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Abstract

We study the spatial and temporal variation of the human population in the United States

(US) counties from 1790 to 2010, using an ecological scaling pattern called Taylor’s law

(TL). TL states that the variance of population abundance is a power function of the mean

population abundance. Despite extensive studies of TL for non-human populations, testing

and interpreting TL using data on human populations are rare. Here we examine three types

of TL that quantify the spatial and temporal variation of US county population abundance.

Our results show that TL and its quadratic extension describe the mean-variance relation-

ship of county population distribution well. The slope and statistics of TL reveal economic

and demographic trends of the county populations. We propose TL as a useful statistical

tool for analyzing human population variability. We suggest new ways of using TL to select

and make population projections.

Introduction

Spatial and temporal distributions of human populations hold important information about

human societies and environments. City planning, business development, immigration policy,

and many other activities rely on knowledge about the spatial and temporal distribution of

people and their mobility [1–5]. Human population distributions in different areas are related.

For example, metropolitan areas with high population density require large and sustained sup-

plies of natural resources and products, which can affect the distribution of humans in neigh-

boring areas. Human population distribution interacts with the environment and its

resources, such as desertification [6] and biodiversity loss [7,8], and is affected by external con-

ditions such as climate change and other environmental shifts [9–12]. Studying the spatial and

temporal distribution of humans is a step towards describing and understanding such complex

social and ecological interactions.
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Human populations are not uniformly distributed in space or time, but depend on

resources (e.g., food, jobs, and weather) and social development (e.g., urban and rural).

Human population densities and numbers vary spatially and temporally. Specifically, the spa-

tial unevenness or "centralization" of the population distribution is commonly characterized

using two measures from economic theory: the Gini coefficient [13] and the Hoover index

[14]. Both measures quantify the dissimilarity between the population count and inhabited

area, and are intrinsically affected by the spatial scales used in the calculation. On the other

hand, temporal variation of the population distribution is often measured by the coefficient of

variation, which may vary with the mean population abundance. While these statistics have

their own caveats, they are useful tools of describing the variation patterns to understand

human behaviors (e.g., migration) and their impact on the environment.

Here we propose another measure to describe human population variation in space and

time: Taylor’s law (TL). TL is an ecological scaling pattern stating that the variance of species

abundance (measured by number of individuals, i.e., "count," or by count per unit area, i.e.,

"density") is a power function of the mean species abundance. TL holds when the logarithm of

the variance is well approximated as a linear function of the logarithm of the mean. The slope

of the log(mean)-log(variance) relationship equals the exponent of the power function from

the mean to the variance. For a given unit change in the log(mean) of population abundance,

TL’s slope equals the change in log(variance), which measures heterogeneity or scatter in the

distribution of population abundance.

TL has been confirmed for numerous biological taxa and non-biological variables [15,16].

Bliss [17], Fracker and Brischle [18], Hayman and Lowe [19] and Taylor [20] proposed and

showed empirically that a power law described well the variance of population count or popu-

lation density as a function of the mean population count or population density in multiple

samples. Taylor and colleagues [21–24] confirmed the empirical validity of TL using large-

scale sample data of aphid, moth, and bird species across the United Kingdom. Most but not

all empirical estimates of TL’s slope fell between one and two (see Fig 2 in [25]). TL has also

been verified for non-biological variables such as crime incidents [26], stock illiquidity [27],

prime numbers [28], and tornado outbreaks [29]; in this last case, the slope exceeded four. Sev-

eral models have been proposed to study the biological or statistical mechanisms of TL [30–

32]. A unified explanation of TL is still lacking and probably does not exist, given the diversity

of empirical situations where TL applies. Tests of TL against human population data are few

[16,21,33–36]. Only Taylor et al. [21] (p. 392) and Taylor [16] (p. 392–394) analyzed the

United States (US) population data. Other works tested TL using human population data from

Norway, Italy and the whole world.

The slope of TL has three advantages for measuring the variability of sets of human popula-

tion distributions. First, TL’s empirical and theoretical roots in ecology can suggest possible

mechanisms of human population distribution. Second, TL’s slope measures the relative

change in log(variance) with respect to a unit increase in log(mean) and, when TL is valid, the

slope is independent of the average population abundance. This feature overcomes the den-

sity-dependence of other measures (e.g., coefficient of variation and the relative dispersion

index from the mean-variance relationship of negative binomial distribution [37]) and makes

TL ideal for comparisons of multiple populations across time or space. Third, TL can be tested

under various spatial and temporal structures of population distribution. Such flexibility

makes TL’s slope a consistent measure for spatial and temporal variation.

Our goal here is to give a detailed empirical example, based on the history of the human

population of the United States, to highlight for demographers and human ecologists the use-

fulness of TL as a statistical tool for analyzing human population variation. While previous

studies have confirmed the usefulness of TL for human and nonhuman populations, we
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provide the first comprehensive analysis of different types of TL using US county populations,

and we interpret the results from a demographic perspective.

