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Abstract
Two widely investigated areas of theory in ecology over the past half century are species-abundance distributions (SADs) and
Taylor’s power law of fluctuation scaling (TL). This paper connects TL with a classic SAD, MacArthur’s broken-stick model.
Each of these models is more than 60 years old, but apparently the connection has not been observed previously. For large
numbers of species, the broken-stick model asymptotically obeys TL with exponent 2: the variance of species abundance equals
the square of the mean species abundance. Equivalently, in the broken-stick model, the coefficient of variation of abundance is
asymptotically 1. Because both the broken-stick model and TL have interpretations and applications beyond ecology, the
connection established here has broader than purely ecological interest. This simple but previously unnoticed relationship
between the broken-stick model and the power-law variance function raises the question of how other species-abundance
distributions are related to power law or other variance functions.
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Introduction

“Demonstrating the connection between apparently unrelated
theories” is one of six types of useful theory in Caswell’s
(1988, p. 38) “beginning of a list of types of theoretical prob-
lems” in science. For example, Zaoli et al. (2017) analyzed
connections and constraints among the species-area relation-
ship, the fraction of individuals in a community that have a
given body mass regardless of species (community-size spec-
trum), the probability distribution of typical or adult body
masses, the average abundance of a species with given typical
body mass (Damuth’s law), and the scaling of an individual’s
consumption or metabolic rate with the individual’s body
mass. Notable earlier examples of efforts to integrate diverse

quantitative ecological relationships include those of Brown
et al. (2004) and Marquet et al. (2005).

Two widely investigated areas of ecological theory over
the past half century are species-abundance distributions
(SADs) (Alroy 2015; Baldridge et al. 2016) and Taylor’s
power law of fluctuation scaling (TL) (Taylor 2019). It has
been suggested that TL describes the SAD of bacterial
strains in the human microbiome (Ma 2015), but no mathe-
matically exact demonstration of a connection between any
SAD model and any form of TL appears to have been pub-
lished so far. The purpose of this paper is to connect TL with
a classic SAD, the broken-stick model (MacArthur 1957),
by means of a precise calculation. Though both TL and the
broken-stick model are more than 60 years old, the connec-
tion between them has not been observed until now. This
example opens a field of investigation of the relation of
other SADs to TL and other variance functions. Because
the broken-stick model and TL have interpretations and ap-
plications beyond ecology, the connection established here
has broader than purely ecological interest.

MacArthur (1957, p. 293) proposed a “broken-stick”mod-
el for the relative abundance of species in a community: “The
environment is compared with a stick of unit length on which
n − 1 points are thrown at random. The stick is broken at these
points, and the lengths of the n resulting segments are
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proportional to the abundances of the n species.” MacArthur
(1960) and others (reviewed by King 1964) found empirical
support for this model.

Independently, Bliss (1941), Fracker and Brischle (1944),
Hayman and Lowe (1961), and Taylor (1961) proposed and
showed empirically that the variance of population size or
population density changed in proportion to a power function
of the mean population size or population density in multiple
samples. Such a power-law relationship of variance to mean is
called a power-law variance function.

Here we show that, in an ensemble of multispecies ecolog-
ical communities (or, more generally, in a set of samples of
some nonnegative random variable), if the relative abun-
dances of the species within each community (or the relative
magnitudes within each sample) obey the broken-stick model,
then the variance of relative abundance (across species in a
given community) is related to the mean of relative abundance
(across species in a given community), asymptotically for
large numbers of species, by the power-law variance function,
variance = a(mean)bwith a = 1, b = 2. In words, asymptotical-
ly for large numbers of species (or large sample sizes), the
variance equals the square of the mean of relative abundance.
Equivalently, the coefficient of variation of species relative
abundance is asymptotically 1. Communities with small, finite
numbers of species (or small sample sizes) approach this as-
ymptotic behavior rapidly.

Both the broken-stick model and the power-law variance
function are widely studied under different names in sciences
other than ecology. The relative abundances generated by the
broken-stick model are known in statistics as “spacings” and
have a long history (Pitman 1937; Feller 1966, 1971). Barton
and David (1956), the source of information about this model
for MacArthur (1957), trace spacings back to 1887. Holst
(1980, p. 624) reports and cites some of a “huge literature”
on spacings. Statistical research on spacings continues (e.g.,
Devroye 1986, chapter 5; Kochar 2012). None of the publica-
tions I have seen on the broken-stick model or spacings refers
to Taylor’s law or to a power-law variance function.

