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In the United States, tornado outbreaks have the largest 
impacts on human lives and property. Tornado outbreaks 
are sequences of six or more tornadoes rated F1 and greater 
on the Fujita scale, or rated EF1 and greater on the En-
hanced Fujita scale, that occur in close succession (1, 2). 79% 
of tornado fatalities during the period 1972–2010 occurred 
in outbreaks (1), and 49 people died in U.S. tornado out-
breaks in 2015. No significant trends have been found in 
either the annual number of reliably reported tornadoes (3) 
or of outbreaks (1). However, recent studies indicate in-
creased variability in large normalized economic and in-
sured losses from U.S. thunderstorms (4), increases in the 
annual number of days on which many tornadoes occur (3, 
5) and increases in the annual mean and variance of the 
number of tornadoes per outbreak (6). Here, using extreme 
value analysis, we find the frequency of U.S. outbreaks with 
many tornadoes is increasing, and is increasing faster for 
more extreme outbreaks. We model this behavior by ex-
treme value distributions with parameters that are linear 
functions of time or of some indicators of multidecadal cli-
matic variability. Extreme meteorological environments as-
sociated with severe thunderstorms show consistent upward 
trends, but the trends do not resemble those currently ex-
pected to result from global warming. 

Linear trends in the percentiles of the number of torna-
does per outbreak (Fig. 1a) are positive, statistically signifi-
cant and increase exponentially faster with percentile 
probability (Fig. 1b). This behavior is consistent with the 
positive trends in mean and variance (6) which suggested 
that the distribution of the number of tornadoes per out-

break is shifting to the right (increasing mean) and that 
higher percentiles of the distribution are shifting faster than 
the mean (increasing variance). The increase of percentile 
trends with percentile probability is consistent with trends 
in the frequency of tornado days with many tornadoes in-
creasing with threshold (5). 

Nonstationary generalized extreme value (GEV) distribu-
tions with trends in their parameters do not reproduce the 
observed upward trend in the slopes of percentiles as a 
function of percentile probability (Supplementary Materials 
and fig. S1). Therefore we use the Generalized Pareto (GP) 
approach with a threshold of 12 E/F1+ tornadoes [(2) and 
fig. S2)]. We refer to outbreaks with 12 or more E/F1+ tor-
nadoes as “extreme outbreaks” (2). There were 435 extreme 
outbreaks 1965-2015, no statistically significant trends in the 
annual number of extreme outbreaks (P = 0.66) (Fig. 2a), 
and no statistically significant autocorrelation in the num-
bers of tornadoes per extreme outbreak (fig. S2c). The GP 
distributions found here have shape parameter around 0.3 
(finite mean and variance) and are lighter-tailed distribu-
tions than was found considering tornadoes per day (rather 
than outbreaks) and a threshold of one (Pareto shape pa-
rameter of 0.61, infinite mean and variance) (7). 

The percentiles of the number of tornadoes per extreme 
outbreak (Fig. 2b) also have upward trends that are statisti-
cally significant (above the 30th percentile) and depend ap-
proximately exponentially on the percentile probability (Fig. 
2c). Allowing a trend as a function of time in the GP thresh-
old u would give percentile trends (slopes) that are the same 
for all percentiles, contrary to observation. Permitting a lin-
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ear trend as a function of time in the scale σ  improves the 
fit to the data statistically significantly. According to this 
model, the scale parameter and the percentiles increase lin-
early with time (Table 1), and higher percentiles increase 
faster. The standardized quantile-quantile plot in fig. S3 
shows fairly good agreement between the data and the GP 
distribution with a linear trend in its scale parameter as a 
function of time. Data quantiles exceed those of the model 
at high percentiles (standardized model quantile values of 3-
4 in fig. S3), meaning that the model predicts outbreaks 
with many tornadoes would occur more often than is ob-
served. The difference between model and data quantiles 
falls within the range expected from sampling variability 
(fig. S3). We cannot reject the model on this basis. 