We use TL to characterize the spatial and temporal variation of US county population

count and population density reported in the decennial censuses from 1790 to 2010. We use

counties as the basic spatial units. As the subordinate administrative divisions of the states,

counties allow us to study the within-state population distribution and change. Although anal-

yses of TL can be done similarly for populations from larger or smaller spatial scales (e.g., states

and census tracts), they are not included in this paper due to the length limit. We test empiri-

cally three types of TL: spatial hierarchical TL, spatial TL and temporal TL. Then we focus on

the interpretation and implication of statistics derived from these tests. We address the follow-

ing specific questions: 1. What type of variation is quantified by each TL? 2. Is TL valid for all

censuses and all states? If yes, what demographic information can be extracted from TL and

what is the usefulness of such information? If not, what causes the exception(s)? 3. What are

the similarities and differences in TL patterns between the US and other countries?

Materials and methods

Data

County data downloaded from NHGIS (National Historical Geographic Information System)

Data Finder on 19 July 2018 [38] provide county population count (number of individuals

residing in a county) in the decennial censuses from 1790 to 2010. County area (in square

meters) and coordinates (latitude and longitude of the geographic centroid of each county)

come from the 2000 TIGER/Line shapefile from 1790 to 2010. We join 23 shapefiles (one for

each census), which specify each county’s area, with the county population count data using

the identifier "GISJOIN." GISJOIN is the GIS Join Match Code unique for each county that

ever existed between 1790 and 2010. A "GISJOIN" code starts with letter "G" and is followed by

two digital parts, the three-digit NHGIS Integrated State Code (STATENH) and the four-digit

NHGIS Integrated County Code (COUNTYNH). For example, Autauga County of Alabama

has GISJOIN code "G0100010," where "010" and "0010" are its state and county codes respec-

tively. We denote states by their initials and territory by letter "T" (e.g., ND for North Dakota,

NMT for New Mexico Territory and UTT for Utah Territory). Using these joined data, we

define and calculate the population density (individuals km-2) of a county in a census as the

ratio of county population count divided by the county area (in square kilometers, or km2).

County population count and density are the two abundance measures used in this work.

The data include 50 states and 31 state-equivalents (29 historical territories, Puerto Rico

(PR), and District of Columbia (DC)) and 4,128 counties and county-equivalents (e.g., par-

ishes, boroughs, independent cities, and municipalities), historical or existing. We do not dis-

tinguish between a state and its equivalents, or between a county and its equivalents, and refer

to them uniformly as state or county, respectively. On average, the number of counties per

state is about 51 (� 4,128/81) during the entire census period (1790–2010). The largest county

(in area) that ever existed is Northern District of AKT in the 1880 census (899,538.5 km2). The

smallest county (in area) is Winchester City of VA in the 1900 census (0.28 km2). The most

populous county is Los Angeles County of CA in the 2010 census (9,818,605 individuals). 72

combinations of counties and censuses report zero individuals. The densest county is New

York County of NY in the 1920 census (38,279.08 individuals km-2). Only 62 combinations of

counties and censuses have zero individuals per km2 because 10 of the 72 combinations with

zero individuals lack area measurements. We do not correct the early censuses for their omis-

sion or misrepresentation of native American and slave populations.
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Three types of Taylor’s law

Testing Taylor’s law (TL) requires a hierarchical structure of the spatial and temporal popula-

tion distribution. First, the mean and the variance of population abundance must be calculated

at the lower spatial or temporal levels. Second, the calculated means and variances are grouped

by the higher spatial or temporal levels to detect their relationship. US census data contain two

nested spatial levels (state and county) and one temporal level (census), allowing us to test

three types of TL.

If we calculate the spatial mean and spatial variance of county population abundance over

counties within each state and each census, and find a linear relationship between the logarith-

mic mean and logarithmic variance across states within each census, it yields a spatial hierar-

chical TL. If we use the same set of means and variances and observe a linear relationship

between their logarithms across censuses within each state, it corresponds to a spatial TL. Last,

if we calculate the temporal mean and temporal variance of county population abundance

over censuses within each county and each state, and find a linear relationship between their

logarithms across counties within each state, it corresponds to a temporal TL.

Both the spatial hierarchical TL and the spatial TL examine the spatial distribution of popu-

lation abundance of counties within each state, across states and across censuses respectively.

Specifically, the spatial hierarchical TL analyzes the spatial heterogeneity (variation across

states) of the spatial mean and the spatial variance of county population abundance. A greater

slope of the spatial hierarchical TL means a greater degree of change between states in the spa-

tial variance of county population abundance with respect to its spatial mean. This comparison

is useful for the study of urbanization or "centralization" pattern in human geography [39].

