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Abstract

Taylor’s law (TL) originated as an empirical pattern in ecology. In many sets of samples
of population density, the variance of each sample was approximately proportional to
a power of the mean of that sample. In a family of nonnegative random variables,
TL asserts that the population variance is proportional to a power of the population
mean. TL, sometimes called fluctuation scaling, holds widely in physics, ecology,
finance, demography, epidemiology, and other sciences, and characterizes many classical
probability distributions and stochastic processes such as branching processes and birth-
and-death processes. We demonstrate analytically for the first time that a version of TL
holds for a class of distributions with infinite mean. These distributions, a subset of stable
laws, and the associated TL differ qualitatively from those of light-tailed distributions.
Our results employ and contribute to the methodology of Albrecher and Teugels (2006)
and Albrecher et al. (2010). This work opens a new domain of investigation for
generalizations of TL.
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1. Introduction

A block of observations is a set of independent observations from a given probability
distribution. We assume different blocks are independent. Taylor (1961) and many others
before and since 1961 showed empirically that, in a set of blocks of observations, each block
coming from a different but related probability distribution, the sample variance of each block
was approximately a power-law function of the corresponding sample mean of that block.
Equivalently, there was an approximately linear relationship, across all blocks, between the
log sample variance and the log sample mean. According to a survey by Eisler et al. (2008),
more than a thousand papers have been published on the empirical support and theoretical
foundations for what has become known as Taylor’s law (TL). Many papers on TL have been
published since 2008.

Our work contrasts with prior studies that may appear to be related. Since the pioneering
explorations of Tweedie (1946), (1947), some statisticians have explored derivations of TL for
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658 M. BROWN ET AL.

probability distributions, such as stable laws of index β with 0 < β < 1, which have infinite
mean (for example, Jørgensen (1987), (1997), Jørgensen et al. (2009), Kendal (2004), (2013),
and Kendal and Jørgensen (2011a), (2011b)). These studies sometimes assumed or imposed
sequential dependence on observations, by contrast with our assumption that observations are
independent. Kendal and Jørgensen used an exponential tilting to transform stable laws into
light-tailed distributions with moments of all order. They obtained TL for families of such
distributions with the tilting value serving as parameter.

By further contrast with the Tweedie stable-law approach, we work with the actual infinite-
mean stable distributions. We show that a TL based on the sample mean and the sample variance
of blocks of observations of a single infinite-mean nonnegative random variable holds for stable
laws with 0 < β < 1. Here the parameter is a discrete label, such as 1, 2, . . . , affixed to each
block of observations.

We now sketch the main ideas. Suppose we have a family of nonnegative random variables
X(θ) ≥ 0 indexed by a parameter θ and each X(θ) has finite second moment, population
mean μ(θ), and population variance σ 2(θ). If, for all θ , we have

σ 2(θ) = aμb(θ) (1)

with a > 0 and b independent of θ , then we have, by definition, a population TL.
If (1) holds with σ 2(θ) > 0 for all θ , and if X̄n(θ) and σ̂ 2

n (θ) denote respectively the sample
mean and sample variance based on a block of size n from X(θ), then

log σ̂ 2
n (θ) − b log X̄n(θ) → log a (2)

almost surely (a.s.) for all θ as n → ∞. Thus, the population TL (1) implies the sample TL (2).
When multiple blocks labeled 1, 2, . . . , are drawn from a single nonnegative distribution

with finite population mean μ > 0, population variance σ 2 > 0, and third central moment μ3,
obviously σ 2 = (σ 2/μb)μb holds trivially for all real b, so the population TL (1) has little
interest. However, because the sample mean and the sample variance are correlated, their
logarithms are also correlated among the blocks. Consequently, the sample TL (2) holds for
the blocks from a single distribution when the parameter that varies from block to block is the
block label, not the underlying distribution, and in (2) the slope b = μ × μ3/σ

4 has the same
sign as the skewness or third central moment μ3 (Cohen and Xu (2015)). The parameters a

and b of this sample TL are independent of the block labels, so we are justified in calling this
relationship a kind of TL.

