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Seasonality of Taylor’s law of fluctuation scaling in all-India
daily rainfall
Michael K. Tippett1* and Joel E. Cohen2,3,4

Here we show that the variance over time of all-India daily rainfall (AIR) can be related to the mean over time of AIR by a seasonally
varying power law. Outside of the peak monsoon months of July and August, AIR variance increases in proportion to a positive
power of mean daily rainfall. During July and August, monthly averages of AIR show little association with the corresponding
variances. This power-law relationship of temporal variance to temporal mean is known in biological sciences as Taylor’s law (TL)
and in physical sciences as fluctuation scaling. We explain the seasonal variation in TL qualitatively by independent and identically
distributed random sampling. Accounting for day-to-day correlation in AIR is sufficient to match quantitatively the observed power-
law behavior. Our findings provide a quantitative month-specific assessment of the variability of AIR that could prove useful for the
design of crop insurance and social safety nets for the large fraction of the population of the Indian subcontinent that depends on
rainfed agriculture.
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INTRODUCTION
The Indian monsoon is a major determinant of the freshwater
supply of the Indian subcontinent. Its variability from year-to-year
influences natural environments, agricultural production, food
prices, human migration from rural to urban areas, and economic
and political stability in the region.1 Predicting the date of onset
and the magnitude of precipitation of the Indian monsoon has
challenged meteorologists since the nineteenth century, and has
stimulated the development of novel statistical methods.2 Much
research has focused on seasonal and monthly averages of rainfall
although societal impacts are more closely related to rainfall that
occurs on shorter time periods.3 Understanding of the temporal
variability of the rainfall in the region remains incomplete.
“For some purposes averages are adequate; for other purposes

full data on their range of variation are indispensable.”4 The
relationship of variance to mean is called a variance function in
statistics and is called fluctuation scaling in physical sciences. Here
we examine the variance function of all-India daily rainfall (AIR).
Variance functions have been examined for annual, summer
monsoon, and monthly total rainfall across stations.5 We show
that this variance function is remarkably well approximated by a
seasonally varying power-law relationship:

varianceðset of observationsÞ ¼ a ´ ½meanðset of observationsÞ�b :

(1)

Several ecologists and statisticians, including Taylor,6 in the first
half of the twentieth century found that this power-law relation-
ship described remarkably well several spatial distributions of
insects and plants. Subsequently, the power-law form of the
variance function was named Taylor’s law (hereafter TL), and TL
has been confirmed for a very wide variety of data on the spatial
and temporal variability of hundreds of species, including human
populations,7 as well as physical, financial, and meteorological
phenomena.8–11

RESULTS
We found that TL is a useful simple approximation to the observed
variance function of AIR in two ways. Among days of the year from
January 1 to December 31, the mean and variance (over the 116
years 1901–2016) of AIR on each calendar date separately scaled
according to TL with exponent that was slightly less than one
(Fig. 1). A TL exponent of one is consistent with Poisson processes
with rates that vary from day to day of the year. The behavior here
is more complex, with hysteresis that is particularly evident
between spring and fall when mean values of AIR are similar but
variances are higher in fall.
Among years from 1901 to 2016, the monthly mean and

variance of AIR scaled according to TL with exponent that varied
by month (Fig. 2). This scaling for each month separately is a
hierarchical temporal TL: e.g., for January, the 116-year daily time
series was divided into month-long blocks (e.g., January 1901,
January 1902, etc.), and for each January of each year, the monthly
mean and monthly variance were calculated over the days within
that month.
The exponent b (the slope on the log–log coordinates in Fig. 2)