The spatial TL analyzes the variation across censuses of the same means and variances. A

greater slope of the spatial TL represents a greater degree of change between censuses in the

spatial variance of county population abundance for a given unit of change in its spatial mean.

This comparison can be used to study the temporal pattern of county population distribution

for each state.

The temporal TL analyzes the variation across counties of the temporal mean and temporal

variance of county population abundance. A greater slope in the temporal TL means a greater

degree of change between counties in the temporal variance of county population abundance

with respect to its temporal mean. This comparison can help us identify counties that experi-

ence high or low fluctuation in population abundance over time within a state.

Repeated testing of the same type of TL can extract further information about variation in

the county population distribution. Specifically, repeated testing of the spatial hierarchical TL

for each census allows us to detect a temporal trend of urbanization or counterurbanization.

Repeated testing of spatial TL and temporal TL for each state provides a new way of classifying

states according to their characteristic county population temporal dynamics.

Statistical analysis of Taylor’s law

We define the number of spatial or temporal units used in calculating a single mean-variance

pair as the number of sampling units, denoted by n. We denote the number of pairs of finite

positive mean and finite positive variance used in a single test of TL as N. In the main text we

test each TL with N� 5, with no constraint on the number n of sampling units used to calcu-

late a mean-variance pair. In S1 File we repeat the analysis of all three types of TL when the

number of sampling units for each mean-variance pair is at least 15 (n� 15) and the number

of pairs of finite positive mean and finite positive variance is at least five (N� 5) (following the

recommendation in [40]).

Fluctuation scaling of US county populations
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We test whether log(variance) is an approximately linear function of log(mean) using ordi-

nary least-squares (ols) linear and quadratic regressions. Throughout log = log10. For each test

of TL (for a unique combination of TL type and abundance measure), we first fit log(variance)

as a linear function of log(mean) using the ols linear regression:

logðvarianceÞ ¼ aþ b logðmeanÞ þ �; ð1Þ

where the TL parameters a and b are respectively the intercept and slope of TL, and � is the

normal error with zero mean and constant variance. Following [21] (p. 388, their Eq 14), we

also fit the same log(mean)-log(variance) pairs using the ols quadratic regression to examine

the curvilinearity between log(mean) and log(variance):

logðvarianceÞ ¼ cþ d logðmeanÞ þ e½logðmeanÞ�2 þ �: ð2Þ

Here e is the quadratic coefficient. If e> 0, the nonlinearity between log(mean) and log(vari-

ance) is convex. If e< 0, the nonlinearity is concave. We call the mean-variance relationship

described by Eq 2 the quadratic TL (QTL). If b of Eq 1 is significantly nonzero and e of Eq 2 is

not significantly different from zero, then we do not reject the hypothesis that TL is an appro-

priate model for the mean-variance relationship. If e of Eq 2 is significantly different from

zero, then we prefer QTL over TL as a description of the mean-variance relationship. Neither

TL nor QTL is suitable for describing the relationship when the linear and quadratic regres-

sions are not significant. Here "significance" means that the p-value of the corresponding

parameter or regression is less than 0.05 or, after Bonferroni correction, the p-value is less than

0.05/number of tests. We obtain the point estimate, standard error and p-value of each coeffi-

cient parameter of TL (a and b) and QTL (c, d and e), and the p-value of the overall regression

of QTL. We also record the adjusted coefficient of determination (adj. R2) for each ols regres-

sion. We perform regression diagnostics for the linear and quadratic models and present the

results in the S1 File.

For each type of TL, we use one minus adj. R2 (1-adj. R2) of the best-fitting model (TL or

QTL) to measure the dissimilarity of county distribution among spatial and temporal units rel-

ative to the standard of TL or QTL. We may think of 1-adj. R2 as one measure of the degree to

which a log(mean)-log(variance) pair deviates from the linear or quadratic function (Eqs 1

and 2). Higher values of 1-adj. R2 correspond to larger deviations, indicating a greater degree

of dissimilarity. Specifically, for the spatial hierarchical (Q)TL and spatial (Q)TL, 1-adj. R2

reflects the dissimilarity (from the (Q)TL standard) in the spatial distribution of county popu-

lation abundance among states within each census and among censuses within each state,

respectively. For the temporal (Q)TL, 1-adj. R2 measures the dissimilarity (from the (Q)TL

standard) in the temporal distribution of county population abundance among counties

within each state.

All figures and statistical analyses, including summary statistics and ordinary least-squares

regressions, are done in R [41]. The data that support the findings of this study are openly

available in IPUMS National Historical Geographic Information System: Version 13.0 [Data-

base] at http://doi.org/10.18128/D050.V13.0.

Results

Results when county population count is used as the abundance measure are in the main text.

Results regarding county population density are in the S1 File.