Here we show, surprisingly, that a sample TL (5), (6) holds if blocks of increasing size n are
drawn from a single nonnegative distribution in a class of stable distributions with no mean.
In this case, the limit on the right-hand side of (5) is a random variable with finite mean and
variance, unlike the constant which is the limit on the right-hand side of (2).

Specifically, suppose that X1, X2, . . . , Xn are independent and identically distributed (i.i.d.)
random variables with the distribution of (henceforth abbreviated ‘∼’) X with Laplace transform

L(s) = E(e−sX) = e−(cs)β , s ≥ 0, 0 < β < 1, c > 0. (3)

We label the distribution with Laplace transform (3) as F(c, β). This stable distribution with
index β has infinite mean. Consequently, X̄n and σ̂ 2

n are no longer sample estimators of
population quantities. So we re-express the sample TL (2) in terms of a ratio of sample
moments. For α > 0, define

Wn(α) = σ̂ 2
n

X̄α
n

.
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Taylor’s law for stable distributions with infinite mean 659

For X > 0 with EX = ∞, we define the single random variable X to follow a TL with
exponent α if Wn(α) converges in distribution to a random variable W with var(log W) < ∞.
Under this definition, X ∼ F(c, β) follows a TL with exponent α = (2 − β)/(1 − β). To
avoid confusion, we emphasize that β is fixed. The parameter that varies from one block of
observations to another is the block label.

Without loss of generality, take c = 1 in (3). We derive an identity (Proposition 2 of
Section 4) from which it follows that EWn(α) ≡ ∞ for α ≤ 2 − β, and, on the other hand, for
α > 2 − β,

EWn(α) = (1 − β)
�((α + β − 2)/β)

�(α)
n((1−β)/β)[(2−β)/(1−β)−α]. (4)

Define α∗ = (2 − β)/(1 − β). From (4),

lim
n→∞ EWn(α) =

⎧⎪⎨
⎪⎩

∞ for 2 − β < α < α∗,

1 − β for α = α∗,

0 for α > α∗.

Moreover, in Proposition 2(ii), we show that, as n → ∞,

var[Wn(α
∗)] = (1 − β)2

(
1 + 2β

n − 1

)
→ (1 − β)2.

Applying a heavy-tailed bivariate limit theorem of Albrecher et al. (2010, Theorem 2.1), we
demonstrate that Wn(α

∗) converges in distribution as n → ∞ to a random variable W such
that var W = (EW)2 = (1 − β)2 and var(log W) < ∞. Thus, an analog of (2) holds with
constant β, while the parameter that varies from one block to another is the block label: as
n → ∞,

log σ̂ 2
n − α∗ log X̄n → log W (5)

in distribution, and, for large n,

log σ̂ 2
n ≈ α∗ log X̄n + E(log W) + e, (6)

where e = log W − E(log W) has mean 0 and finite variance var(log W). Consequently, as we
show in Section 6, for any ε > 0,

P

(∣∣∣∣ log σ̂ 2
n

log X̄n

− α∗
∣∣∣∣ > ε

)
→ 0,

so that, for large n, with high probability, log σ̂ 2
n / log X̄n will be close to α∗ = (2−β)/(1−β).

This linear relationship of the log sample variance log σ̂ 2
n to the log sample mean log X̄n is

Taylor’s law or power-law fluctuation scaling.
Since X̄n → ∞ a.s., α∗ is the unique exponent for which Wn(α) converges in distribution

to a random variable W with P(0 < W < ∞) = 1.
A referee kindly pointed out that if X ∼ F with survival function F̄ = 1 − F satisfying

lim
t→∞

F̄ (t)

l(t)t−β
= 1, 0 < β < 1,
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660 M. BROWN ET AL.

with l slowly varying and limt→∞ l(t) = [�(1 −β)]−1, then (5) and (6) hold with the same α∗
and W as with X ∼ F(1, β). This issue is discussed in Section 4. The result does not extend,
however, to general regularly varying tail distributions of index β. Thus, the TL for F(1, β)

also holds for a restricted family of regularly varying tail distributions of index β with a class
of slowly varying functions l ∈ L serving as parameter. However, even for a single distribution
with infinite mean, it is meaningful to describe the behavior of the sample mean and sample
variance as a kind of TL.