In parallel, and apparently independently, Eisler et al.
(2008) and Taylor (2019) review physical, meteorological,
hydrological, financial, and other empirical applications and
theories of the power-law variance function, usually known in
the physical sciences as “fluctuation scaling.” Neither review
mentions the broken-stick model, spacings (in the statistical
sense), or MacArthur (1957). Because interest in spacings and
the power-law variance function is widespread, our demon-
stration that they are closely connected has relevance beyond
ecology.

The connection demonstrated here between the broken-
stick model and the power-law variance function with expo-
nent 2 suggests a much broader study of the connection be-
tween species-abundance distributions (Baldridge et al. 2016)
and variance functions generally (power law or otherwise).

Methods

Notation and definitions

We consider K > 1 communities, indexed by k = 1, 2, …, K.
We suppose that community k has n(k) > 1 species, indexed
by j = 1, 2, …, n(k). We assume lim

K→∞
n Kð Þ ¼ ∞, i.e., asymp-

totically as the number K of communities becomes large, the
number n(K) of species per community becomes large.

We write the absolute (not relative) abundance, i.e., num-
ber of individuals, of species j in community k as Xjk > 0 and
we include only species with positive abundance. Then the
total abundance in community k is X1k + X2k +… + Xn(k), k,
and the relative abundance of species j in community k is
Rjk = Xjk/(X1k + X2k +… + Xn(k), k) > 0. The sum of the relative
abundances of all species in a community equals 1.

Power-law variance function

The power-law variance function has exact, approximate, and
asymptotic forms. If one considers a family of random vari-
ables with positive population mean and positive population
variance, then the exact form of TL states variance = a-
(mean)b, or equivalently (1) below. If one considers multiple
samples of a nonnegative random variable such as species
abundance with sample mean and sample variance, then an
approximate form of TL states sample variance ≈ a(sample
mean)b, with some error term. If one considers the limiting
behavior of a family of random variables or samples, then an
asymptotic form of TL states variance/(mean)b→ a in some
limit. In this last case, the moments may be population mo-
ments (exact) or sample moments (subject to sampling
variation).

More precisely, let p be the label of each community, ran-
dom variable, or sample, and let P ≠∅ be the nonempty set of
all labels or distributions being considered. A family of ran-
dom variables {X(p)| p ∈ P} has a power-law variance func-
tion if and only if, for all p ∈ P, 0 < E(X(p)) and 0 < Var(X(p))
and there exist finite real constants a > 0 and b such that

logVar X pð Þð Þ−blogE X pð Þð Þ ¼ loga: ð1Þ

In this log-log form of the power-law variance function,
logVar(X(p)) is plotted on the ordinate as a function of the
abscissa logE(X(p)). Then, log(a) is called the intercept, and
b is called the slope.We refer to b interchangeably as the slope
(of the log-log form) or the exponent (of the power-law form).

In empirical applications of (1), the exact equality is re-
placed by approximation, since the sample mean and the sam-
ple variance are subject to sampling variation. In theoretical
extensions of (1), exact equality may be replaced by asymp-
totic convergence as the parameter p approaches some limit.
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In this note, the parameter p is the number n(k) of species in
the kth community and we prove convergence as n(k)→∞.

The coefficient of variation CV of a random variable with
finite variance is defined to be its standard deviation divided
by its mean, so CV2 = variance/mean2. Then, CV2 = CV = 1 if
and only if the power-law variance function (1) holds with a =
1, b = 2.