Fluctuation scaling of US county populations
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Empirical confirmation of TL

Visually, the spatial hierarchical TL describes well the relationship between mean and variance

of county population count (S1 Fig). Spatial TL, temporal TL and their quadratic forms are

adequate models for the corresponding mean-variance relationship in a majority of states (S2

and S3 Figs). In only a few states neither the linear nor the quadratic model depicts the mean-

variance relationship. Regression analysis confirms these observations (Table 1). The quadratic

model (Eq 2) is favored over the linear model (Eq 1) in more than half of the states for the spa-

tial TL, and in one quarter of the states for the temporal TL. The linear model is preferred in

more states after Bonferroni correction of regression significance. Variability in the slope of

spatial hierarchical TL is smaller than that of the spatial and temporal TL (Fig 1). Quadratic

coefficients of all three types of QTL are close to zero on average, with average values 0.045 for

the spatial hierarchical QTL, -0.12 for the spatial QTL, and -0.14 for the temporal QTL, but

there are extreme outliers for each form of QTL.

Specifically, regardless of Bonferroni correction, spatial hierarchical TL (Eq 1) is not

rejected in favor of its quadratic form (Eq 2) in all but one of the 23 censuses (S1 and S2

Tables). In the 1790 census, neither the linear nor the quadratic model is superior to the con-

stant model (S1 and S2 Tables), indicating no consistent relationship between the means and

the variances of county population across states during the early settlement of US.

Spatial TL and QTL are tested in 55 states (S3 and S4 Tables). Without Bonferroni correc-

tion, in two of the 55 states (AKT and NMT), neither the linear nor the quadratic model

describes the mean-variance relationship well (regression p-value>0.05). In the other 53 states,

spatial TL is not rejected in 23 states and spatial QTL is not rejected in 30 states. With Bonfer-

roni correction, neither the spatial TL nor the spatial QTL describes the mean-variance rela-

tionship well in five states (AKT, AZT, NMT, ND and UTT). In the other 50 states, spatial TL

is not rejected in 32 states and spatial QTL is not rejected in 18 states.

Temporal TL and QTL are tested in 64 states (S5 and S6 Tables). Without Bonferroni cor-

rection, neither the temporal TL nor the temporal QTL describes adequately the mean-vari-

ance relationship in four states (AKT, ART, FLT and WYT). In the remaining 60 states,

temporal TL is not rejected in 44 states and temporal QTL is not rejected in 16 states. With

Bonferroni correction, neither the temporal TL nor the temporal QTL describes adequately

the mean-variance relationship in 11 states (AKT, AZT, ART, DC, FLT, IDT, MIT, MTT,

NMT, RI and WYT). In the remaining 53 states, temporal TL is not rejected in 46 states and

temporal QTL is not rejected in seven states.

For the spatial hierarchical TL, the mean-variance pairs are scattered in the 1790 census (S1

Fig). In particular, in DE (lowest point) and VA (highest point) we see the largest deviations

Table 1. Summary of the regression statistics of the Taylor’s law (TL) (Eq 1) and quadratic Taylor’s law (QTL) (Eq 2) models using county population count.

measure model number of tests average proportion of p-

value < 0.05

proportion of p-

value < 0.05/number of

tests

n N adj. R2 of Eq 1 adj. R2 of Eq 2 b in Eq 1 e in Eq 2 b in Eq 1 e in Eq 2

count spatial hierarchical (Q)TL 23 51 42 0.76 0.76 22/23 (96%) 0/23 (0%) 22/23 (96%) 0/23 (0%)

spatial (Q)TL 55 53 17 0.88 0.90 53/55 (96%) 30/55 (55%) 49/55 (89%) 17/55 (29%)

temporal (Q)TL 64 12 53 0.80 0.81 60/64 (94%) 16/64 (25%) 53/64 (83%) 7/64 (11%)

b denotes the slope estimate of TL and e denotes the quadratic coefficient estimate of QTL. n represents the number of spatial or temporal units used to calculate a

mean-variance pair. N represents the number of mean-variance pairs in a single testing of TL or QTL. The proportion of significantly nonzero regression coefficients

was calculated without (significance level equals 0.05) and with (significance level equals 0.05/number of tests) Bonferroni correction separately.

https://doi.org/10.1371/journal.pone.0226096.t001
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from the fitted regression lines. The scatter disappears in the subsequent censuses. The vio-

lation of spatial TL or QTL of county population count in AKT and NMT is due to their

drastic territorial changes preceding their transition to statehood (S2 Fig, S3 and S4 Tables).

Among all the 50 current states, ND shows a unique mean-variance relationship: in most

censuses the average county population count changes slightly while the variance continues

to rise. The reason is that, during most of the 20th century (after the large increase in popu-

lation count during the earlier censuses due to the farmers migrating into ND), ND people

moved from agricultural lands to large cities, especially young adults emigrating from rural

areas [42]. This internal migration caused an uneven population distribution among ND

counties. The temporal TL and QTL are rejected in states with either large territorial

changes (AKT) or short census periods (two censuses available in ART, FLT and WYT) (S3

Fig, S5 and S6 Tables).