Equation (6) gives an analog of (2) but with an asymptotic log-log linear regression with
noise, represented by the term e, rather than an asymptotically perfect log-log linear relationship.
Thus, the light-tailed and heavy-tailed distributions have differing versions of TL. In Section 6
we observe that, relative to log X̄n, this noise vanishes in probability as n → ∞.

The fact that EW = SD(W) (where ‘SD’denotes standard deviation) suggests the possibility
that W is approximately exponentially distributed. This possibility is supported by our simu-
lations. We conjecture that as β → 0, W(β) (the distribution of W corresponding to index β)
converges in distribution to an exponential distribution. We discuss this issue in Section 5.

We hope that our efforts will encourage others to investigate TL for infinite-mean random
variables empirically and mathematically. Given the fascinating history and extensive applica-
tions of TL, we believe that this is a potentially fruitful area of research.

2. A useful identity

The useful identity in this section is Proposition 1 below. It will be applied to obtain our
main results. First we state an auxiliary result and some definitions. For x > 0, α > 0,

1

xα
= 1

�(α)

∫ ∞

λ=0
λα−1e−λx dλ. (7)

This follows since the probability density function of a gamma distribution with shape param-
eter α and scale parameter x integrates to 1.

Define Cr to be the class of distributions on R+ := (0, ∞) with finite rth moment. For a
function T on Rn+ to R+, we say that T ∈ Cr,n if, for every G ∈ Cr and i.i.d. X1, X2, . . . , Xn

distributed as G, we have EGT (X) := EG(T (X1, X2, . . . , Xn)) := θT (G) < ∞.

For a cumulative distribution function (CDF) F on R+ with Laplace transform L, and, for
λ > 0, denote by Fλ the tilted version of F ,

dFλ(x) = e−λx dF(x)

L(λ)
. (8)

Tilted distributions are widely applied to areas including large deviations (Billingsley (1986,
pp. 142–154)), exponential families (Barndorff-Nielsen (2014, pp. 103–137)), and simulation
theory (Ross (2002, pp. 275–279)). One important property is that, for every λ > 0, r > 0, we
have Fλ ∈ Cr . This is true because Fλ has a finite moment generating function on (−∞, λ). It
is not necessary that F have any finite moments.

Proposition 1. Suppose that X1, X2, . . . , Xn are i.i.d. nonnegative random variables with
distribution F and Laplace transform L. Define X̄ to be the sample mean. For T ∈ Cr,n, if
either

(i) PF (X = 0) = 0, or

(ii) T (0) = T (0, 0, . . . , 0) = 0 (with T (0)/0 interpreted as 0),
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Taylor’s law for stable distributions with infinite mean 661

then, for α > 0,

EF

(
T (X)

X̄α

)
= nα

�(α)

∫ ∞

0
λα−1Ln(λ)θT (Fλ) dλ, (9)

where θT (Fλ) = EFλ(T (X)). In (9), either both sides are infinite or both are finite and equal.

Proof. First we derive the result analogous to (9), in (11) below, for the special case S =∑n
i=1Xi . The stated result then follows from (11) by multiplying both sides by nα . Assume

that (i) holds. By (7),

EF

(
T

Sα

)
= EF

(
T

(
1

�(α)

∫ ∞

0
λα−1e−λS dλ

))
= 1

�(α)

∫ ∞

0
λα−1

EF (T (X)e−λS) dλ.

(10)
Since

θT (Fλ) =
∫

T (x)
e−λS

Ln(λ)
dF(x),

it follows that the right-hand side of (10) reduces to

1

�(α)

∫ ∞

0
λα−1Ln(λ)θT (Fλ) dλ.