was statistically indistinguishable from zero in the peak monsoon
months of July and August. Consequently, monthly averages of
AIR during these peak monsoon months provided little informa-
tion about the corresponding variances. In all other months, b did
not fall significantly outside the interval [1, 2], as in many other
empirical tests of TL. Consequently, the coefficient of variation of
daily rainfall in any given month diminished, although the
variance increased, with increasing mean daily rainfall. After July
and August, the next lowest TL exponents were in the monsoon
onset and withdrawal months June and September with values of
1.32 and 0.726, respectively. A quadratic version of TL scaling (see
Methods) with negative quadratic coefficient fitted the data better
for the months of October and November, with the improvement
in fit being most evident for the years with least rainfall in those
months (Fig. 2).
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How can the dependence of the TL exponent b on calendar
month be understood? Stochastic multiplicative growth can
interpret TL.12 We tested (see Methods) the monthly averages,
variances, 10th percentiles, and 90th percentiles for linear and
quadratic trends during 1901–2016, and found no compelling
evidence for trends, so we rejected the stochastic multiplicative
growth model as an explanation for TL here.
The gamma distribution was previously used to fit wet-day

Indian station data.13 The fitted gamma distribution matched the
mean well in all months, overestimated July–September variances,
and underestimated (overestimated) the skewness in
December–March (June–November) (Fig. 3a–d). Random sampling
from a gamma distribution fitted to AIR with parameters that vary
by month had median TL exponent of 2 (Supplementary Fig. 7) as
predicted analytically.14 The gamma distribution failed to fit the
AIR data.
Random sampling of skewed distributions can interpret TL.14 In

that case, the TL exponent, denoted bCX15, is approximated by the
skewness of the data divided by its coefficient of variation (see the
Cohen-Xu formula in Eq. (3) of the Methods). The monthly
statistics of AIR showed that mean AIR was highest in July (Fig. 3a);
variance was highest in June and July (Fig. 3b); the coefficient of
variation was lowest in July and August (Fig. 3c); and the skewness
was highest in winter months and lowest in July and August
(Fig. 3d). Consequently, the seasonal variation of bCX15, computed
separately for each calendar month, qualitatively resembled the TL
monthly exponent of AIR but overestimated it for most months
(Fig. 4).
The validity of the bCX15 approximation for iid data was

confirmed by independent-day sampling (see Methods) of the
data, as 95% confidence intervals of the TL exponent of 1000
realizations of independent-day sampling included the estimates
from14. We interpret this result as a numerical confirmation of the
Cohen-Xu formula in Eq. 3 for iid data. On the other hand, we
interpret the result that the observed TL exponent is often outside
the 95% confidence intervals of the TL exponent of 1000
realizations of independent-day sampling as reason to reject the
null hypothesis of iid data.

We considered two ways in which the data violate the iid
assumption of the Cohen-Xu formula. The first is that data from
different days are dependent. The summer monsoon is famously
marked by “break” periods of 3–8 days of dry conditions and
“active” periods of 3–4 days of wet conditions.15 Temporal
autocorrelation (i.e., correlation from 1 day to the next or
neighboring days) has been documented in an AIR index during
the monsoon season.13 We confirmed that the AIR autocorrelation
was statistically significant for lag 1 on all days of the year, for lag
2 on most days of the year, and for particularly long lags in the
monsoon onset month of June and to a lesser extent during the
monsoon withdrawal months of September–November (Supple-
mentary Fig. 2a). The second way in which the data violate the iid
assumption of the Cohen-Xu formula is that data from different
years have different distributions. Seasonal totals of AIR tend to be
lower during El Niño years and higher during La Niña years.16,17

Differences in seasonal means can also be viewed as a form of
dependence since a low-AIR value observed today makes it more
likely that this month is a low-AIR month, which means a low-AIR
value is more likely tomorrow. We tested by ANOVA whether
averages of AIR computed over windows ranging from 3 to
31 days varied significantly from year to year. Year-to-year
differences in averages of AIR were statistically significant for
windows >7 days during most of the year, highest in early June
near the monsoon onset date, and also large during the monsoon
withdrawal months of September–November (Supplementary
Fig. 2b). Monsoon onset dates vary substantially from year to
year, and the standard deviation of the onset date is ~8 days.18