Fig 1. Point estimate of regression coefficient of Taylor’s law (TL) and quadratic Taylor’s law (QTL). b is the slope estimate of the spatial hierarchical TL (SHTL),

spatial TL (STL) or temporal TL (TTL). e is the quadratic coefficient of the spatial hierarchical quadratic TL (SHQTL), spatial quadratic TL (SQTL) or temporal

quadratic TL (TQTL). Dark dashed line shows the average value for the corresponding estimate.

https://doi.org/10.1371/journal.pone.0226096.g001
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Population growth trend and pattern illustrated by TL and QTL

TL and QTL of all three types reveal useful information about the population dynamics of US

counties. First, the slope of the spatial hierarchical TL fluctuates before the 20th century and

reaches a record high in 1910 (Fig 2), reflecting the early boundary changes and the population

centralization caused by urbanization in the 19th century. Since the 1910 census, the slope has

been declining. This decline occurred because suburbanization (or counterurbanization) or

the emergence of new metropolitan areas across US counties during the 20th century led to

increasing spatial evenness in county population count as a function of increasing mean

county population count. Compared to other types of TL, the spatial hierarchical TL shows

smallest variability in its slope, ranging from 1.5 to 2.5. If the trend in slope over the past five

decades continues, the slope will likely fall in the 2020 census.

The spatial TL exhibits great differences among states. With Bonferroni correction, TL is

the superior model in 31 current states. The slope of TL is not different from two in AK, AR,

Fig 2. Time series of (a) the slope estimate of spatial hierarchical TL and of (b) the quadratic coefficient estimate of the spatial hierarchical quadratic TL. The

solid circle represents the point estimate and the vertical bar shows the corresponding 95% confidence interval.

https://doi.org/10.1371/journal.pone.0226096.g002
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CO, HI, IA, MA, MT, OK, OR and WY, and is significantly greater than two in AL, CA, FL,

GA, ID, IL, IN, KY, ME, MI, MN, MO, NV, NH, NC, OH, TN, TX, VT, VI and WI (Fig 3A).

The higher slopes reflect the greater degree of centralization in county population distribution.

With Bonferroni correction, the spatial QTL depicts the mean-variance relationship better

than TL in 18 current states. With the exception of SD, the quadratic coefficient (e in Eq 2) is

significantly smaller than zero in AZ, CT, DE, LA, MD, NJ, NM, NY, PA, RI, UT and WA, and

greater than zero in KS, MS, NE, SC and WV (Fig 3C). The former group contains states with

declining centralization over time (i.e., log(variance) grows slower than linearly with log

(mean)), probably due to counterurbanization during the past century. The latter group

includes states with increasing centralization over time (i.e., log(variance) grows faster than

Fig 3. US maps showing the slope (a and b) and the sign of quadratic coefficient (c and d) of the spatial (Q)TL (a and c) and temporal (Q)TL (b and d). Sign of the

quadratic coefficient is determined by the coefficient significance after Bonferroni correction. Specifically, "zero" is defined when the p-value of the quadratic coefficient

(e of Eq 2) is greater than 0.05/number of tests (55 for spatial (Q)TL and 64 for temporal (Q)TL), meaning that the coefficient is not significantly different from zero.

"minus" is defined when the p-value is smaller than 0.05/number of tests and the point estimate of e is less than zero. "plus" is defined when the p-value is smaller than

0.05/number of tests and the point estimate of e is larger than zero. This US map is made with the package fiftystater [43] in R. fiftystater is free software that can be

redistributed and/or modified under the terms of the GNU General Public License as published by the Free Software Foundation, version 3.

https://doi.org/10.1371/journal.pone.0226096.g003
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linearly with log(mean)), suggesting rapid metropolitan development in these states. The

mean-variance relationship in some states may be better fitted by a cubic function than by a

linear or quadratic function (e.g., AR, IN and MS in S7 Fig).

Temporal TL and QTL reveal differences in the temporal variability of population count

among counties within a state. Since most states have counties with small population change

over the censuses, counties with great population fluctuation will dictate the slope of temporal

TL. With Bonferroni correction, the temporal TL is the better model compared to the temporal

QTL in 41 current states. The slope is greater than two in AL, AR, CA, CO, GA, ID, IL, IN,

KY, LA, MI, MO, NY, NC, OR, PA, SC, TN, UT, VI, WV and WI, and not different from two

in AK, AZ, CT, HI, ME, MD, MA, MN, MS, NV, NH, NJ, NM, ND, OK, SD, VT, WA and WY

(Fig 3B). A higher slope implies that some counties experience greater population change.