Thus,

EF

(
T

Sα

)
= 1

�(α)

∫ ∞

0
λα−1Ln(λ)θT (Fλ) dλ, (11)

from which (9) follows.
If (i) does not hold, but (ii) holds, then

EF

(
T (X)

Sα

)
=

∫
x �=0

T (x)

Sα

(∏
dF(xi)

)

= 1

�(α)

∫ ∞

0
λα−1

EF (T e−λS 1{x �=0}) dλ

= 1

�(α)

∫ ∞

0
λα−1

EF (T e−λS) dλ

= 1

�(α)

∫ ∞

0
λα−1Ln(λ)θT (Fλ) dλ,

since T (0)e−λS(0) = 0. In the above, the interchange of order of integration holds by Tonelli’s
theorem, as the integrands are nonnegative. �

The above proof proceeded by reduction to the Laplace–Tauber case which involves a similar
integration strategy. It is a key tool in the proof of Karamata’s theorem (Karamata (1931); see
Bingham et al. (1987, p. 4)). This approach is also used in de la Peña and Yang (1999).
More closely related to our work, in the context of self-normalized processes, are Giné et al.
(1997), Fuchs and Joffe (1997), Albrecher and Teugels (2006), and Albrecher et al. (2010).
Proposition 1 is perhaps novel in pointing out the potential use of tilted distributions.

If neither (i) nor (ii) of Proposition 1 holds then defining T (0) = C > 0, and PF (T = 0) =
p > 0, it follows that EF (T e−λS) ≥ Cpn, thus,

∫ ∞

0
λα−1

EF (T e−λS) dλ ≥ Cpn

∫ ∞

0
λα−1 dλ = ∞.
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662 M. BROWN ET AL.

In this case, both sides of (9) are infinite. Thus, (9) holds but is of little interest. We will
examine situations for which the two sides of (9) are finite and equal in Section 7.

3. Application to ratios

As before, suppose that X1, X2, . . . , Xn are i.i.d. nonnegative random variables with CDF
F and Laplace transform L(s) = EF (e−sX). We do not assume that F has any finite moments.

Define K(s) = log L(s) and Kr(s) to be the rth derivative of K at s. Then K is known as
the cumulant generating function of F . For the tilted distribution Fλ,

LFλ(s) = EFλ(e
−sX) = L(s + λ)

L(λ)
.

The cumulant generating function of Fλ is, thus,

KFλ = log LFλ(s) = log L(s + λ) − log L(λ) = K(s + λ) − K(λ).

Consequently,

K2,Fλ(s) = d2

ds2 KFλ(s) = K2(s + λ), varFλ(X) = K2,Fλ(0) = K2(λ).

Since varG(X) < ∞ for G ∈ C2 and Fλ has moments of all order, it follows that varFλ(X) < ∞.
It is well known that the variance of a random variable equals the second derivative of its
cumulant generating function at 0 (Billingsley (1986, p. 144)).

In Proposition 1, choose

T1(X) = σ̂ 2 = 1

n − 1

n∑
i=1

(Xi − X̄)2,

the sample variance. Since, for G ∈ C2, the sample variance is unbiased for σ 2(G),

θT1(Fλ) = EFλ(σ̂
2) = varFλ(X) = K2,Fλ(0) = K2(λ).

Applying Proposition 1 to T1 = σ̂ 2,

EF (Wn(α)) = nα

�(α)

∫ ∞

0
λα−1K2(λ)Ln(λ) dλ. (12)

Another well-known result (Neter et al. (1990)) is that if G ∈ C4 then

EG((σ̂ 2)2) = EG(σ̂ 4) = K4,G(0)

n
+ n + 1

n − 1
K2

2,G(0).

Letting G = Fλ, it follows that

EFλ(σ̂
4) = K4(λ)

n
+ n + 1

n − 1
K2

2 (λ).

Thus, if we define

T2(X) = σ̂ 4 =
(

1

n − 1

n∑
i=1

(Xi − X̄)2
)2

,
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Taylor’s law for stable distributions with infinite mean 663

then

θT2(Fλ) = K4(λ)

n
+ n + 1

n − 1
K2

2 (λ),

and from Proposition 1,

EF ([Wn(α)]2) = n2α

�(2α)

∫ ∞

0
λ2α−1

(
K4(λ)

n
+ n + 1

n − 1
K2

2 (λ)

)
Ln(λ) dλ. (13)

From (12) and (13), we can compute the variance of Wn(α).