Having found two ways in which the data violate the iid
assumption of the Cohen-Xu formula, we designed sampling
strategies to test whether they are quantitatively sufficient to
account for the discrepancy between the observed TL exponents
and those of the Cohen-Xu formula. We used block sampling to
test the impact of autocorrelation up to 7 days on the TL
exponent. Block sampling represents random variation among
years and correlation in rainfall in segments of successive days
averaging just over 7 days in length (see Methods for details).
Confidence intervals for the TL exponent under block sampling
contained the ordinary least-squares (OLS) point estimates of the
TL exponent in all 12 months. We used tercile sampling to
measure the impact of different years having different means,
assuming that different days have independent amounts of
rainfall. The confidence intervals of the TL exponent b under
tercile sampling contained the OLS point estimates of the slope
from the daily AIR during 10 months (Fig. 4). In July and October,
the tercile sampling confidence intervals fell below the OLS point
estimates of the slope. We used tercile block sampling to test the
combined impact on the TL exponent of different years having
different mean rainfall and of autocorrelation in the rainfall of
successive days up to 7 days. Tercile block sampling gave
confidence intervals for the TL exponent b that contained the
OLS point estimates for all months. Unlike block sampling, tercile
block sampling allowed for inter-annual differences in the
monthly average. The variation during the annual cycle of
the monthly TL exponent b of AIR can be partially explained by
the different values of Niño 3.4 among years (Fig. 4). When years
were stratified into terciles according to the level of Niño 3.4, the
TL exponent agreed with that estimated from the daily AIR except
during January, March, and April, when the 95% interval from Niño
3.4 sampling fell (slightly) above the OLS point estimate of b. Block
sampling was the best explanation of the seasonality in b in the
sense that its intervals contained all point estimates and its
assumptions were minimal (Fig. 4).

DISCUSSION
We identified patterns in daily AIR not previously recognized and
explained them. We showed that, outside of the summer, each
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log–log coordinates. TL exponent b and 95% confidence interval
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curve results from LOESS (locally estimated scatterplot smoothing)
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month’s variance of daily rainfall varied across years approxi-
mately as a power function of each month’s mean of daily rainfall,
in accordance with TL. The exponent of TL varied seasonally from
values between 1 and 2 outside the monsoon season to values

statistically indistinguishable from zero during the months of peak
rainfall, July and August. The lack of TL scaling in summer months
means that monthly averages of AIR do little to constrain the
within-month variance of AIR. We documented the temporal
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Fig. 2 Mean (mm/day) and variance (mm/day)2 of all-India daily rainfall for each month 1901–2016, on log–log coordinates. Each panel is
a calendar month. The two-digit markers indicate the year with red for 2001–2016. Slopes of best-fit lines (blue dashes) and 95% confidence
intervals estimated by ordinary least-squares (OLS) for each calendar month are given in the titles. R2 values are in the left corner. Best-fit OLS
quadratic curves (green dashes) are shown for the months of October and November; for these months, the quadratic curve fit the data
statistically significantly better (at the 0.05 significance level) than the fitted linear model.
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variance, temporal skewness, and temporal autocorrelation of AIR
month by month and the inter-annual variation of AIR in random
blocks of days with mean length just over a week. We showed that
the variation by month of the TL exponent for AIR is accounted for
by dependence within random blocks of days sampled from a
skewed distribution across years, but is not well described by a
gamma distribution.
A question for future research is whether TL holds for

precipitation on smaller spatial scales. This issue is of particular
interest because societal impacts depend directly on rainfall at

specific locations rather than on a country-wide average. At least
for the summer monsoon, seasonal rainfall amounts at the sub-
divisional level are correlated with the all-India total, but the
association is not perfect.19 Summer monsoon rainfall time series
from sub-divisions that are near each other tend to be strongly
and positively correlated.20 We have examined the spatial
variation of the TL exponent for rainfall among days of the years
(analogous to the TL exponent near one in Fig. 1) and found a TL
exponent with coherent spatial variation and values between 1
and 2 (not shown). The linkages between the spatio-temporal
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Fig. 3 All-India daily rainfall by calendar month. a Mean, b variance, c coefficient of variation, and d skewness. Black error bars indicate the
95% intervals of the corresponding values for samples from a gamma distribution fitted by maximum likelihood to the monthly data.
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analytically.
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variability of the TL exponent for rainfall among years and rainfall
processes remain to be investigated.
The TL scaling found in AIR has potential forecast applications.

