed-clathrin (C) and tau-EGFP (D) images. The arrow depicts the motile dsRed-clathrin spot.
puncta; (iii) depolymerization of the microtubule cytoskeleton affected movement of clathrin. To evaluate whether the lateral movement of clathrin puncta was coincident with microtubules, cells were cotransfected with dsRed-clathrin and markers for the microtubule cytoskeleton, either tau-EGFP or tubulin-EGFP.

In MDCK cells, dsRed-clathrin spots were observed to move along tau-EGFP-labeled microtubules when both fluorophores were imaged simultaneously (Figure 2 and Video 2; Videos available in the Video Gallery at www.traffic.dk.). Similar studies were performed in CHO cells, a cell line derived from both a different species (hamster as opposed to dog) and tissue (ovary as opposed to kidney). Lateral motility of dsRed-clathrin spots along both tubulin-EGFP (Figure 3B) and tau-EGFP (data not shown) stained microtubules was observed. Therefore, the coincidence of motile dsRed-clathrin spots along microtubules is not a function of the particular tag used to identify the microtubule cytoskeleton (tau-EGFP or tubulin-EGFP). These results (Figures 2 and 3) demonstrate that a clathrin-labeled compartment is capable of motility along microtubules, a finding with implications potentially relevant to the studies of both the endocytic and the biosynthetic pathways.

The potential involvement of microtubules in clathrin movement was further evaluated by comparison of spot motility following coexpression of the microtubule binding protein tau, or of tubulin. The run length (Figure 4A) and velocity (Figure 4B) of laterally motile spots was quantified in MDCK cells transfected with dsRed-clathrin alone, or cotransfected with either tau-EGFP or tubulin-EGFP. Although the run length of clathrin puncta was reduced ~40% by tau transfection, this manipulation had no significant effect on spot velocity (Figure 4B). This observation is consistent with the previously reported finding that in cells transfected with tau the motion of post-Golgi vesicles along microtubules shows a decreased run length without any alteration in vesicle velocity (23). Co-transfection with tubulin-EGFP had no significant effect on either run length or velocity, suggesting that the observed effect is specific to the expression of tau and not a result of association of EGFP with microtubules. As these results are similar to those observed in the case of post-Golgi

![Figure 3](image-url)
vesicle transport (23), they represent further evidence that this lateral motility is occurring along the microtubule cytoskeleton.

While a significant decrease in motile spot run length was observed following coexpression of the microtubule-associated protein tau, this difference in average distance could have been due to the generation of two distinct populations of motile spots, one moving along trajectories of equivalent length to those in cells not expressing tau-EGFP, and a second group of nearly immobile spots. To differentiate between these possibilities, a run length histogram was generated comparing the distributions of spots from cells with and without tau-EGFP coexpression. In cells transfected only with dsRed-clathrin spot run length is distributed in an apparent normal fashion from below 1 μm to between 4 and 5 μm (Figure 4C). However, nearly all of the spots in the cells cotransfected with tau-EGFP moved less than 2 μm. Therefore, the results of the histogram analysis suggest that tau-EGFP coexpression is affecting the motility of all dsRed-clathrin spots, not just a subset.

To test if depolymerization of microtubules would affect the movement of clathrin puncta, cells were treated with nocodazole. CHO cells expressing dsRed-clathrin were imaged before and after nocodazole treatment, and following recovery after nocodazole treatment (Figure 5). In both the TIR-FM (Figure 5A) and epifluorescence images (Figure 5B), nocodazole treatment resulted in a nearly complete loss of tau-EGFP-stained microtubules. The effect of nocodazole was reversible and therefore not lethal to the cells: 24 h after the nocodazole was washed out of the media, the microtubules had repolymerized (Figure 5A, B right panel).

Clathrin spot motility was evaluated before, during and after nocodazole treatment. The number of laterally moving spots was counted in dsRed-clathrin-transfected CHO cells (10 cells per group) with and without nocodazole treatment, and following 24 h of nocodazole withdrawal. Nocodazole treatment was sufficient to nearly completely eliminate the lateral motion of clathrin spots (Figure 5C). In contrast, incubation with cytochalasin D sufficient to disrupt the actin cytoskeleton was not able to arrest clathrin spot motility (data not shown). Following nocodazole removal, however, the lateral movement of clathrin puncta was restored. This implies that the lateral motion of clathrin puncta is directly dependent upon the presence of intact microtubules.

These observations demonstrate that the movement of clathrin puncta is dependent on microtubules: motility is affected by over-expression of a microtubule-associated protein (tau) and it is halted upon depolymerization of microtubules and restored upon repolymerization. This suggests a role for microtubules in the movement of plasma-membrane-associated clathrin puncta. This lateral motion, which is observed in multiple cell lines (MDCK, CHO, Cos-7 and HeLa), does not generally occur during spot internalization. Although it is believed that the plasma membrane and the Golgi apparatus are the main sites of clathrin-coated vesicle formation, the budding of clathrin-positive regions of tubular endosomes has also been reported (24). It remains to be resolved whether these moving spots represent disks of polymerized clathrin on the cytosolic surface of the plasma membrane, clathrin-coated vesicles that have just been endocytosed, but not
yet separated from the plasma membrane, or yet another organelle. It is possible that the clathrin spots moving along the microtubule cytoskeleton represent structures immediately prior or subsequent to endocytosis, such as clathrin-coated pits or vesicles, respectively, or, alternatively, endosomally derived vesicles moving in a compartment adjacent to the plasma membrane. Thus, these results demonstrate the need for a reevaluation of the functional role of plasma-membrane-associated clathrin (2,6,19).