4. Application to stable distributions

We will work with the family of distributions with Laplace transform

L(λ) = e−(cλ)β , c > 0, 0 < β < 1. (14)

This widely studied class of stable laws encompasses all stable laws with support [0, ∞).
Feller (1971, pp. 448–449) is still a good reference for this topic. Distributions in this class
have infinite mean and, with the exception of β = 1

2 , unwieldy probability density functions.
For β = 1

2 , the distribution with Laplace transform (14) is the first-passage time in standard
Brownian motion from 0 to the point

√
c/2. It is distributed as c/(2Z2), where Z is standard

normal.
Denote the distribution with Laplace transform (14) for a given c and β as F(c, β).

Proposition 2. Let X ∼ F(c, β) and define α∗ = α∗(β) = (2−β)/(1−β) and Wn = σ̂ 2
n /X̄α∗

n

corresponding to X1, X2, . . . , Xn. Then

(i) EWn = c−(β/(1−β))(1 − β),

(ii) var(Wn) = (EWn)
2(1 + 2β/(n − 1)),

(iii) supn EWk
n < ∞, for all k ≥ 1,

(iv) Wn converges in distribution to W , with EWk < ∞ for all k ≥ 1, and limn→∞ EWk
n =

EWk . Moreover, SD(W) = EW = c−(β/(1−β))(1 − β).

(v) E[(log W)2] < ∞.

Proof. If X ∼ F(1, β) then

cX ∼ F(c, β) and Wn(cX1, cX2, . . . , cXn) = c−β/(1−β)Wn(X1, X2, . . . , Xn).

Thus (i) and (ii) will follow from the corresponding result for F(1, β). From (14),

K2(λ) = β(1 − β)λβ−2.

Thus, from (11) (recalling that α∗ = (2 − β)/(1 − β)),

EWn = nα∗

�(α∗)

∫
λα∗−1(β(1 − β)λβ−2)e−nλβ

dλ.

Make the change of variable λ = z1/β . Then using (α∗ − 2)/β = α∗ − 1, we obtain

EWn = (1 − β)
nα∗

�(α∗)

∫
zα∗−1e−nz dz = 1 − β,

which proves (i).
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664 M. BROWN ET AL.

From (14) with c = 1, we calculate

K4(λ) = β(1 − β)(2 − β)(3 − β)λβ−4.

Then, from (13), EW 2
n = A + B, where

A = n2α∗

�(2α∗)

∫
λ2α∗−1

(
K4(λ)

n

)
e−nλβ

dλ

= β(1 − β)(2 − β)(3 − β)
n2α∗−1

�(2α∗)

∫
λ2α∗−1λβ−4e−nλβ

dλ.

Again with the same change of variable z = λβ ,

A = (1 − β)(2 − β)(3 − β)
n2α∗−1

�(2α∗)

∫
z2(α∗−1)e−nz dz

= (1 − β)(2 − β)(3 − β)
n2α∗−1

�(2α∗)
�(2α∗ − 1)

n2α∗−1

= (1 − β)(2 − β)(3 − β)

2α∗ − 1

= (1 − β)2(2 − β)

and

B = β2(1 − β)2
(

n + 1

n − 1

)
n2α∗

�(2α∗)

∫
λ2α∗−1λ2β−4e−nλβ

dλ

= β(1 − β)2
(

n + 1

n − 1

)
n2α∗

�(2α∗)

∫
z2α∗−1e−nz dz

= β(1 − β)2
(

n + 1

n − 1

)
.