Broken-stick model

To define the broken-stick model for each community k = 1,
…, K, let {Ujk| j = 1,…, n(k) − 1} be n(k) − 1 uniformly and
independently distributed random variables on the interval (0,
1). Within the kth community, if the {Ujk| j = 1,…, n(k) − 1}
are sorted in increasing size, their values from left to right on
the real line are the corresponding so-called order statistics, 0
<U(1), k <U(2), k <… <U(n(k) − 1), k < 1, where the strict in-
equalities hold with probability 1. (Events of probability 0
are ignored.) Define U(0), k = 0 and U(n(k)), k = 1. Thus 0 =
U(0), k <U(1), k <U(2), k <… <U(n(k) − 1), k <U(n(k)), k = 1. In
the broken-stick model, the relative abundance Rjk of species
j in community k is modeled by the distance between succes-
sive pairs of adjacent points, namely, Rjk =U(j), k −U(j − 1), k for
j = 1, …, n(k); k = 1, …, K.

Exponential distribution

A random variable X ≥ 0 is defined to be exponentially dis-
tributed with scale parameter λ > 0 if, for all x ≥ 0, Pr {X >
x} = e−λx. In this case, we write X=dExp(λ), where =d means
“has the same distribution as.” The mean of Exp(λ) is λ−1, and
its variance is λ−2. The family of exponential distributions
{Exp(λ)| λ ∈ P ≠∅} obeys Taylor’s law exactly with a = 1,
b = 2 because, for every λ, Var(Exp(λ)) = [E(Exp(λ))]2.

Results

First, we give a heuristic argument to suggest that, for every

j = 1, …, n(k), lim
n kð Þ→∞

Var Rjk
� �

= E Rjk
� �� �2 ¼ 1, which is an

asymptotic version of Taylor’s law with a = 1, b = 2. Then,
we give a simple, exact proof.

Heuristic argument

Let X1, X2, …, Xn(k) be independently and identically distrib-
uted as Exp(λ(k)) and let

Sn kð Þ≔X 1 þ X 2 þ…þ X n kð Þ: ð2Þ

The scale parameter λ(k) may vary from one community
(or sample) to another but is the same for all observations (or

random variables, or species abundances in the ecological
interpretation) Xj in community k. Then

R1k ;R2k ;…;Rn kð Þ;k
� �¼d

X 1

Sn kð Þ
;
X 2

Sn kð Þ
;…;

Xn kð Þ
Sn kð Þ

� �
: ð3Þ

In words, the joint distribution of the relative abundances in
the broken-stick model (on the left side in (3)) is identical to
the joint distribution generated by a set {X1, X2,…, Xn(k)} of
independent and identically distributed exponential random
variables, taking the ratio of each exponential random variable
to the sum of them all (on the right side in (3)). This beautiful
fact appears in Feller (1966, 1971, Sections I.6 and III.3),
Holst (1980, p. 625), and elsewhere. Cohen (1968) observed
that the expected values of the order statistics of {Rjk| j = 1,
…, n(k)} are the same as the expected values of the order
statistics of {Xj/Sn(k)| j = 1,…, n(k)}, but not that their joint
distributions are identical, as stated above.

Since the denominator Sn(k) of each ratio Xj/Sn(k) is the same
for all j = 1,…, n(k), it is tempting (though wrong) to imagine
that the mean and variance of each ratio are determined by the
numerators {Xj| j = 1,…, n(k)} alone. Under this false suppo-
sition, the numerators X1, X2,…, Xn(k) are a random sample of
size n(k) from Exp(λ(k)). As noted, Exp(λ(k)) has finite mean
and variance that obey Taylor’s law with a = 1, b = 2, so large
samples will too. The temptation is to suppose that large sam-
ples of Xj/Sn(k) will behave likewise.

This heuristic argument, though it leads to the right answer,
suffers from three problems. First, each Xj appears alone in the
numerator and also as one term in the sum Sn(k) in the denom-
inator. Therefore, the numerator and denominator of each ratio
Xj/Sn(k) are not independent. Second, the fractions {Xj/Sn(k)| j =
1,…, n(k)} are not independent because they sum to 1. Third,
Sn(k) is not constant.

We present two proofs that solve these problems. The proof
in the following subsection determines exactly the distribution
and moments of each Rjk on the left side of (3). The proof in
the Appendix determines exactly the distribution and mo-
ments of each Xj/Sn(k) on the right side of (3). Each proof is
revealing in a different way. Happily, both proofs reach the
same conclusion (6).