The slopes of the percentiles of the GP distribution with 
a linear trend in its scale parameter are approximately ex-
ponential in the percentile probability and match well those 
estimated by quantile regression (Fig. 2c). The trends from 
quantile regression and from the nonstationary GP distribu-
tion deviate from exponential dependence on the percentile 
probability near the endpoints of 0% and 100% probability. 
Adding a trend to the scale parameter ξ results in a mar-
ginally statistically significant (P = 0.04) (Table 1) upward 
trend that is statistically insignificant when the largest value 
(in 2011) is withheld (P = 0.1) (table S2). The scale trends 
change little when the outbreak value from 2011 is withheld 
(table S2). Return levels for 2, 5 and 25-year return periods 
are shown in Fig. 2d along with 90% bootstrap confidence 
intervals (5000 bootstrap samples with bias correction and 
acceleration). The estimated number of tornadoes in the 5-
year most extreme outbreak roughly doubles from 40 in 
1965 to nearly 80 in 2015. 

The outbreak trends in the tornado report database may 
reflect changes in reporting rather than real properties of 
tornadoes (8). The environments associated with tornadoes 
and severe thunderstorms provide valuable evidence that is 
independent of report data for assessing the variability of 
severe convective storms (4, 9–13). We use a two-part envi-
ronmental proxy for the number of tornadoes per outbreak 
(2, 6). Here we define extreme environments as those with 
values of the outbreak proxy greater than 12, matching the 
extreme outbreak definition. The proxy is computed using 
reanalysis data (2) and depends on two factors, convective 
available potential energy (CAPE) and a measure of vertical 
wind shear, storm relative helicity (SRH). Modeling studies 
project that CAPE will increase in future warmer climates 
(14, 15), and Ref. 5 hypothesized that climate change and 
increases in CAPE could already be leading to more active 
areas of severe convection on days with tornadoes. 

However, we find no statistically significant trends in the 
percentiles of CAPE conditional on extreme environments 
(Fig. 3a) nor in the percentiles of CAPE conditional on CAPE 

> 1 J kg−1 (not shown). On the other hand, there are statisti-
cally significant upward trends in the percentiles of SRH 
conditional on extreme environments (Fig. 3b), and these 
trends are the source of the trends in the percentiles of the 
outbreak number proxy (Fig. 3c). The linear growth rates 
(slopes) of the proxy for the number of tornadoes per ex-
treme outbreak are approximately exponential in the per-
centile probabilities, like those for the number of tornadoes 
in extreme outbreaks, and have roughly the same range of 
values. Percentiles of environments (not extreme) condi-
tional on the environmental occurrence proxy show the 
same qualitative behavior (fig. S5). Therefore we cannot at 
present associate previously identified features of a warmer 
climate with the observed changes in our environmental 
proxy, and by extension, with the changes in tornado out-
break statistics. 

The observed trends in the statistics of outbreaks and ex-
treme environments may be related to low-frequency cli-
mate variability other than climate change. Multidecadal 
variability in U.S. tornado activity has been compared with 
sea-surface-temperature (SST)-forced variability (16). We 
explore the connection between multidecadal climate sig-
nals and outbreak statistics using a nonstationary GP distri-
bution whose scale parameter is a linear function of the 
climate signal rather than time. 

The Atlantic Multidecadal Oscillation (AMO) (17) affects 
North American climate, is characterized by variations in 
North Atlantic SST and can be explained as an oceanic re-
sponse to mid-latitude atmospheric forcing (18). The AMO 
shows multidecadal variability, increasing from about 1970 
though the mid-2000s (fig. S4a). The GP distribution whose 
scale parameter is a linear function of the AMO index fits 
the data significantly better than the stationary GP distribu-
tion, but not better than a linear time trend (Table 1). 

Another important pattern of climate variability is the 
Pacific Decadal Oscillation (PDO) (19) (fig. S4b). The GP 
distribution whose scale parameter is a linear function of 
the PDO index does not fit the data significantly better than 
the stationary GP distribution (Table 1). 

Contiguous U.S. (CONUS) annual average temperature is 
increasing and that change has prompted investigations of 
changes in the U.S. tornado climatology (20). Taking the GP 
scale parameter to depend linearly on CONUS temperature 
gives a significantly better fit to the data than does the sta-
tionary GP distribution, but not a better fit than the GP dis-
tribution with a scale parameter that depends linearly on 
either time or the AMO index (Table 1). 

Many changes in U.S. tornado report statistics have been 
ascribed to changes in reporting practices, technology and 
other nonmeteorological factors (8). However, recent find-
ings point to increases in the number of tornadoes per 
event, whether events are defined as days when tornadoes 
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occur (3, 5) or as tornado outbreaks (6). Here we found sta-
tistically significant upward trends in the higher percentiles 
of the number of tornadoes per outbreak. We modeled these 
trends using extreme value distributions with a time-varying 
scale parameter. Similar behavior in an environmental 
proxy suggested that the behavior of the tornado reports is 
not due simply to changes in reporting practice or technolo-
gy. 