During non-monsoon months, mean is related to variance. If a
physics-based model or statistical model can predict the mean
rainfall, TL could be used to infer the variance. TL scaling also
provides a new diagnostic that could be used to assess the realism
of physics-based computer models that are used to make seasonal
forecasts and climate change projections, an application which is
similar to the use of TL scaling as a metric for selecting among
demographic projections.21

METHODS
Data
We used two observational data sets: the Niño 3.4 index and daily AIR. The
Niño 3.4 index is the average of tropical Pacific sea surface temperature
(SST) in the latitude-longitude box 5N-5S, 170W-120W and here was
computed from version 5 of the Extended Reconstructed Sea Surface
Temperature data set.22

AIR values over the period 1901–2016 were computed as area-weighted
averages of gridded (0.25∘ × 0.25∘) daily rainfall data.23,24 The interval from
1 January 1901 to 31 December 2016, included 42,369 days, of which
29 days fell on February 29. For some calculations, the latter 29 days were
omitted for computational convenience, leaving 42,340 calendar dates and
AIR values.
AIR expressed in mm/day and percentile rank showed strong seasonality

and regularity from year to year (Supplementary Fig. 1). The highest values
were found in the monsoon months of June–September. Prior to testing
TL, we checked AIR for trends. Specifically, we plotted, separately for each
month, the temporal mean, temporal variance, 10th percentile, and 90th
percentile of that month’s AIR over the 116 years (Supplementary Figs. 3–
6). We also estimated the parameters and 95% confidence intervals of the
ordinary least-squares linear and quadratic regressions of these four
monthly statistics as functions of year. Our null hypotheses were that the
slope of every linear regression, and the slope and quadratic coefficient of
every quadratic regression, were zero. Five of the null hypothesis models
were rejected at the nominal 5% level while 4.8= 0.05 × 2 × 12 × 4 cases
were expected to be nominally significant by random sampling alone, and
these cases of apparent significance were sporadically distributed across
months and models. We concluded that our tests found no evidence for a
trend across these 116 years in the monthly means, variances, 10th
percentiles, and 90th percentiles of AIR.

Taylor’s law
To describe TL more precisely, let Θ be an arbitrary (discrete or continuous,
finite or infinite) non-empty set with typical element θ. We interpret each θ
∈ Θ as the label of a probability distribution. Let X(Θ)≔ {X(θ): θ ∈ Θ} be a
family of nonnegative real-valued random variables with finite, positive
mean μ(θ) and variance σ2(θ) for each θ ∈ Θ, i.e., such that μ(θ)≔ E(X(θ)) ∈
(0, ∞) and σ2(θ)≔ E([X(θ)− μ(θ)]2) ∈ (0, ∞), where E denotes expectation.
Then we say that TL holds for the family X(Θ) if and only if there exist a
positive real constant a and a real constant b, both independent of θ ∈ Θ,
such that for all θ ∈ Θ, σ2(θ)= a[μ(θ)]b. Here the value of θ corresponds to,
or is the label of, a “set of observations” in Eq. (1). In our empirical example,
suppose that AIR values 1901–2016 are arranged in the form of a table
with 365 rows, one for each day of the year (neglecting February 29), and
116 columns, one for each year from 1901 through 2016. The first row
contains 116 January 1 values, and the last row contains 116 December 31
values (Supplementary Fig. 1). We constructed sets of observations based
on rows and based on columns. Taking each row to be a set of
observations gives 365 (neglecting February 29) means and variances, as
shown in Fig. 1. Here each θ labels a day of the year. Alternatively, taking
each column to be a set of observations gives 116 annual means and
annual variances, and each θ labels a year. Here we refined annual analysis
to monthly analysis. By taking the first 31 rows of each column to be a set
of observations, that is, each January’s collection of 31 days, we
constructed the scatter plots in as in Fig. 2a (and similarly for each other
month). In Fig. 2a, each θ labels the January of a particular year.
In theoretical examples, a Poisson distribution with mean θ ∈ Θ≔ (0, ∞)

