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Abstract
One of the most widely verified empirical regularities of ecology is Taylor’s power law of fluctuation scaling, or simply Taylor’s law
(TL). TL says that the logarithm of the variances of a set of random variables or a set of random samples is (exactly or approxi-
mately) a linear function of logarithm of themeans of the corresponding random variables or random samples: logvariance = log a +
b logmean, a > 0. Ecologists have argued about the interpretation of the intercept log a and slope b of TL and about what the values
of these parameters reveal about the underlying probability distributions of the random samples.We show here that the form and the
values of the parameters of TL and of any other variance function (relationship of variance to mean in a set of samples or a family of
random variables) say nothing whatsoever about the underlying probability distributions of the random samples (or random
variables) other than that they have finite mean and variance. Specifically, given any real-valued random variable with a finite
mean and a finite variance, and given any variance function (e.g., TL with specified intercept log a and slope b), we construct a
family of random variables with probability distributions of the same shape as the probability distribution of the given random
variable (i.e., that are the same up to location and scale, or in the same “location-scale family”) and that obeys the given variance
function exactly (e.g., TL exactly with the given intercept log a and slope b). Every variance function can be produced by the
location-scale family of any random variable with finite positive mean and finite positive variance.We illustrate some consequences
of these findings by examples (e.g., for presence-absence sampling in agricultural pest control).

Keywords Taylor’s power law . Variance function . Presence-absence . Exponential dispersion model . Tweedie distribution .

Power law . Bartlett’s variance function . Negative binomial distribution

Introduction

The mean and the variance of the abundance of organisms are
central concerns of basic and applied ecology, including agri-
culture, fisheries, forestry, and conservation. The development
of statistical methods for analyzing agricultural experiments in
the early twentieth century led to models of the relation of the

variance to the mean of abundance. Such a relationship of
variance to mean is now known as a variance function.

It has long been known that the Poisson distribution, a
common model of “purely random” counts, has a mean equal
to its variance. In multiple samples from Poisson distributions
with different means and variances, if X(λ) is a Poisson-
distributed random variable with a mean and variance equal
to λ, then a plot of the variance Var(X(λ)) = λ as a function of
the mean E(X(λ)) = λ on log-log coordinates for varying
values of λ will have a slope equal to 1, and therefore, a log-
log plot of the sample variance against the sample mean, for
samples from Poisson distributions with varying values of λ,
will have a slope that approximates 1 with increasing preci-
sion as the sample sizes increase.

In a study of insecticide tests in the laboratory and in the
field, Bartlett (1936, p. 193) wrote: “In practice, however, it
has been observed that a better fit for the variance is often
obtained if we write” variance = b1 · mean + b2 · mean2, bi >
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0, i = 1, 2. We call this relationship Bartlett’s law (BL). BL
includes the variance function variance =mean of the Poisson
distribution as the special case b1 = 1, b2 = 0. BL also includes
as a special case the variance function variance =mean + k ·
mean2, k > 0 (e.g., Taylor 1961, p. 732, his eq. (1)) of the
negative binomial distribution, in one way of parameterizing
that distribution. Taylor (1961, p. 732) and others noticed that
“Unfortunately k is not always independent of [the mean] m.”

In an early example of what later came to be known as
Taylor’s law (TL, sometimes called Taylor’s power law of
fluctuation scaling; the best review is Taylor 2019), namely,
log variance = log a + b log mean, a > 0, Bliss (1941) ob-
served that his data on the distribution of Japanese beetle
larvae had slopes b > 1. These slopes rejected the family of
Poisson distributions as a possible model of the distributions
of abundance.

Widely diverse views have been expressed concerning the
interpretation of the slope of b in empirical applications of TL
(Taylor 1961; Eisler et al. 2008; Taylor 2019). While it is true
that a family of Poisson distributions implies b = 1, some ecol-
ogists have been tempted to assume, conversely, that if a log-
log plot of the sample variance as a function of the sample
mean, for a set of samples with differing sample means, has a
slope approximating 1, then the underlying distribution of
observations is Poisson. That this assumption is false appears
not to be widely known.