Proof

Feller (1971, p. 22, I.7(b)) proved the following fact, which
even he called “surprising”: in the broken-stick model that
partitions the unit line into n(k) segments of length {Rjk| j =
1,…, n(k)}, every one of the segments has the same distribu-
tion of length with upper tail probability or survival function

Pr Rjk > t
� � ¼ 1−tð Þn kð Þ−1; 0 < t < 1; j ¼ 1;…; n kð Þ: ð4Þ
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For any continuous nonnegative random variable X, the rth
moment μr ≔ E(Xr) about the origin is given in terms of the
survival function Pr{X > x}, x ≥ 0 by (Feller 1971; Hong 2012;
Chakraborti et al. 2019)

μr ¼ r
Z ∞

0
xr−1Pr X > xf gdx; r≥1: ð5Þ

When X = Rjk, the survival function Pr{X > x} becomes
Pr{Rjk > t} from (4) and the upper limit of integration in (5)
becomes 1. Then (5) gives, by elementary calculus,

μ1 ¼
1

n kð Þ ; μ2 ¼
2

n kð Þ n kð Þ þ 1ð Þ ; μ3 ¼
6

n kð Þ n kð Þ2 þ 3n kð Þ þ 2
� 	 ;

μ4 ¼
24

n kð Þ n kð Þ3 þ 6n kð Þ2 þ 11n kð Þ þ 6
� 	 :

Therefore Var(Rjk) = μ2 − (μ1)
2 = (n(k) − 1)/(n(k)2(n(k) +

1)). Thus

CV2 Rjk
� �

:¼ Var Rjk
� �
μ2
1

¼ n kð Þ−1
n kð Þ þ 1

;

limn kð Þ→∞CV
2 Rjk
� � ¼ limn kð Þ→∞

Var Rjk
� �

E Rjk
� �
 �2 ¼ 1:

ð6Þ

The last equality in (6) is the asymptotic power-law vari-
ance function variance/(mean)b→ a with a = 1, b = 2. The
difference between the limiting value of a = 1 and the value
of CV2(Rjk) for finite n(k) is

a−CV2 Rjk
� � ¼ 1−

n kð Þ−1
n kð Þ þ 1

¼ 2

n kð Þ þ 1
≤0:1 for n kð Þ≥19:

ð7Þ
Numerical illustration

To illustrate this result, we simulated one realization of the
broken-stick model for each ofK = 20 communities (or samples)
with n(k) = 2k species, k = 1, 2,…,K. For the kth community, we
simulated n(k) − 1 = 2k − 1 independent, uniformly distributed
pseudorandompoints {Ujk| j = 1,…, n(k)− 1} on the unit interval
(0, 1), sorted those points in increasing order 0 =U(0), k <U(1), k<
U(2), k <… <U(n(k)− 1), k<U(n(k)), k= 1, and took the first differ-
ences of these order statistics Rjk=U(j), k−U(j− 1), k as the pre-
dicted relative abundance of species (or as the sampled spacings).
The spacings, intervals, or line segmentsRjk are not necessarily in
increasing order; they are simply labeled from left (j= 1) to right
(j= n(k)). For this unique realization, we calculated the sample
mean and the sample variance of this single realization of the
spacings:

m kð Þ:¼ 1

n kð Þ
Xn kð Þ

j¼1
Rjk ¼ 1

n kð Þ ; ð8Þ

v kð Þ:¼ 1

n kð Þ
Xn kð Þ

j¼1
Rjk−m kð Þ� �2 ¼ 1

n kð Þ
Xn kð Þ

j¼1
R2

jk−
1

n kð Þ
� �2

:

ð9Þ

In the expressions in (9) for the variance v(k), the denominator
to the left of the summations is n(k) and not n(k) − 1 because the
simulation enumerates completely all n(k) relative abundances
(or spacings), not a random sample of them. The simulation
was independent for each k, that is, the uniformly distributed
pseudorandom points were generated afresh for each different k.

For small k (in the upper right corner of Fig. 1), the asymp-
totic variance (red circle) deviates slightly below or above the
variance of the simulation (blue x). For n(k) ≥ 19, from (7), the
difference is small since 2/(19 + 1) = 0.1.