With Bonferroni correction, the temporal QTL is the better model compared to the temporal

TL in seven current states. The quadratic coefficient is smaller than zero in FL and OH, and

greater than zero in IA, KS, MT, NE and TX (Fig 3D).

Spatial and temporal dissimilarity of county population distribution

According to the spatial hierarchical TL, except the 1790 census, the dissimilarity (deviation

from TL) of county spatial population distribution among states is highest in the 1900 census

(1-adj. R2 = 0.34), followed by the 1810 and 1800 censuses (with 1-adj. R2 equaling 0.29 and

0.28 respectively) (S1 and S2 Tables). This observation may be attributed to large wave of inter-

national immigration to the US at the beginning of the 20th century and the geographic

change during the earlier census periods. The 1870 census corresponds to the smallest across-

state dissimilarity (deviation from TL) among all censuses with 1-adj. R2 of 0.13. The dissimi-

larity in the most recent 2010 census ranks 12th among all 23 censuses.

The spatial TL (or QTL) points to IA, OK and MT as the three states with the largest dissim-

ilarity (deviation from TL or QTL) of county spatial population distribution among censuses

(with 1-adj. R2 equaling 0.26, 0.18 and 0.15 respectively) (S3 and S4 Tables), which may be

explained by various economic and political events in their state history. First, IA experienced

two distinct periods of population change. From 1850 to 1900, farming and coal industries

brought many out-of-state immigrants to IA who contributed to rapid population growth

[44]. From 1910 to 2010, IA experienced gradual change in its economic sectors, mainly from

agriculture to manufacturing operations, which led to small population growth and population

redistribution from rural to urban areas due to within-state migration. During 1930s-1950s,

OK’s population declined (decreasing mean) and lost farming populations to urban areas

(increasing variance) due to the Dust Bowl [45]. In MT, the Enlarged Homestead Act in 1909

(a law passed by the US to promote dryland cultivation in MT) seems to have contributed to

the spatial evenness of county population distribution, as reflected by the drop-off in variance

in the 1910 census. In the other 50 states where spatial TL or QTL describes the data well

(without Bonferroni correction), 45 states have a 1-adj. R2 lower than 0.1.

Using the temporal TL (or QTL), the three states with the largest dissimilarities (deviation

from TL or QTL) are MS, SD and OK, with 1-adj. R2 equaling 0.35, 0.31 and 0.29 respectively

(S5 and S6 Tables). In MS, the relatively small change in population of several counties (e.g.,

Jefferson Davis County, Hinds County and Benton County) increases the overall dissimilarity

of temporal distribution of county population among counties. In SD, the presence of histori-

cally short-lived counties (e.g., Sterling County and Schnasse County) and two counties (Min-

nehaha County and Pennington County) with fast-growing cities (Sioux Falls and Rapid City)

contribute to the across-county dissimilarity. In OK, the dissimilarity is driven by Oklahoma

County and Tulsa County, sites of the state’s two most populous cities (Oklahoma City and
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Tulsa). HI, CA and OR have the least dissimilarity among current states, with 1-adj. R2 equal-

ing 0.01, 0.02 and 0.04 respectively.

Discussion

Comparison of TL patterns in the US and other countries

To the authors’ knowledge, all prior works on TL for human population abundance examined

the spatial hierarchical or spatial (Q)TL. In addition, most studies focused on testing the spatial

TL at the national level, instead of at the subnational level as done in the current work. (The

exceptions in [16,33] are described below.) Nevertheless, the comparison of spatial TL across

countries provides useful insights about changes in population distributions.

Taylor et al. [21] were the first to test a spatial TL against human population census data.

Despite omitting details about the data and fitting method, they observed that the spatial TL

described the relationship of mean and variance of male population abundance across multiple

censuses, with a slope significantly greater than two (2.04±0.01). This result probably describes

variation among states, not counties, and is consistent with our finding: at the county level

within states, in most states the spatial TL slope was greater than two (Fig 1). Independently,

using the US county-level data, Taylor [16] examined the spatial hierarchical TL (which he

called "ensemble" TL) and observed the same temporal trend of its slope as in our Fig 2A (see

Fig 11.6 in [16]).

Two independent works studied the spatial TL using human population density outside the

US. Cohen et al. [34] tested a spatial TL for the mean and variance of Norwegian county

(equivalent to the US state) population densities across 33 years. They also repeated the same

analysis using Norwegian region (equivalent to US region or division) and municipality

(equivalent to the US county) population densities. They found that the spatial TL pattern

depends on the temporal scale and reflects the population change caused by economic devel-

opment. This finding is consistent with our findings that the spatial TL can reveal different

development stages of county populations within a state (see Demographic insights from

observed TL patterns below).