Here we show, much more generally, that the form and the
values of the parameters of TL and of any other variance
function say nothing whatsoever about the shape of the un-
derlying probability distributions of the random samples (or
random variables) other than that they have a finite mean and
variance. Specifically, given any real-valued random variable
with a finite mean and a finite variance, and given any vari-
ance function (e.g., TL with specified intercept loga and slope
b), we construct a family of random variables with probability
distributions of the same shape as the probability distribution
of the given random variable (i.e., that are the same up to
location and scale, or in the same “location-scale family”)
and that obey the given variance function exactly (e.g., TL
exactly with the given intercept log a and slope b). Every
variance function can be produced by the location-scale fam-
ily of any random variable with finite positive mean and finite
positive variance. We illustrate some theoretical and practical
consequences of these findings by examples.

Results

We consider real-valued random variables X, Y, Z, real con-
stants a > 0, bi, i = 1, 2, …, c, d ≠ 0, and a real parameter p in
any non-empty subset of the positive real line (0,∞).

We say that X, Y have the same distribution up to location
and scale, and we write X~Y, if and only if, for some c, d ≠ 0, X

has the same distribution as c + dY. This relation is reflexive,
symmetric, and transitive. Therefore ~ partitions all probabil-
ity distributions into equivalence classes with respect to ~. For
example, all normal distributions have the same distribution
up to location and scale. Likewise, all uniform distributions on
finite intervals of the real line have the same distribution up to
location and scale. Discrete distributions require attention. A
Poisson distribution assigns positive probability to every non-
negative integer and nowhere else. If Y is a discrete distribu-
tion that assigns positive probability to every non-negative
integer and nowhere else, then c + dY assigns positive proba-
bility to S = {c + nd| n = 0, 1, 2,…}. S may not be the set of
non-negative integers andmay contain no integers at all. Thus,
a Poisson distribution has the same distribution up to location
and scale as infinitely many distributions that are not Poisson
distributions, but all these distributions have the same shape as
a Poisson distribution.

Taylor’s law and its polynomial generalizations

Definition 1 (Taylor’s law and quadratic Taylor’s law). A fam-
ily of random variables {X(p)| p ∈ P ≠∅} with parameter p in
any non-empty set of possible parameter values P is said to
obey Taylor’s law (TL) if and only if 0 < E(X(p)) <∞, 0 <
Var(X(p)) <∞, and there exist real constants a > 0 and b such
that, for all p ∈ P,

log Var X pð Þð Þ ¼ log aþ b log E X pð Þð Þ: ð1Þ

A related but different form of TL holds for non-negative
random variables with infinite mean and variance (Brown
et al. 2017).

A family of random variables {X(p)| p ∈ P ≠∅} with pa-
rameter p in any non-empty set of possible parameter values P
is said to obey a quadratic Taylor’s law (QTL, from Taylor
et al. (1978, p. 388, their eq. (14)) if and only if 0 < E(X(p))
<∞, 0 < Var(X(p)) <∞, and there exist real constants a > 0 and
b1, b2 such that, for all p ∈ P,

log Var X pð Þð Þ ¼ log aþ b1log E X pð Þð Þ þ b2 log E X pð Þð Þð Þ2: ð2Þ

Theorem 1 Let Z be any real-valued random variable with EZ
≔ μ ∈ (0,∞), VarZ ≔ σ2 ∈ (0,∞). Let a, b1, b2 be any real num-
bers such that a > 0. Then there exists a family of random
variables {X(p)| p ∈ P ⊂ (0,∞)} such that QTL (2) holds for
the chosen a, b1, b2 and X(p)~Z for every p ∈ P. When b2 =
0, TL (1) holds for the chosen a, b = b1.

Proof. Define q ¼ − 1
b1þ2b2

and for each p ∈ P, define

X pð Þ:¼paq þ p
b1
2 þb2 Z−μð Þ=σ: ð3Þ
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ThenX(p)~Z for all p ∈ P because X pð Þ ¼ paq−p
b1
2þb2μ=σ

h i
þ

p
b1
2þb2=σ

h i
Z ¼ cþ dZ wi th c ¼ paq−p

b1
2 þb2μ=σ; d ¼ p

b1
2þb2=σ.

Since E((Z − μ)/σ) = 0, we have EX(p) = paq. Taking loga-
rithms of both sides gives logEX(p) = log p + q log a or

log p ¼ log EX pð Þ−q log a: ð4Þ

Also since Var((Z − μ)/σ) = 1, we have

VarX pð Þ ¼ 0þ Var p
b1
2 þb2 Z−μð Þ=σ

� �

¼ pb1þ2b2Var Z−μð Þ=σ½ � ¼ pb1þ2b2 :

Taking logarithms of the left and right members and using
(4) and the definition of q gives

log VarX pð Þ ¼ b1 þ 2b2ð Þlog p ¼ b1 þ 2b2ð Þ log EX pð Þ−q log a½ �
¼ b1 þ 2b2ð Þlog EX pð Þ−q b1 þ 2b2ð Þlog a
¼ logaþ b1log EX pð Þ þ b2 log EX pð Þð Þ2:

ð5Þ

The first and last members of these equalities (5) are QTL
(1) for the chosen a, b1, b2.