The order statistics of relative abundance are defined as the
values of relative abundance arranged in order of increasing size,
with the least abundant species first and the most abundant spe-
cies last. The order statistics are written with parentheses around
the relevant subscript. Thus, the order statistics of relative abun-
dance in community k (or of spacings or of segment or interval
lengths) are 0 <R(1), k ≤R(2), k ≤… ≤R(n(k)), k. Like the sum of the
relative abundances, the sum of the order statistics of relative
abundance of all species in a community equals 1.

Empirical tests of the broken-stick model usually compare
the order statistics of the observed relative abundances of the
species in community k with the expected value of the order
statistics of relative abundance. According to the broken-stick
model (MacArthur 1957 and many others), the expected value
of the jth order statistic of relative abundance is

E R jð Þ;k
� � ¼ 1

n
1

n
þ 1

n−1
þ⋯þ 1

nþ 1− j

� �
; j ¼ 1;…; n kð Þ:

ð10Þ

Fig. 1 On log-log coordinates, for each k = 1,…,20, (m(k), v(k)) (blue x)
based on one independent realization and (1/n(k), 1/[n(k)]2) (red circle)
considering that necessarily m(k) = 1/n(k) and assuming v(k) = [m(k)]2

exactly. The number to the right of each blue x is n(k) = 2k
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For example, in a hypothetical community with n = 2 spe-
cies, the expected relative abundance of the less abundant
species is 1/4 and the expected relative abundance of the more
abundant species is 3/4. With three species, the expected rel-
ative abundances are, in increasing order, 1/9 = 2/18, 5/18,
and 11/18. With four species, the expected relative abun-
dances are 1/16 = 3/48, 7/48, 13/48, and 25/48.

To calculate the means and variances in Fig. 2, we replaced
each in Rjk in (8) and (9) with the expected order statistic
E(R(j), k) from (10). For small k (in the upper right corner of
Fig. 2), the asymptotic variance (red circle) is above the var-
iance of the expected values of the order statistics (blue x), but
for large n(k), the difference is small.

The empirical cumulative distribution function of the sim-
ulation and the empirical cumulative distribution function of
the expected order statistics both converge to the cumulative
distribution function of the broken-stick model for large num-
bers of species. Hence it is expected that Figs. 1 and 2 show
good agreement with the asymptotic theory for large numbers
of species or large samples.

Discussion and conclusions

The goal of this paper is to give an example of a mathematical
analysis of the connection between SADs and TL. Here, exact
calculations connect the broken-stick model of the relative abun-
dance of species (or “spacings” in statistics) and Taylor’s power
law (a power-law variance function in statistics and fluctuation
scaling in physics). We showed analytically that, for large num-
bers of species (or large samples of spacings), asymptotically the
relative abundances of the broken-stick model have variance
equal to the square of their mean; equivalently, the coefficient

of variation of relative abundance converges to 1. We confirmed
this result by simulations and exact numerical calculations.
Communities with as few as 19 species conformed closely to
the predicted asymptotic behavior.

The SAD of the broken-stick model asymptotically obeys
variance = a(mean)b with a = 1, b = 2, but observing that TL
holds with a = 1, b = 2 does not imply a broken-stick SAD.
Infinitely, many families of probability distributions give rise to
Taylor’s law with a = 1, b = 2 or with any other parameters
(Cohen 2020). For example, Cohen (2014b) showed that
Taylor’s law with b = 2 can (but need not necessarily) arise in
three different density-independent stochastic populationmodels:
a scalar discrete-time Markovian multiplicative growth model,
the discrete-generation Galton–Watson branching process, and
the continuous-time linear birth and death process. Giometto
et al. (2015) showed that for multiplicative growth models in
Markovian environments, if the duration of observation exceeds
a logarithmic function of the number of replicates, then the ex-
ponent of TL estimated from the replicates will be close to 2,
regardless of the exact exponent that mathematical analysis of the
underlying model would yield. For this class of models, a report-
ed sample exponent of 2 could be a statistical artifact of too few
observations. Other theoretical examples also lead to Taylor’s
law with exponent 2.

Another widely confirmed model of SADs is the lognormal
distribution or its discretized form, the Poisson lognormal distri-
bution (e.g., Baldridge et al. 2016). In an analysis of tornado
outbreaks, Tippett and Cohen (2016) showed that a family of
lognormal distributions can obey TL exactly with exponent 2,
approximately with exponent 4, or approximately with exponent
2 + 2/3, depending on how the parameters of the lognormal are
assumed to vary or covary. Other values of the TL exponent are
also possible for other relationships of the lognormal parameters.
This example shows that the broken-stick model is not the only
SAD to have a variance function given by TL.