Using the methods of Cohen et al. [34], Benassi and Naccarato [33] tested a spatial TL for the

mean and variance of Italian regional (equivalent to US divisional) population densities across

41 years. Both studies used three different weighting methods (equally weighted, areally weighted

and population weighted) to calculate the set of spatial means and spatial variances. Since the

areally weighted means and variances of population density are equivalent to the equally

weighted means and variances of population count (
P

densityi �
areai
area ¼

P counti
areai
�
areai
area ¼

P
counti

area ),

we compare our results to the spatial TL of population density under areal weighting [33,34].

The spatial TL slope is greater than two for Norwegian county (or region or municipality) popu-

lation densities and less than two for Italian region population densities. These cross-country

and cross-state comparisons suggest that the spatial TL slopes reflect the different patterns of

change in the spatial population distribution.

Benassi and Naccarato [33] also studied the spatial TL subnationally for each of the three

Italian macro-geographical areas (North, Centre, South and Island, equivalent to US regions).

A spatial mean and a spatial variance of population density were calculated across the prov-

inces (equivalent to US states) within each area. Using the seemingly unrelated regression

method, they found that the spatial TL slope was smaller in the North area than in the South

area. The authors attributed this observation to the steady influx of international immigration

to the North, the less-developed economic condition of the South, and the internal migration

from South to North. Comparing the state-level slopes of spatial and temporal TL among US
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regions shows that the South has the highest median slope (Fig 4). These observations reflect

the similarity of regional characteristics in economic development and migration between the

US and Italy [46–48]. They also indicate the usefulness of spatial TL in reflecting economic

and demographic patterns.

Our analysis shows that the spatial TL is not the only relation between the mean and vari-

ance of spatial population distribution of US counties. The spatial QTL in multiple states

reflects a different evolution of spatial population distribution. Other works that tested spatial

TL using the Norwegian [34] and world [35] population density have also documented curva-

ture in the mean-variance relationship.

Demographic insights from observed TL patterns

TL quantifies the variability of the spatial or temporal distribution of county population abun-

dance in relation to the mean county population abundance. We show that the observed TL

pattern and slope can identify economic, demographic, and political events. The insights

derived from TL thus can help government and policy makers to plan economic and demo-

graphic development at local or regional levels. To illustrate this, we summarize and distill the

main points from our results.

The temporal trend in the slope of the spatial hierarchical TL classifies the US county popu-

lation distribution dynamics into two periods. During the 19th century, the US frequently

acquired land and established states, causing fluctuation in the slope. In addition, the industrial

revolution propelled population urbanization, leading to an overall increase in the slope start-

ing 1820. The territorial boundaries of the contiguous US became stable after the state of Ari-

zona was added as the 48th state in 1912 (before Alaska and Hawaii in 1959). During the 20th

century, suburbanization and counterurbanization were the dominating factors that shaped

population distribution [49–53]. In recent decades, the formation of megalopolises enhanced

the connectivity between urban areas [54,55]. These factors together contribute to the decrease

of the spatial hierarchical TL slopes. The spatial hierarchical TL does not indicate a "clean

break" of US population distribution around 1970 compared to previous decades [56,57].

The spatial TL and spatial QTL reveal a continuum of patterns in the log(mean)-log(vari-

ance) relationship of county population distribution: convexity (or superlinearity), linearity,

and concavity (or sublinearity) (Fig 5A). States showing a convex relationship are likely in

their early developmental stage, experiencing fast growth in their metropolitan areas. States

showing a concave relationship have probably passed the early developmental stage and

entered a period when suburbanization or counterurbanization leads to a more evenly distrib-

uted county population. The cubic pattern observed in some of the early states corroborates

this claim. States with a linear relationship are probably in the stage where both centralization

and decentralization are occurring in multiple areas simultaneously within the state. These

illustrative examples are selected from a continuum of variation; they do not represent distinct

categories.

The temporal TL and temporal QTL reflect the spatial heterogeneity of counties’ temporal

population distribution, since the linearity or curvature of temporal variances as a function of

temporal means is largely determined by the most populous county in a state (Fig 5B). When

the most populous county exhibits higher temporal fluctuation in population abundance

(vibrant county), the mean-variance relationship is convex. A county with large time-averaged

population that experiences small population change over time (a hibernating county) will

produce a concave relationship. The linearity in the relationship could describe counties with

intermediate population change over time, in either less vibrant county (TL slope> 2) or

hybrid county (TL slope = 2).