Combining, we have

EW 2
n = A + B = (1 − β)2

(
2 + 2

n − 1
β

)
. (15)

From (i) and (15),

var(Wn) = EW 2
n − (EWn)

2 = (EWn)
2
(

1 + 2β

n − 1

)
,

which proves (ii).
For (iii), define

Vn = σ̂ 2

nX̄2
= nσ̂ 2

S2 = n

n − 1

( n∑
i=1

(
Xi

S

)2

− 1

n

)
,

where S = ∑n
i=1Xi . Define pi = Xi/S. Then pi > 0,

∑n
i=1pi = 1, and

Vn = n

n − 1

n∑
i=1

(
pi − 1

n

)2

.
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Taylor’s law for stable distributions with infinite mean 665

Then Vn is bounded above by 1, equaling 1 if a single pi equals 1, with the others being 0.
(1 is the least upper bound for Vn, but is not achievable.) Recalling that α∗ = (2 −β)/(1 −β),
observe that

Wn = nα∗
σ̂ 2

Sα∗ =
(

nσ̂ 2

S2

)(
n1/(1−β)

Sβ/(1−β)

)
= Vn

(
n1/(1−β)

Sβ/(1−β)

)
. (16)

Now S = ∑n
i=1Xi ∼ n1/βX (check by Laplace transform), thus, Sβ/(1−β) ∼ (n1/βX)β/(1−β).

From (16),
Wn ∼ VnX

−β/(1−β). (17)

Of course, Vn and X−β/(1−β) are dependent. Despite this limitation of (17), we find it useful
for proving Proposition 2(iii). By (7), for all k ≥ 1,

E(X−kβ/(1−β)) = 1

�(kβ/(1 − β))

∫
λkβ/(1−β)−1e−λβ

dλ

= 1

β�(kβ/(1 − β))

∫
zk/(1−β)−1e−z dz

= �(k/(1 − β))

β�(kβ/(1 − β))

< ∞.

Thus,
sup
n

EWk
n ≤ E(X−kβ/(1−β)) < ∞. (18)

(iv) It follows from (18) that if Wn converges in distribution to W , then by uniform integra-
bility

EWk = lim
n→∞ EWk

n .

For convergence in distribution, we review Albrecher et al. (2010, Theorem 2.1). Consider
X > 0 with survival function F̄ = 1 − F satisfying

lim
t→∞

F̄ (t)

l(t)t−β
= 1, 0 < β < 1, (19)

where l is slowly varying. Define an = F̄−1(1/n), the upper 1/n quantile. Then

(Un, Vn) :=
(

1

a2
n

n∑
i=1

X2
i ,

1

an

n∑
i=1

Xi

)
→ (U, V )

in distribution as n → ∞. The joint Laplace transform of (U, V ) is derived (Albrecher et al.
(2010, p. 6)); U and V are dependent, each distributed according to a stable law:

U ∼ F

((
�

(
1 − β

2

))2/β

,
β

2

)
, (20)

V ∼ F((�(1 − β))1/β, β). (21)

For X ∼ F(1, β) (Feller (1971, p. 448)),

lim
x→∞ xβF̄ (x) = (�(1 − β))−1.
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It follows that, if X ∼ F(1, β) then

an

(�(1 − β))−1/βn1/β
→ 1 as n → ∞,

Wn(α
∗) = n

n − 1

[
Un − V 2

n /n

V α∗
n

]
(�(1 − β))1/(1−β) → (�(1 − β))1/(1−β)

(
U

V α∗

)

in distribution as n → ∞.
(v) If X ∼ F(c, β) then, since EXδ < ∞ for −∞ < δ < β (Feller (1971, p. 578)), it

follows that E([log X]2) < ∞. This is true because, for 0 < δ1 < β, (log x)2 < xδ1 for all
sufficiently large x, and, for δ2 < 0, (log x)2 < xδ2 for all sufficiently small positive x. Then,
by (20) and (21),

E log2
(

U

V α∗

)
≤ E log2 U + α∗2

E log2 V + 2α∗
√

(E log2 U)(E log2 V ) < ∞. �

It follows from the above discussion of the limit theorem of Albrecher et al. (2010) that,
if (19) holds with l slowly varying and limt→∞ l(t) = d, then Wn(α

∗) has the same limiting
distribution for X ∼ F as for X ∼ F([d × �(1 − β)]1/β, β). This limiting distribution
is d−(β/(1−β))(U/V α∗

). This justifies the remark in Section 1 that, if d = (�(1 − β))−1,
then Wn(α

∗) has the same limiting distribution as it would with X ∼ F(1, β), and, hence,
that the TL for F(1, β) also holds with l serving as parameter if l is slowly varying with
limt→∞ l(t) = [�(1 − β)]−1 and the same β. It also follows that

SD

(
U

V α∗

)
= E

(
U

V α∗

)
= (1 − β)(�(1 − β))1/(1−β).