Generalization of Theorem 1 Let Z be any real-valued random
variable with EZ ≔ μ ∈ (0,∞), VarZ ≔ σ2 ∈ (0,∞). Let a, bi, i =
1, 2,… be any real numbers such that a > 0. Then there exists
a family of random variables {X(p)| p ∈ P ⊂ (0,∞)} such that

logVar X pð Þð Þ ¼ logaþ ∑∞
i¼1bi logE X pð Þð Þ½ �i (“polynomial

Taylor’s law” or PTL) holds for the chosen a, bi, i = 1, 2, …
and X(p)~Z for every p ∈ P.

Proof. Define

q ¼ − ∑∞
i¼1ibi

� �−1
; r ¼ 1

2
∑∞

i¼1ibi
� �

: ð6Þ

Thus −2qr = 1. For each p ∈ P, define

X pð Þ≔paq þ pr Z−μð Þ=σ: ð7Þ

Then as in the prior proof, logp = log EX(p) − q log a and
VarX(p) = p2r so

log VarX pð Þ ¼ 2r log EX pð Þ−qlog að Þ

¼ ∑∞
i¼1ibi

� �
log EX pð Þ þ log a

¼ log aþ ∑∞
i¼1bi ilog EX pð Þð Þ

¼ logaþ ∑∞
i¼1bi log EX pð Þð Þi:

ð8Þ

Bartlett’s law and its polynomial generalizations

Definition 2 (Bartlett’s law; Bartlett 1936). A family of ran-
dom variables {X(p)| p ∈ P ≠∅} with parameter p in any non-
empty set of possible parameter values P is said to obey

Bartlett’s law (BL) if and only if 0 < E(X(p)) < ∞, 0 <
Var(X(p)) <∞, and there exist real constants bi > 0, i = 1, 2,
such that, for all p ∈ P,

Var X pð Þð Þ ¼ b1E X pð Þð Þ þ b2 E X pð Þð Þ½ �2: ð9Þ

Theorem 2 Let Z be any real-valued random variable with EZ
≔ μ ∈ (0,∞), VarZ ≔ σ2 ∈ (0,∞). Let bi > 0, i = 1, 2. Then there
exists a family of random variables {X(p)| p ∈ P ≠∅} such
that BL (9) holds for the chosen bi > 0, i = 1, 2 and X(p)~Z
for every p ∈ P.

Proof. For each p ∈ P, define

X pð Þ:¼pþ pb1 þ p2b2�
1
2 Z−μð Þ=σ:

h
ð10Þ

Then X(p)~Z for all p ∈ P by the same elementary calcula-
tion as in Theorem 1. Since E((Z − μ)/σ) = 0, we have

E(X(p)) = p. Since Var((Z − μ)/σ) = 1, we have VarX pð Þ ¼ 0

þVar pb1 þ p2b2½ �12 Z−μð Þ=σ
� �

=pb1 + p2b2 = b1E(X(p)) +

b2[E(X(p))]
2, which is BL (9) for the chosen bi, i = 1, 2.

Generalization of Theorem 2 Let Z be any real-valued random
variable with EZ ≔ μ ∈ (0,∞), VarZ ≔ σ2 ∈ (0,∞). Let bi ≥ 0,
i = 1, 2, … be any real non-negative numbers, at least one of
which is positive. Then there exists a family of random vari-
ables {X(p)| p ∈ P ≠∅} such that, for every p ∈ P, X(p)~Z and

VarX pð Þ ¼ ∑∞
i¼1bi EX pð Þ½ �i (“polynomial Bartlett’s law” or

PBL) holds for the chosen bi, i = 1, 2, … .
Proof. For each p ∈ P, define

X pð Þ≔pþ ∑∞
i¼1bip

i� �1
2 Z−μð Þ=σ: ð11Þ

Then, as before, for all p ∈ P, we have X(p)~Z and
E(X(p)) = p since E((Z − μ)/σ) = 0. Since Var((Z − μ)/σ) = 1,

w e h a v e VarX pð Þ ¼ 0þ Var ∑∞
i¼1bip

i
� �1

2 Z−μð Þ=σ
� � ¼ ∑∞

i¼1bip
i

¼ ∑∞
i¼1bi EX pð Þ½ �i, which is PBL for the chosen bi, i = 1, 2,….