Climate change has been proposed as contributing to 
changes in tornado statistics (5, 20). Climate model projec-
tions indicate that CAPE, one of the factors in our environ-
mental proxy, will increase in a warmer climate leading to 
more frequent environments favorable to severe thunder-
storms in the U.S. (14, 15). However, the proxy trends here 
are not due to increasing CAPE but instead due to trends in 
storm relative helicity, a quantity related to vertical wind 
shear which was previously identified as a factor in in-
creased year-to-year variability of U.S. tornado numbers (11). 
Therefore we cannot at present associate the observed 
changes in our environmental proxy, and by extension the 
changes in tornado outbreak statistics, with previously iden-
tified features of a warmer climate. This conclusion is, of 
course, subject to revision by the discovery of other implica-
tions of a warmer climate for severe thunderstorm envi-
ronments. 

The question of which climatic factors have driven the 
observed changes in tornado activity has important implica-
tions for the future. If global warming is changing tornado 
activity, then we might expect to see either continued in-
creases in the number of tornadoes per outbreak or at least 
no return to earlier levels. On the other hand, if multide-
cadal variability, anthropogenic or natural, is responsible, 
then a return toward earlier levels might be possible in the 
future. Further clouding the future, many of the outbreak 
measures (annual maximum and higher percentiles of the 
number of tornadoes per outbreak) reached their lowest 
values in more than a decade in 2015. As a final caveat, in-
ferring tornadic actively solely from the environment has 
considerable uncertainty even in the current climate and at 
least as much in projected climates (21). 

REFERENCES AND NOTES 
1. C. M. Fuhrmann, C. E. Konrad II, M. M. Kovach, J. T. McLeod, W. G. Schmitz, P. G. 

Dixon, Ranking of tornado outbreaks across the United States and their 
climatological characteristics. Weather Forecast. 29, 684–701 (2014). 
doi:10.1175/WAF-D-13-00128.1 

2. Materials and methods are available as supporting material on Science Online. 
3. H. E. Brooks, G. W. Carbin, P. T. Marsh, Increased variability of tornado occurrence 

in the United States. Science 346, 349–352 (2014). 
doi:10.1126/science.1257460 Medline 

4. J. Sander, J. F. Eichner, E. Faust, M. Steuer, Rising variability in thunderstorm-
related U.S. losses as a reflection of changes in large-scale thunderstorm 
forcing. Weather Clim. Soc. 5, 317–331 (2013). doi:10.1175/WCAS-D-12-00023.1 

5. J. B. Elsner, S. C. Elsner, T. H. Jagger, The increasing efficiency of tornado days in 
the United States. Clim. Dyn. 45, 651–659 (2015). doi:10.1007/s00382-014-
2277-3 

6. M. K. Tippett, J. E. Cohen, Tornado outbreak variability follows Taylor’s power law 
of fluctuation scaling and increases dramatically with severity. Nat. Commun. 7, 
10668 (2016). doi:10.1038/ncomms10668 Medline 

7. J. B. Elsner, T. H. Jagger, H. M. Widen, D. R. Chavas, Daily tornado frequency 
distributions in the United States. Environ. Res. Lett. 9, 024018 (2014). 
doi:10.1088/1748-9326/9/2/024018 

8. S. M. Verbout, H. E. Brooks, L. M. Leslie, D. M. Schultz, Evolution of the U.S. 
tornado database: 1954-2003. Weather Forecast. 21, 86–93 (2006). 
doi:10.1175/WAF910.1 

9. H. E. Brooks, N. Dotzek, in Climate Extremes and Society, H. F. Diaz, R. Murnane, 
Eds. (Cambridge Univ. Press, New York, 2007), pp. 35–54. 