On the other hand, not every SAD has a variance function
given by TL. One of the four SADs tested empirically by
Baldridge et al. (2016) is the negative binomial distribution
(NBD). The negative binomial distribution has two parame-
ters. If one of these parameters varies while the second param-
eter remains constant, the family of NBDs obeys TL with
exponent 1 (Cohen et al. 2016). But if the second parameter
varies while the first remains constant, then the variance is a
quadratic function of the mean and log variance is a strictly
convex function of log mean, so TL does not hold exactly,
though TL may sometimes be a plausible approximation
(Cohen et al. 2016).

These lognormal and NBD SADs show that the broken-
stick model is not the only SAD that can be consistent with
TL, and that not every SAD is consistent with TL. It is there-
fore desirable to find out whether and how other species-
abundance distributions are related to power-law or other var-
iance functions.

Fig. 2 On log-log coordinates, for each k = 1,…,20, (m(k), v(k)) (blue x)
based on the expected values of the order statistics (10) and (1/n(k), 1/
[n(k)]2) (red circle) considering that necessarilym(k) = 1/n(k) and assum-
ing v(k) = [m(k)]2 exactly. The number to the right of each blue x is
n(k) = 2k
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This paper’s demonstration of a theoretical link between
TL and the broken-stick SAD is part of a larger project of
exploring the connections of TL to the rest of ecological the-
ory, e.g., to Damuth’s law of allometry of population density
and body mass (Marquet et al. 2005; Cohen et al. 2012), to
stochastic multiplicative population growth models (Cohen
et al. 2013; Cohen 2013; 2014b), to abrupt change in a
smoothly changing environment (Cohen 2014a), to the para-
sitic mode of life and the negative binomial distribution
(Lagrue et al. 2015 Cohen et al. 2016), to models of age-
specific human mortality by Gompertz, Makeham, and Siler
(Bohk et al. 2016; Cohen et al. 2018), to the Gompertz model
of density dependence for rodent populations (Cohen and
Saitoh 2016; Saitoh and Cohen 2018), to estimation of fisher-
ies stocks to specified precision (Xu et al. 2019), to synchrony
(Reuman et al. 2017), to Chagas disease vector control (Cohen
et al. 2017), and beyond ecology even to the prime number
theorem in number theory (Cohen 2016). This exploration is
far from complete.

Acknowledgments I thank Roseanne Benjamin for assistance during this
work.

Appendix. Alternate proof that
variance/(mean)2→ 1 in the broken-stick
model

Gamma distribution

A random variable X ≥ 0 is defined to have the gamma distri-
bution with shape parameter k > 0 and scale parameter λ > 0,
and we write X=dΓ(λ, k), if its probability density function at
x ∈ (0,∞) is λke−λxxk − 1/Γ(k), where Γ(k) is the gamma func-
tion. The mean of Γ(λ, k) is E(Γ(λ, k)) = k/λ and its variance is
Var(Γ(λ, k)) = k/λ2. For fixed k and varying λ, the family of
gamma distributions {Γ(λ, k)| λ ∈ P ≠ ∅ , k fixed} obeys
Taylor’s law exactly with a = 1/k, b = 2 because, for every
λ, Var(Γ(λ, k)) = k−1[E(Γ(λ, k))]2. By contrast, for varying k
and fixed λ, the family of gamma distributions {Γ(λ, k)| k ∈ P
′ ≠ ∅ , λ fixed} obeys Taylor’s law exactly with a = 1/λ,
b = 1 because, for every λ, Var(Γ(λ, k)) = λ−1[E(Γ(λ, k))]. As
this example shows, in parametric families of distributions
with more than one parameter, the behavior of each parameter
must be specified explicitly when Taylor’s law is asserted to
hold.