has variance θ, so TL holds for this family of Poisson random variables with
a= 1, b= 1. An exponential distribution with mean θ ∈ Θ≔ (0, ∞) has

variance θ2, so TL holds for this family of exponential random variables
with a= 1, b= 2. The gamma distribution with shape parameter k > 0 and
scale parameter ξ > 0 has probability density function xk−1e−x∕ξ∕[Γ(k)ξk],
mean kξ, and variance kξ2. For fixed k and varying ξ, TL holds with a= 1∕k,
b= 2. For varying k and fixed ξ, TL holds with a= ξ, b= 1. This example
shows that the same family of distributions may give rise to different sets
of TL parameters a, b depending on which parameter(s) vary and which are
held constant.
By the strong law of large numbers and Slutsky’s theorem, if TL holds for

the moments of X(Θ), then asymptotically for large samples of observations
of each X(θ), (1) or equivalently

logðvarianceðset of observationsÞÞ ¼ b logðmeanðset of observationsÞÞ þ log α

(2)

must hold approximately for the sample means and sample variances. The
error term in empirical tests of (2), i.e., the deviation from exact agreement,
depends on X(Θ). Prior empirical tests of TL often assumed without testing
that the error term in empirical tests of (2) was independently and
identically distributed (iid) according to a normal distribution with constant
variance for all θ ∈ Θ. We found that the autocorrelation of the residuals in
Fig. 2 up to lag 20, separately for each of the 12 months, all fell within the
95% confidence intervals around no autocorrelation, except for 5
(sporadically) of the 240 values. Therefore we followed the convention
of assuming that the error term in empirical tests of (2) was iid according to
a normal distribution with constant variance for all θ ∈ Θ. We estimated
the TL exponent b and its 95% confidence intervals using ordinary least-
squares fits to the logarithms of means and variances of daily AIR.

Some models of TL
TL can arise from many distinct stochastic processes in addition to the
parametric families of distributions described above.8,11 We consider here
two models that make assumptions that we can test against the data. This
approach goes beyond fitting a power law to the empirically estimated
variance function by trying to identify underlying statistical processes. The
two models posit stochastic multiplicative growth12 and random sampling
of skewed distributions.14

The model of stochastic multiplicative growth assumes X(0) ∈ (0, ∞) with
probability 1, i.e., Pr{X(0) ∈ (0, ∞)}= 1, and for θ= 1, 2, …, X(θ)= Y(θ) ×
X(θ− 1), where the stationary ergodic stochastic process Y(⋅) satisfies
Pr{Y(θ) ∈ (0, ∞)}= 1 for all θ. Here the index θ labels discrete time, and Y(θ)
is the multiplicative growth rate of X(⋅) from time θ− 1 to θ. When Y(⋅) is iid
or Markovian, the mean and variance of X(θ) asymptotically grow or
decline exponentially, except in critical cases, and the TL exponent b
depends on the relation of the exponential growth rates of the mean and
the variance.12,25 An initial test of this model is to examine time series of
observations of X(θ) for exponentially increasing or decreasing trend. In the
absence of an asymptotically strictly increasing or strictly decreasing
exponential trend, this model does not hold.
Another simple model for the origin of TL assumes that all sampled

observations are iid from a fixed nonnegative distribution with finite
positive mean and variance and with finite non-zero skewness, and
observations are randomly allocated to blocks (sets of observations)
labeled θ= 1, 2, . . ., m.14 Asymptotically, when the number nθ of
observations in each block θ becomes large, the sample means and sample
variances of the blocks converge to TL with estimated exponent b that
converges in probability to the value given by the Cohen-Xu formula14