10. E. D. Robinson, R. J. Trapp, M. E. Baldwin, The geospatial and temporal 
distributions of severe thunderstorms from high-resolution dynamical 
downscaling. J. Appl. Meteorol. Climatol. 52, 2147–2161 (2013). 
doi:10.1175/JAMC-D-12-0131.1 

11. M. K. Tippett, Changing volatility of U.S. annual tornado reports. Geophys. Res. 
Lett. 41, 6956–6961 (2014). doi:10.1002/2014GL061347 

12. J. T. Allen, M. K. Tippett, A. H. Sobel, Influence of the El Niño/Southern Oscillation 
on tornado and hail frequency in the United States. Nat. Geosci. 8, 278–283 
(2015). doi:10.1038/ngeo2385 

13. M. Lu, M. Tippett, U. Lall, Changes in the seasonality of tornado and favorable 
genesis conditions in the central United States. Geophys. Res. Lett. 42, 4224–
4231 (2015). doi:10.1002/2015GL063968 

14. R. J. Trapp, N. S. Diffenbaugh, A. Gluhovsky, Transient response of severe 
thunderstorm forcing to elevated greenhouse gas concentrations. Geophys. Res. 
Lett. 36, L01703 (2009). doi:10.1029/2008GL036203 

15. N. S. Diffenbaugh, M. Scherer, R. J. Trapp, Robust increases in severe 
thunderstorm environments in response to greenhouse forcing. Proc. Natl. Acad. 
Sci. U.S.A. 110, 16361–16366 (2013). doi:10.1073/pnas.1307758110 Medline 

16. S. J. Weaver, S. Baxter, A. Kumar, Climatic role of North American low-level jets 
on U.S. regional tornado activity. J. Clim. 25, 6666–6683 (2012). 
doi:10.1175/JCLI-D-11-00568.1 

17. D. B. Enfield, A. M. Mestas-Nuñez, P. J. Trimble, The Atlantic Multidecadal 
Oscillation and its relation to rainfall and river flows in the continental U.S. 
Geophys. Res. Lett. 28, 2077–2080 (2001). doi:10.1029/2000GL012745 

18. A. Clement, K. Bellomo, L. N. Murphy, M. A. Cane, T. Mauritsen, G. Rädel, B. 
Stevens, The Atlantic Multidecadal Oscillation without a role for ocean 
circulation. Science 350, 320–324 (2015). doi:10.1126/science.aab3980 
Medline 

19. N. J. Mantua, S. R. Hare, Y. Zhang, J. M. Wallace, R. C. Francis, A Pacific 
interdecadal climate oscillation with impacts on salmon production. Bull. Am. 
Meteorol. Soc. 78, 1069–1079 (1997). doi:10.1175/1520-
0477(1997)078<1069:APICOW>2.0.CO;2 

20. E. Agee, J. Larson, S. Childs, A. Marmo, Spatial redistribution of USA tornado 
activity between 1954 and 2013. J. Appl. Meteorol. Climatol. 55, 1681–1697 
(2016). doi:10.1175/JAMC-D-15-0342.1 

21. R. J. Trapp, K. A. Hoogewind, The realization of extreme tornadic storm events 
under future anthropogenic climate change. J. Clim. 29, 5251–5265 (2016). 
doi:10.1175/JCLI-D-15-0623.1 

22. NOAA, National Weather Service, Storm Prediction Center, Warning 
Coordination Meterologist; http://www.spc.noaa.gov/wcm/. 

23. F. Mesinger, G. DiMego, E. Kalnay, K. Mitchell, P. C. Shafran, W. Ebisuzaki, D. 
Jović, J. Woollen, E. Rogers, E. H. Berbery, M. B. Ek, Y. Fan, R. Grumbine, W. 
Higgins, H. Li, Y. Lin, G. Manikin, D. Parrish, W. Shi, North American regional 
reanalysis. Bull. Am. Meteorol. Soc. 87, 343–360 (2006). doi:10.1175/BAMS-87-
3-343 

24. NOAA, Earth System Research Laboratory, Climate Indices: Monthly 
Atmospheric and Ocean Time Series; 
http://www.esrl.noaa.gov/psd/data/climateindices/list/. 

25. NOAA, National Centers for Environmental Information, National Temperature 
Index, Time Series; http://www.ncdc.noaa.gov/temp-and-precip/national-
temperature-index/time-series. 