Beta distribution

A random variable 0 < X < 1 is defined to have the beta distri-
bution with shape parameters k1 > 0, k2 > 0, and we write
X=dB(k1, k2), if its probability density function at x ∈ (0, 1) is
Γ k1 þ k2ð Þ= Γ k1ð ÞΓ k2ð Þ½ �f gx k1−1ð Þ 1−xð Þ k2−1ð Þ. Marshall and

Olkin (2007) graph the diverse forms of the exponential, gam-
ma, and beta probability density functions.

The mean and variance of the beta distribution are (Feller
1971, p. 50, II.4(c), Marshall and Olkin 2007, p. 485)

E B k1; k2ð Þð Þ ¼ k1
k1 þ k2

;

Var B k1; k2ð Þð Þ ¼ k1k2

k1 þ k2ð Þ2 k1 þ k2 þ 1ð Þ
h i

¼ EB k1; k2ð Þ 1−EB k1; k2ð Þð Þ½ �
k1 þ k2 þ 1ð Þ :

It follows that

CV2 ¼ Var B k1; k2ð Þð Þ
EB k1; k2ð Þ½ �2 ¼ k2

k1 k1 þ k2 þ 1ð Þ:

If k1 = 1, k2 = n − 1, then CV2 = (n − 1)/(n + 1). If k1 is any
positive constant and k2→∞, then CV2→ 1/k1, and in the
special case when k1 = 1, CV2→ 1.

Connections among exponential, gamma, and beta
distributions

The exponential, gamma, and beta probability distributions
are closely connected.

For λ> 0 and positive integer n, Γ(λ, k) is distributed as the
sum of k independently and identically distributed copies of
Exp(λ), i.e., if X1, X2, …, Xk are independently and identically
distributed as Exp(λ), then Sk≔X1 +X2 +… +Xk=dΓ(λ, k). As
immediate consequences, Γ(λ, 1)=dExp(λ), and if Γ(λ, k1) and
Γ(λ, k2) are independent, then Γ(λ, k1) +Γ(λ, k2)=dΓ(λ, k1 + k2).

Any function f of n > 0 real arguments x1,…, xn is defined
to be scale-free (or homogeneous of degree 0) if and only if,
for all c > 0 and all x1,…, xn, f(cx1,…, cxn) ≡ f(x1,…, xn). For
example, f(x, y) = x/y and f(x, y) = x/(x + y) for xy ≠ 0 are both
scale-free. If Xi=dΓ(λ, ki), i = 1, …, n, are independently dis-
tributed (but not necessarily identically, as kimay vary with i),
and if Sn ≔ X1 + X2 +… + Xn, then Sn¼dΓ λ;∑n

i¼1ki
� �

and any
scale-free function f(X1,…, Xn) of the Xi are independent
(Pitman 1937, pp. 216–217).

If Γ(λ, k1), Γ(λ, k2) are independent, then Γ(λ, k1)/[Γ(λ,
k1) + Γ(λ, k2)]=dB(k1, k2) (Çinlar 2011, p. 62).

Proof that variance/(mean)2→ 1.
By (3), for every j = 1, …, n(k), k = 1, …, K, we have

Rjk¼d
Γ λ kð Þ; 1ð Þ

Γ λ kð Þ; 1ð Þ þ Γ λ kð Þ; n kð Þ−1ð Þ ¼dB 1; n kð Þ−1ð Þ

where Γ(λ(k), 1) refers to the same exponential random vari-
able Exp(λ(k)) in the numerator and denominator, and where
Γ (λ (k ) , 1) and Γ (λ (k ) , n (k ) − 1) are independent .
Consequently,

Theor Ecol



Var Rjk
� �

E Rjk
� �
 �2 ¼ CV2of B 1; n kð Þ−1ð Þ ¼ n kð Þ−1

n kð Þ þ 1
→1 as n kð Þ→∞:

This completes the proof.
Incidentally, our argument also yields a proof of Feller’s

formula given above as Eq. (4). Specifically, if k1 = 1, k2 = n −
1, then the probability density function at x ∈ (0, 1) of B(1,
n(k) − 1) simplifies to {Γ(n(k))/[Γ(1)Γ(n(k) − 1)]}(1 − x)n(k) −
2 = (n(k) − 1)(1 − x)n(k) − 2. The survival function at t ∈ (0, 1) is
the integral of this probability density function from t to 1,
which is (4).
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