5. Approximate exponentiality

Since, by Proposition 2,

var(Wn) = (EWn)
2
(

1 + 2β

n − 1

)
, var(W) = (EW)2,

we thought it possible that W (and, thus, Wn for large n) would be approximately exponentially
distributed. A tedious calculation of E(σ̂ 6/X̄3α∗

) for α∗ = (2 − β)/(1 − β) shows that

EW 3 =
(

6 − β

5 − 2β

)
(EW)3,

while an exponentially distributed random variable Y has EY 3 = 6(EY )3. We define the
quantity β/(5 − 2β) to be the shortfall. For example, if β = 1

2 then EW 3 = (5 7
8 )(EW)3 and

the shortfall equals 1
8 .

In simulations with β from 0.125 to 0.875 in increments of 0.125 using various values of n,
we found the distribution of Wn to be close to that of an exponential distribution with the
same mean. The simulated CDF of Wn starts off larger than that of Y (an exponential with
the simulated mean EWn), then the CDFs cross and the CDF of Y is larger than that of the
simulated Wn for an interval, then the CDFs cross again and are close from that point on. The
Kolmogorov distance (supt |P(Wn ≤ t) − P(Y ≤ t)|) is achieved in the initial interval (where
P(Wn ≤ t) > P(Y ≤ t)). In these simulations, the Kolmogorov distance to exponentiality is
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roughly 0.4 times the shortfall. For example, with β = 1
2 , the shortfall is equal to 1

8 and the
Kolmogorov distance is approximately 1

20 . We plan to do more simulations to clarify these
issues.

For each β ∈ (0, 1), we define W(β) ≡ limn→∞ Wn(β) corresponding to X ∼ F(1, β).
We conjecture that the distribution of W(β) is exponential with mean 1. From (21), we
see that this conjecture is equivalent to the statement that U(β)/(V (β))α

∗
converges to an

exponential distribution with mean 1 as β → 0, where (U(β), V (β)) is the distribution of
(U, V ) corresponding to β. If this conjecture is true, we know of no interpretation of the
exponential distribution as being the distribution of σ̂ 2/X̄α∗

corresponding to any distribution,
because F(1, β) does not converge in distribution to a proper random variable as β → 0,
though as β → 0, α∗ = (2 − β)/(1 − β) → 2.

If W were exponential with mean c−1/(1−β)(1 − β), then E log W would be equal to
log(c−1/(1−β)(1 − β)) − γ , where γ is the Euler–Mascheroni constant (≈ 0.5772), and
var(log W) would be equal to π2/6, while − log W would be Gumbel distributed.

Although W is approximately exponential, this may not be well reflected in E log W or
var(log W), as the log is sensitive to values close to 0.

6. Connection to Taylor’s law

Consider a block of n observations from the distribution F(c, β) with Laplace transform (3).
From Proposition 2(iv) we see that, for Wn = σ̂ 2

n /X̄α∗
n and α∗ = (2 − β)/(1 − β),

log Wn = log σ̂ 2
n − α∗ log X̄n → log W

in distribution as n → ∞. By the strong law of large numbers for random variables with
infinite mean (Çinlar (2011, Proposition 6.3, p. 119)), X̄n → ∞ a.s. and, hence, log X̄n → ∞
a.s. Now divide the displayed equation and limit above by log X̄n. By a variant of Slutsky’s
theorem (Arnold (1990, Corollary 6.8(c), p. 242)), it follows that

log Wn

log X̄n

= log σ̂ 2
n

log X̄n

− 2 − β

1 − β
→ 0

in probability. Thus, for any ε > 0,

P

(∣∣∣∣ log σ̂ 2
n

log X̄n

− α∗
∣∣∣∣ > ε

)
→ 0,

so that, for large n, with high probability, log σ̂ 2
n / log X̄n will be close to α∗ = (2−β)/(1−β).