bCX15 ¼ γ1
CV

; (3)

where γ1 is the skewness and CV is the coefficient of variation (standard
deviation divided by mean) of the random variable. Here, blocks are
constructed using calendar months. For instance, January AIR values could
be grouped in blocks by year with θ= 1901, …, 2016 labeling the years,
and, for each of these blocks, with nθ= 31 observations (days). For gamma-
distributed data of the same shape (i.e., with fixed k), bCX15= 2 regardless
of the parameters of the gamma distribution.
The data would reject this “null” model (called “null” because it assumes

no mechanism other than iid random sampling) if the data were
dependent, or if there were significant differences among blocks of
observations, e.g., most obviously, if there were significant differences of
mean precipitation from month to month or from year to year when only a
single month is considered. Rejection of this model would indicate that
some other statistical process must be invoked to explain TL when a power
law is a good description of the variance function.
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Analysis of variance
Analysis of variance (ANOVA) tests for significant year-to-year differences in
monthly averages by comparing the between-month variance to the
within-month variance. Under the null hypothesis of independence and no
difference in means or variances, the between-month variance should
equal the within-month variance scaled by the number of days in the
month. In ANOVA, the test statistic F is

F ¼ between-month variance
1

W�1 within-month variance
; (4)

where W is the number of days in a month. Values of F far from 1 favor
rejection of the null hypothesis of no difference in means, assuming equal
variances. Here, we generalize that monthly analysis to averaging windows
of size W centered on each calendar day (Supplementary Fig. 2b). The
variance ratio F is

F ¼
1

Y�1

PY

y¼1

1
W

PW

d¼1
Rdy � 1

WY

PY

y0¼1

PW

d0¼1
Rd0y0

 !2

1
W�1

1
Y

PY

y¼1

1
W�1

PW

d¼1
Rdy � 1

W

PW

d0¼1
Rd0y

� �2 ; (5)

where Y is the number of years of data, here 116 (the first and last years are
lost owing to windows that extend into the previous year or into
the subsequent year), and Rdy is the rainfall in year y on day d of the
window centered on a given calendar day. In the case of Gaussian iid data,
F~ F(Y− 1, Y(W− 1)), and the critical value of F at the 1% level for the smallest
window size W= 3 is 1.45 and for the largest window size W= 31 is 1.34.
By F test, variance ratios were highly statistically significantly different

from one for all averaging windows centered on all days of the year
(Supplementary Fig. 2b); the smallest variance ratio was 2.79, which is
much higher than the critical values. The expected variance ratio for iid
Gaussian data is 1. Here significance testing based on critical values of the
F-distribution confirmed that the daily rainfalls were sequentially
dependent. The permutation test with block sampling accounts for the
relatively short autocorrelation previously detected and corresponds to the
null hypothesis of serially correlated (from day to day) but identically (from
year to year) distributed data.

Sampling
To identify factors such as dependence and year-to-year changes in
monthly means that might explain the observed behavior of the monthly
TL exponent b over the annual cycle, we constructed 12 × 116 artificial
months of pseudo rainfall (the same size as the AIR data) by sampling the
daily AIR in five ways described below. We then calculated the monthly
mean and monthly variance of pseudo rainfall and estimated the TL
exponent b as we did for the AIR data. For each sampling method, we
repeated the process of sampling and computing the TL exponent 1000
times. For each sampling method, we compared the TL exponent from the
AIR data with the 1000 values from the samples. If the TL exponent from
the AIR data fell outside the 2.5 to 97.5 percentiles of the 1000 values from
the sampled data, we rejected the model associated with the sampling
strategy.

1. Independent-day sampling preserves the day of the year. The
years are permuted randomly. For example, the pseudo rainfall on 1
January 1901, is chosen at random from the AIR on January 1 of all
years; and the same for every day and year. The pseudo rainfall on
29 February 1904 is chosen from other February 29’s in leap years
and from March 1’s in non-leap years. This sampling was used to test
the null hypothesis that all-India rainfall on a given day of a given
month is iid across years, and rainfall from different (even adjacent)
days is independent.