Arbitrary variance function

Definition 3 (variance function; Bartlett 1947, p. 39, his Eq.
(1)). A positive-valued function f : (−∞,∞)→ (0,∞) is said to
be the variance function of a family of random variables
{X(p)| p ∈ P ≠∅} with parameter p in any non-empty set P
of possible parameter values if and only if, for all p ∈ P,
Var(X(p)) = f(EX(p)). (The domain of f is the entire real line
to allow for cases where EX(p) < 0.)

Theorem 3 Let Z be any real-valued random variable with
finite expectation EZ ≔ μ ∈ (−∞, ∞) and finite positive
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variance VarZ ≔ σ2 ∈ (0,∞). Let f : (−∞,∞)→ (0,∞) be any
function. Then there exists a family of random variables

{X(p)| p ∈ P ≠∅}, namely, X pð Þ≔pþ ffiffiffiffiffiffiffiffiffi
f pð Þp

Z−μð Þ=σ, such
that, for every p ∈ P, X(p)~Z (i.e., every member X(p) has the
same distribution as Z up to location and scale) and
Var(X(p)) = f(EX(p)), i.e., f is the variance function of the fam-
ily {X(p)| p ∈ P ≠∅}.

Proof. Given f, Z, define, for every p ∈ P, X pð Þ≔pþffiffiffiffiffiffiffiffiffi
f pð Þp

Z−μð Þ=σ: Then X(p)~Z and EX(p) = p and VarX(p) =
f(p)Var((Z − μ)/σ) = f(p) = f(EX(p)).

Theorems 1 and 2 are obviously special cases of Theorem
3. They are nevertheless useful and worth stating because they
demonstrate the relevance of Theorem 3 to cases most familiar
to pure and applied ecologists.

To illustrate an application of Theorem 3, we give an alter-
nate proof of Theorem 1 in the special case of Theorem 1
where b1 = b, b2 = 0, which is TL. The power-law form of
TL, equivalent to TL (1), is:

Var X pð Þð Þ ¼ a E X pð Þð Þ½ �b: ð12Þ

So TL is the variance function f(p) = apb, a > 0, p > 0. Let Z
be any real-valued random variable with finite expectation EZ
≔ μ ∈ (−∞,∞) and finite positive variance VarZ ≔ σ2 ∈ (0,∞).
Then X pð Þ≔pþ ffiffiffiffiffiffiffiffiffi

f pð Þp
Z−μð Þ=σ ¼ pþ

ffiffiffiffiffiffiffi
apb

p
Z−μð Þ=σ sat-

isfiesEX(p) = p andVarX(p) = apb · 1. SinceEX(p) = p, we have
VarX(p) = a[EX(p)]b, which is the power-law form of TL (12).

Because this result holds for any such Z, TL can give
no information about the shape of the underlying prob-
ability distribution.

Discussion

Example 1: Poisson distributions

The family of Poisson distributions {X(p)|0 < p < ∞ } satisfies
Var(X(p)) =E(X(p)) = p, which is TL (1) or (12) with a= b = 1.
The converse is false: TL (1) with a= b= 1 in no way implies

that the data are Poisson or “randomly” distributed. To see why,
choose a = b = 1 in TL (1). Let Z be any real-valued random
variable with mean EZ ≔ μ ∈ (0, ∞) and variance VarZ
≔ σ2 ∈ (0,∞). Then X pð Þ ¼ pþ ffiffiffi

p
p

Z−μð Þ=σ obeys TL (1)
with exactly the same intercept and slope as the family of
Poisson distributions but every X(p) has the same distribution,
up to location and scale, as the arbitrarily chosen Z.

Example 2: Two-point distributions

We consider four families of random variables {X(p)| p > 0}
that take only two values, 0 and an upper value p > 0 (Table 1).
Here the upper value p serves as the parameter of each family
of distributions.