This is a form of Taylor’s law.

7. Sufficient conditions for finite expectations

Referring to the definition of T in Section 2, we first examine T = 1. By Proposition 1,

E((X̄)−α) = nα

�(α)

∫ ∞

0
λα−1Ln(λ) dλ.

For α > 0, the integral will not blow up at 0 as λα−1 is integrable in a neighborhood of 0,
and L(λ) → L(0) = 1 as λ → 0. The behavior of Ln(λ) for large λ will determine whether
the integral converges. In Proposition 3 we have simple checkable sufficient conditions on α

and n for E((X̄)−α) to be finite.
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Proposition 3. If, for some δ > 0,

lim
λ→∞(λδL(λ)) = 0, (22)

then E((X̄)−α) < ∞ for α > 0 and n ≥ 1+[α/δ], where [x] is the greatest integer ≤ x. Thus,
for any α > 0, E((X̄)−α) is finite for all sufficiently large n.

Proof. Given α > 0, for a unique nonnegative integer K , Kδ ≤ α < (K + 1)δ. This K has
nothing to do with the K of Section 3. Define n0 = K + 1 and ε = (K + 1)δ − α > 0. For
n ≥ n0 = K + 1,

α + ε

n
≤ α + ε

K + 1
= δ.

Thus, for n ≥ n0 and λ ≥ 1, by (22),

λα+εLn(λ) = (λ(α+ε)/nL(λ))n ≤ (λδL(λ))n → 0 as λ → ∞.

Next, since

λα+εLn(λ) = λα−1Ln(λ)

λ−(1+ε)
→ 0 as λ → ∞,

there exists λ0 such that λ ≥ λ0 implies that

λα−1Ln(λ) ≤ λ−(1+ε).

Consequently, for λ ≥ λ0,
∫ ∞

λ

sα−1Ln(s) ds ≤
∫ ∞

λ

s−(1+ε) ds = 1

ελε
→ 0 as λ → ∞.

Thus, λα−1Ln(λ) is integrable and

E((X̄)−α) = nα

�(α)

∫ ∞

0
λα−1Ln(λ) dλ < ∞. �

An interpretation for Fλ which follows from (8) is that Fλ is the conditional distribution
of X ∼ F given X ≤ ε/λ, where ε is independent of X and is exponential with mean 1. As
λ → ∞, Fλ converges to a point distribution at 0, while as λ → 0, Fλ → F . For F ∈ C2,
K2(λ) → K2(0) = varF (X) < ∞. Thus, in this case the presence of K2(λ) in (12) does not
affect the integrability. Under (22), it follows that, for n ≥ 1+[α/δ], we have E(Wn(α)) < ∞.
Similarly, if F ∈ C4 then, for n ≥ 1 + [2α/δ], we have var(Wn(α)) < ∞.

In the stable case examined in Section 4, K2(λ) = β(1 − β)λβ−2. The presence of this
factor in (12) can cause the integral in (12) to blow up at λ = 0 even though E((X̄n)

−α) is
finite. However, for sufficiently large α, EWn(α) will be finite. A similar remark holds for
var(Wn(α)). From Proposition 1, we find that EWn(α) < ∞ if and only if α > 2 − β, and
var(Wn(α)) < ∞ if and only if α > 2 − β/2. This result is independent of the value of n > 1.
For all α > 0 and n ≥ 1, E(X̄n)

−α = β−1(�(α/β)/�(α))nα(1−1/β) < ∞, as follows from (7).
For example, suppose that X1, X2, . . . , Xn are i.i.d. with stable distribution F(c, β) with

index β = 1
2 . Then E((X̄n)

−α
) < ∞ for all α > 0, n ≥ 1. For 0 < α ≤ 3

2 and n ≥ 2,
E((X̄n)

−α
) < ∞ but E(Wn(α)) = ∞. For 3

2 < α ≤ 7
4 , E(Wn(α)) < ∞ but var(Wn(α)) is

infinite. For α > 7
4 , both the mean and variance of Wn(α) are finite.
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