2. Block sampling is the same as independent-day sampling except
days in the same segment are drawn from the same year. Each 365-
day year is partitioned into 52 segments of random length. The start
dates of the 52 segments consist of the 12 dates 1 January, 1
February,…, 1 December, and of 40 dates chosen randomly without
replacement from the remaining 353 dates. The end date of each
segment is the day before the next start date. The average length of
the segments is just over 7 days. As a consequence of this
construction, no segment intersects with more than 1 month. The
pseudo rainfall for the first segment of 1901 is chosen at random
from one of the 116 years. For instance, if the first segment of 1901

were January 1–6, the January 1–6 AIR values from 1983 might be
chosen as the pseudo rainfall for the first segment of 1901. In the
same way, subsequent 1901 segments would then be populated
with values on the same days from randomly selected years. An
independent partitioning is used for 1902 and for each year of the
simulation. Block sampling was used to test the null hypothesis that
random intervals of AIR within a month are iid across years:
specifically that within each month, intervals containing a random
number of days less than 1 month are randomly sampled from all
years, allowing for correlation in rainfall in segments of successive
days averaging just over 7 days in length. Within each block, all the
autocorrelation of AIR is preserved. Across blocks, pseudo rainfall
values are independent. Consequently, block sampling gives within-
month autocorrelation which is slightly weaker than that in
Supplementary Fig. 2a and which is zero by construction at the
end of each month.

3. Tercile sampling is the same as independent-day sampling but all
days in a month are drawn from years in which the corresponding
month is in the same tercile category. The tercile category of a
month is determined by summing its daily AIR values and
comparing that sum to the sum for the same month in all other
years. For example, if January in a particular year falls in the lowest
tercile of summed January rainfalls, then, for that year, January 1 is
simulated by random sampling of the roughly one-third of January
1’s in all years in the lowest tercile; and likewise for January 2; and
likewise if January in a particular year falls in the middle tercile or
the highest tercile. To simulate 1 January 1901, the AIR on January 1
is chosen at random from all January 1’s of the years in the same
tercile as January 1901; while the simulated rainfall of 1 February
1901, is chosen at random from all February 1’s of the years in the
same tercile as February 1901, which may differ from the tercile of
January 1901. This sampling was used to test the null hypothesis
that all-India rainfall on a given day of a given month is iid across
years within the same tercile, allowing for differences among
terciles, and rainfall from different (even adjacent) days is
independent.

4. Niño 3.4 sampling is the same as tercile sampling except that the
pseudo rainfalls on all days in a given month are drawn from years
in which the corresponding month is in the same Niño 3.4 tercile as
the given month. The Niño tercile of a month is determined by
comparing its Niño 3.4 value to the Niño 3.4 value of the same
month in all other years. This sampling was used to test the null
hypothesis that all-India rainfall on a given day of a given month is
iid across years within the same Niño 3.4 tercile, allowing for
differences among terciles, and rainfall from different (even
adjacent) days is independent.

5. Block tercile sampling is block sampling with the additional
constraint that all segments in a month are drawn from years in the
same tercile category.

Block sampling with fixed block length introduces non-stationarity into
stationary data, because the joint distribution of adjacent values is not
invariant to shifts. For instance, suppose that a 7-day block were used, and
pseudo rainfall data were constructed by sampling January 1–7 from
random years and January 8–14 independently from other random years.
Such sampling would result in January 6 and 7 being dependent, and
January 7 and 8 being independent. Therefore, we used block sampling
with random block length to preserve day-to-day correlation in the pseudo
rainfall.26

Estimating the variance function: testing for linear and quadratic
trends
We estimated linear and quadratic versions of TL using OLS. The quadratic
version of TL27 has the form log variance ¼ a þ b logmeanþ
cðlogmeanÞ2. We judged the quadratic version of TL to be a better fit to
the data when the reduction in sum squared error was statistically
significant by F test at the 0.05 significance level.