Materials and Methods

Plasmid constructs
The construct encoding dsRed-clathrin (rat light chain) was a gift of Dr Thomas Kirchhausen of Harvard Medical School (Boston, MA, USA). The construct encoding tau-EGFP was a gift of Dr Peter Mombaerts of the Rockefeller University (New York, NY, USA). Tubulin-EGFP was purchased from Clontech (BD Biosciences Clontech, Palo Alto, CA, USA).

Cell culture
MDCK, CHO, Cos-7 and HeL cells were maintained in DMEM (Mediatech Cellgro, VA, USA) supplemented with 10% FBS in a 37 °C incubator humidified with 5% CO₂. Cells were plated onto sterilized glass coverslips (Fisher Scientific, Atlanta, GA, USA). Cells were plated at approximately 85% confluence 1 day prior to transfection with Lipofectamine 2000 (Invitrogen Corp., Carlsbad, CA, USA) according to the supplier’s directions. Cells were imaged 24–48 h post transfection.

Nocodazole treatment
CHO cells were placed in tissue culture media containing 15 μM nocodazole for 2 h in a 37 °C incubator humidified with 5% CO₂. Cells were maintained in nocodazole during imaging.
Cytochalasin D treatment
To depolymerize the actin cytoskeleton, HeLa and MDCK cells were incubated in Cytochalasin D. MDCK cells were incubated in 1 μM Cytochalasin D for up to 1 h and HeLa cells were incubated in 1 or 5 μM Cytochalasin D for up to 1.5 h. Cells were maintained in Cytochalasin D during imaging. These techniques have previously been shown to result in depolymerization of the actin cytoskeleton (22,25,26). Our laboratory has demonstrated via TIR-FM the disruption of actin stress fibers near the plasma membrane following incubation in Cytochalasin D (22).

Image acquisition
TIR-FM was performed as previously described (8,9) utilizing illumination through the microscope objective (Apo 60X NA 1.45, Olympus America Inc., Melville, NY, USA). All studies were performed with an inverted epifluorescence microscope (IX-70, Olympus) placed within a home-built temperature-controlled enclosure set at 32 °C for live cell imaging. The optical configuration used to image dsRed-clathrin included excitation with the 514 nm line of a tunable Argon laser (Omnichrome, model 543-AP A01, Melles Griot, Carlsbad, CA, USA) reflected off a polychroic mirror (442/514pc). All filters, polychroic and dichroic mirrors were obtained from Chroma Technologies Corp. (Brattleboro, VT, USA). Emitted light was then collected through a 560lp filter. Tau-EGFP and tubulin-EGFP were excited by the 488 nm line of the Argon laser reflected off a dichroic mirror (498dclp). EGFP emission was collected through an emission band pass filter (HQ525/50 m). When dsRed-clathrin and tau-EGFP/tubulin-EGFP were imaged simultaneously, both fluorophores were excited with the 488 nm line of the same tunable Argon laser as above reflected off the 498dclp dichroic. Simultaneous image acquisition was performed utilizing an emission splitter (W-view, Hamamatsu Photonics, Hamamatsu City, Japan). The EGFP/dsRed emissions were collected simultaneously through an emission splitter equipped with dichroic mirrors to split the emission (550dclp). The EGFP emission was then collected through an emission band pass filter (HQ525/50 m) and the dsRed through an emission long pass filter (580lp).

Determination of the motile proportion of spots
All of the spots observed to move in a linear lateral trajectory for 10 dsRed-clathrin transfected CHO cells were counted. The number of motile spots per minute was then divided by the total number of plasma-membrane-associated spots per cell. The total number of spots per cell was estimated by counting the total number of spots from within three circular regions (area = 2776 pixels) and multiplying the average of the three regions by the total area of the cell divided by the area per region.

Dual-color processing
Dual-color image streams were acquired so that the separated channels appear side by side on the camera chip. Regions of the same size were removed from the whole field to yield separated image sequences. The two channels (GF and dsRed) were aligned by placing brightfield images of the cells being analyzed on top of the stack of TIR images. The brightfield images were then aligned by eye and then the TIR stacks were similarly aligned according to the same spatial adjustments. Following image alignment, correlation coefficients were obtained (via MetaMorph) following pixel shift of the red image planes 1 pixel at a time for 10 pixels in each direction. Each of the four resultant correlation coefficients for each pixel shift step was then averaged. Alignment was verified by the exponential decrease in correlation coefficient following pixel shift.

Online supplemental material
Two TIR-FM videos are included to illustrate the dynamic motion of dsRed-clathrin spots parallel to the plane of the plasma membrane. Video 1 illustrates the motion of several dsRed-clathrin spots along a linear trajectory, and Video 2 demonstrates the motion of a dsRed-clathrin spot along a tau-EGFP-stained microtubule. Both videos are of live, transiently transfected MDCK cells, and Video 2 represents overlays of simultaneously acquired two-channel (red and green) video microscopy.

Acknowledgments
The authors thank Jyoti Jaiswal and Marina Fix for their critical evaluation of this manuscript. This work was supported by NSF BES 0110070 and NSF BES-0119468 to SMS.

References