For any fixed π ∈ (0, 1), families 1 and 2 both have identical
parameters of TL, namely, a =π(1− π), b= 2. But the fraction of
observations that are positive is π in family 1 and is 1 − π in
family 2. This dramatic contrast (when π ≠ 1/2) between families
1 and 2 (same TL parameters, different probabilities of being
equal to 0) shows that the parameters of TL cannot be used to
infer the proportion of infested plants, as some have desired to do
in agricultural pest control (e.g., Wilson and Room 1983). For
example, if π = 0.01, then in large samples, approximately 99%
of observations in family 1 are 0 (uninfested) while in family 2
only 1% of observations are 0 (uninfested). Because it is not
possible to infer the prevalence of infestation of plants by insect
pests, for example, from the intercept and slope of TL, more
detailed analysis of each sample is required.

Wilson and Room (1983, p. 51, their eq. (7)) derived a
formula for the proportion of infested cotton plants based on
the sample mean and the sample variance of an assumed neg-
ative binomial distribution of the number of insects per plant.
They then (in their eq. (8)) used TL to replace the sample
variance with a power function of the sample mean,
overlooking the problem that, in their parameterization of
the negative binomial distribution, the variance function of a
family of negative binomially distributed random variables is
strictly convex on log-log coordinates, not linear on log-log
coordinates, and is therefore not compatible with TL (Cohen
et al. 2016, pp. 3–4; see proof in supplementary materials).

Table 1 Four families of two-
point distributions that take only
two values, 0 and p > 0 with pos-
itive probability, with positive
means and positive variances, and
the parameters of Taylor’s law
(TL) where TL is applicable. Here
π is a probability, 0 < π < 1

Family 1 2 3 4

Upper value p > 0 Parameter p Parameter p p = μ2/(μ − 1) p = μ2

Pr{X(p) = 0} 0 < 1 − π < 1 0 < π < 1 1/μ 1 − 1/μ
Pr{X(p) = p} 0 < π < 1 0 < 1 − π < 1 1 − 1/μ 1/μ

E(X(p)) pπ (1 − π)p μ > 1 μ > 1

E(X2(p)) πp2 (1 − π)p2 μ3/(μ − 1) μ3

Var(X(p)) π(1 − π)p2 π(1 − π)p2 μ2/(μ − 1) μ2(μ − 1)
TL a π(1 − π) π(1 − π) Not exactly TL Not exactly TL

TL b 2 2 →1 as μ→∞ →3 as μ→∞
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Unfortunately, Taylor (2019, p. 467, his eq. (14.6)) repeated
(without giving its source) this unreliable formula of Wilson
and Room (1983).

Families 3 and 4 show that not all two-point distributions
obey TL exactly for all values of μ > 1, and when TL de-
scribes the variance-mean relation asymptotically, the param-
eter b may be greater or less than 2.

Example 3: 0 < b < 1

Theorem 1 applies to TL for any a > 0 and all finite real b, in
particular, when 0 < b < 1. Consequently, as Cohen (2014, p.
33) noted, Tweedie distributions and exponential dispersion
models do not include all distributions that obey TL, because
0 < b < 1 is impossible for Tweedie distributions and exponen-
tial dispersion models (Jørgensen 1987, p. 133, Theorem 2;
Jørgensen 1997, p. 130, his Table 4.1). This result greatly
extends a single, very specific example of stochastic multipli-
cative population dynamics in a Markovian environment with
0 < b < 1 given by Cohen (2014, p. 33). Theorem 1 shows that
TL with 0 < b < 1 is compatible with the location-scale equiv-
alent class of any random variable with finite positive mean
and finite positive variance.

Example 4: b < 0

Theorem 1 applies to TL when b < 0. Fujiwara and Cohen
(2015) simulated stochastic stage-structured density-de-
pendent models of exploited fish populations. When
density-dependence was overcompensatory, for certain pa-
rameter values, TL with a negative slope was an excellent
approximation to the variance-mean relationship (Fujiwara
and Cohen 2015, p. 8, their Fig. 4(b,c)). Theorem 1 shows
that TL with a negative slope is compatible with an arbi-
trary family of probability distributions with a positive
mean and positive variance.

Conclusion

Taylor’s law, Bartlett’s law, and other variance functions are
widely applicable but not magically universal summaries of
relations of variance to mean. They are extremely useful for
statistically transforming data for ANOVA, evaluating projec-
tions, designing more efficient sampling, and other purposes.
But Taylor’s law, Bartlett’s law, and every other variance func-
tion provide no shortcut to understanding the underlying

distributions of abundance, and the distributions of abundance
provides no shortcut to understanding the mechanisms (sto-
chastic or deterministic) that generate the distributions of
abundance (e.g., Cohen 1968). Each requires analysis.
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