Gamma distribution goodness of fit
Here we fitted a gamma distribution by maximum likelihood estimation to
AIR of each month separately, using all years of AIR data. A sample of the
same size as the AIR data was drawn from the gamma distribution with the
fitted parameters. Monthly means, variances, skewness, and TL exponents
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were computed for each month. This sampling was repeated 1000 times
and 2.5 to 97.5 percentiles were used to form the error bars in Fig. 3.

DATA AVAILABILITY
The gridded rainfall data are available from the India Meteorological Department
http://www.imd.gov.in/advertisements/20160219_advt_12.pdf. Version 5 of the
Extended Reconstructed Sea Surface Temperature data set is available from the
IRI Data Library http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/.
version5/.sst.
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Supplementary Information
Supplementary Figures 1–7.

1



Supplementary Figure 1. All-India daily rainfall 1901–2016 expressed in units of (a) mm/day and (b) percentile rank.
Percentile rank is relative to all the data.

2



Supplementary Figure 2. (a) Autocorrelation of all-India rainfall for each day of the year (x-axis) for lags 1–21 (y-axis).
(b) Variance ratio defined as the sample variance of the sample mean divided by the sample mean of the sample variance
multiplied by the length of the window (in days) centered on the day of the year for windows of length 3, 5, . . . , 31. Values in
panel (a) larger in magnitude than 0.187 (sample size 115; one year is lost because of windows that start in December and go
into the next year) are statistically significant at the 0.05 level and marked by a black dot. Values in panel (b) that are
statistically significant at the 0.05 level by permutation test with block sampling are marked by a black dot.

3



1920 1960 2000

0.5

1

1.5

[m
m
/d
ay
]

January averages

1920 1960 2000

0.5

1

1.5
[m
m
/d
ay
]

February averages

1920 1960 2000

0.5

1

1.5

[m
m
/d
ay
]

March averages

1920 1960 2000

1

1.5

2

[m
m
/d
ay
]

April averages

1920 1960 2000

1.5

2

2.5

3

[m
m
/d
ay
]

May averages

1920 1960 2000

4

5

6

7

8

[m
m
/d
ay
]

June averages

1920 1960 2000

6

8

10

[m
m
/d
ay
]

July averages

1920 1960 2000

6

7

8

9

10

[m
m
/d
ay
]

August averages

1920 1960 2000

4

5

6

7

8

[m
m
/d
ay
]

September averages

1920 1960 2000

1

2

3

4

[m
m
/d
ay
]

October averages

1920 1960 2000

0.5

1

1.5

2

[m
m
/d
ay
]

November averages

1920 1960 2000

0.5

1

1.5

[m
m
/d
ay
]

December averages

Supplementary Figure 3. Averages of January, February, . . . , and December daily AIR, 1901–2016, along with linear (red)
and quadratic (green) trend curves. Statistically significant trends are indicated by thick curves, i.e., only July’s quadratic
(green) trend curve differs significantly from a horizontal straight line in this figure.
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Supplementary Figure 4. Variances of January, February, . . . , and December daily AIR, 1901–2016, along with linear
(red) and quadratic (green) trend curves. Statistically significant trends in March are indicated by thick curves.
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Supplementary Figure 5. 10th percentiles of January, February, . . . , and December daily AIR, 1901–2016, along with
linear (red) and quadratic (green) trend curves. A statistically significant quadratic trend in January is indicated by a thick curve.
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Supplementary Figure 6. 90th percentiles of January, February, . . . , and December daily AIR, 1901–2016, along with
linear (red) and quadratic (green) trend curves. A statistically significant linear trend in March is indicated by a thick line.
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Supplementary Figure 7. Taylor exponent b by calendar month (gray bars) and error bars that indicate the 95% intervals of
the corresponding values for samples from a gamma distribution fitted by maximum likelihood to the monthly data.
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