Fluctuation scaling of US county populations
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What demographic factors determine the values of the TL slope? Our analysis here does not

provide a direct answer. Cohen et al. [34] used a stochastic multiplicative population growth

model to predict the slope of a spatial hierarchical TL at large time. They found that the size of

the slope is analytically related to the population growth pattern: slope> 2 for supercritical

population (population abundance increases on average) and slope< 2 for subcritical popula-

tion (population abundance decreases on average). Our current work shows that the slope of

the spatial hierarchical TL is less than two in recent censuses, implying that the average county

population is losing population under the assumption of multiplicative growth. This claim is

contradicted by the finding that population gain is still the main trend for a majority of US

counties in the past century [58]. A plausible explanation for such a discrepancy is that the

observed TL slope cannot be predicted solely by multiplicative demographic events (e.g., birth

Fig 4. Comparison of the slope of spatial TL (a) and temporal TL (b) across four regions (Midwest, Northeast, South and West) of the US. The overall comparison

is tested by the Kruskal-Wallis test and each pairwise comparison is done by the Wilcoxon rank sum test. The number above each pair shows the corresponding p-value.

The three horizonal bars in each box plot, from top to bottom, represent the third quartile (Q3), median (Q2), and first quartile (Q1) respectively. The upper and lower

whiskers are defined respectively as min(max(slope), Q3+1.5�(Q3-Q1)) and max(min(slope), Q1-1.5�(Q3-Q1)). Outliers (denoted by dots) denote slope values that are

greater than Q3+1.5�(Q3-Q1) or smaller than Q1-1.5�(Q3-Q1).

https://doi.org/10.1371/journal.pone.0226096.g004
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and death), but may be substantially affected by additive processes such as internal migration

and international immigration. The demographic interpretation of the values of the TL slope

deserves further research.

Other uses of TL in demographic research

This work gives a comprehensive analysis of TL for US human population data at the county

level and shows the multifaceted uses of TL in extracting important socioeconomic and demo-

graphic signals. In this subsection, we address two questions. First, is the widespread (though

not universal) agreement of county population distribution with TL a result of intrinsic char-

acteristics of human populations or a purely statistical consequence of random sampling from

some underlying distribution? Second, can TL be used to construct and select among alterna-

tive demographic projections?

First, Cohen and Xu [32] predicted TL parameters using random samples of probability dis-

tributions. They showed that TL’s slope is proportional to the skewness of a distribution, when

sampled observations are identically and independently distributed. Given the strong temporal

and spatial autocorrelation in the US census data (see S1 File), the simple random sampling

model by Cohen and Xu alone cannot explain TL for human population data. It is therefore

necessary to construct regression models capable of incorporating the spatial and temporal

structure of US county populations to analyze the statistical mechanisms of TL in this context.

Alternatively, it is possible to build mathematical models to study the impact of birth, death,

and migration on observed TL patterns [25,59]. The interactions between demographic sto-

chasticity and data structure, and their contributions to TL, remain an important topic for

future research.

Second, Xu et al. [36] used the spatial TL to select the most plausible projections of Norwe-

gian human population, based on the similarity of TL slopes between data and projections.

They found that the short-term population projections selected by TL agreed most closely with

Fig 5. Temporal mean-temporal variance relationships on log-log scale. These illustrative examples are selected from a continuum of variation; they do not represent

distinct categories. (a) States showing sublinear (superlinear) increase in log(spatial variance) as a function of log(spatial mean) are defined as decentralizing

(centralizing) states, compared to the balancing states where log(spatial variance) grows linearly with log(spatial mean). (b) States are classified by the temporal

fluctuation of county population count of their most populous (on average) counties: hibernating county (county with the least temporal fluctuation), hybrid county

(county with intermediate temporal fluctuation), less vibrant county (county with large temporal fluctuation) and vibrant county (county with the largest temporal

fluctuation).

https://doi.org/10.1371/journal.pone.0226096.g005
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the recent data. Their method is purely empirical and statistical, and does not rely on any

assumptions regarding population growth or migration. Their approach can be used for the

US census data studied here. In addition to the spatial TL used by Xu et al. [36], the current

work points to the possibility of selecting the most plausible population projection(s) using

multiple TLs and QTLs. This multiplicity of approaches can be useful in case one type of TL

fails to distinguish among several projections (as happened in [36]). For example, when multi-

year state-level projections are provided, one could test and compare the parameters of spatial

and temporal TL (or QTL) between data and projections. If multi-year county-level projec-

tions are available, one could use the spatial, temporal, and spatial hierarchical TL together to

select among alternative projections.

Another potential application of TL in demographic research is to project population distri-

butions based on TL parameters estimated from historical data. Tweedie [60], Jørgensen [61],

Kendal and Jørgensen [62,63] and many other papers have explored various probability distri-

butions that follow TL either exactly or asymptotically. If TL and appropriate parametric mod-

els can be further confirmed for human population counts or densities, then one can estimate

parameters of one or several parametric probability distributions from the historical data and

construct (and test) the associated abundance distribution. If multiple censuses are available,

one can predict the TL parameters based on their historical trend and construct corresponding

population distribution projections. This method can be tested using populations at different

spatial scales (e.g., states, counties, census tracts). This approach would offer a novel but still

untested way of making population projections based on the temporal or spatial population

distribution in historical data described by TL.
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