26. R. Koenker, G. Bassett, Regression quantiles. Econometrica 46, 33–50 (1978). 
doi:10.2307/1913643 

27. P. Huybers, K. A. McKinnon, A. Rhines, M. Tingley, U.S. daily temperatures: The 

 o
n 

D
ec

em
be

r 
4,

 2
01

6
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org/
http://dx.doi.org/10.1175/WAF-D-13-00128.1
http://dx.doi.org/10.1126/science.1257460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25324388&dopt=Abstract
http://dx.doi.org/10.1175/WCAS-D-12-00023.1
http://dx.doi.org/10.1007/s00382-014-2277-3
http://dx.doi.org/10.1007/s00382-014-2277-3
http://dx.doi.org/10.1038/ncomms10668
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26923210&dopt=Abstract
http://dx.doi.org/10.1088/1748-9326/9/2/024018
http://dx.doi.org/10.1175/WAF910.1
http://dx.doi.org/10.1175/JAMC-D-12-0131.1
http://dx.doi.org/10.1002/2014GL061347
http://dx.doi.org/10.1038/ngeo2385
http://dx.doi.org/10.1002/2015GL063968
http://dx.doi.org/10.1029/2008GL036203
http://dx.doi.org/10.1073/pnas.1307758110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24062439&dopt=Abstract
http://dx.doi.org/10.1175/JCLI-D-11-00568.1
http://dx.doi.org/10.1029/2000GL012745
http://dx.doi.org/10.1126/science.aab3980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26472908&dopt=Abstract
http://dx.doi.org/10.1175/1520-0477(1997)078%3c1069:APICOW%3e2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1997)078%3c1069:APICOW%3e2.0.CO;2
http://dx.doi.org/10.1175/JAMC-D-15-0342.1
http://dx.doi.org/10.1175/JCLI-D-15-0623.1
http://www.spc.noaa.gov/wcm/
http://dx.doi.org/10.1175/BAMS-87-3-343
http://dx.doi.org/10.1175/BAMS-87-3-343
http://www.esrl.noaa.gov/psd/data/climateindices/list/
http://www.ncdc.noaa.gov/temp-and-precip/national-temperature-index/time-series
http://www.ncdc.noaa.gov/temp-and-precip/national-temperature-index/time-series
http://dx.doi.org/10.2307/1913643
http://science.sciencemag.org/


First release: 1 December 2016  www.sciencemag.org  (Page numbers not final at time of first release) 4 
 

meaning of extremes in the context of nonnormality. J. Clim. 27, 7368–7384 
(2014). doi:10.1175/JCLI-D-14-00216.1 

28. J. Machado, J. Silva, Quantiles for counts. J. Am. Stat. Assoc. 100, 1226–1237 
(2005). doi:10.1198/016214505000000330 

29. S. Coles, An Introduction to Statistical Modeling of Extreme Values (Springer, 
2001). 

ACKNOWLEDGMENTS 

The authors thank A. Rhimes and K. McKinnon for suggestions on the use of quantile 
regression with count data. We thank two reviewers who provided constructive 
and helpful comments. M.K.T. and C.L. were partially supported by a Columbia 
University Research Initiatives for Science and Engineering (RISE) award, the 
Office of Naval Research awards N00014-12-1-0911 and N00014-16-1-2073, 
NOAA’s Climate Program Office’s Modeling, Analysis, Predictions and 
Projections program award NA14OAR4310185, and the Willis Research Network. 
J.E.C. was partially supported by U.S. National Science Foundation grant DMS-
1225529 and thanks P. K. Rogerson for assistance during this work. The views 
expressed herein are those of the authors and do not necessarily reflect the 
views of any of the sponsoring agencies. The study was led by M.K.T., 
calculations carried out and manuscript drafted by M.K.T. C.L. prepared the 
environmental data. All authors were involved with designing the research, 
analyzing the results, and revising and editing the manuscript. All the authors 
declared no competing interests. Correspondence and material requests should 
be addressed to M.K.T. U.S. tornado report data come from NOAA’s Storm 
Prediction Center http://www.spc.noaa.gov/wcm/. North American Regional 
Reanalysis data are provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, 
USA, from their website at http://www.esrl.noaa.gov/psd/ and the Data 
Support Section of the Computational and Information Systems Laboratory at 
the National Center for Atmospheric Research. NCAR is supported by grants 
from the National Science Foundation. 

SUPPLEMENTARY MATERIALS 
www.sciencemag.org/cgi/content/full/science.aah7393/DC1 
Materials and Methods 
Figs. S1 to S5 
Tables S1 and S2 
References (22–29) 
 
4 August 2016; accepted 17 November 2016 
Published online 1 December 2016 
10.1126/science.aah7393 
 

 o
n 

D
ec

em
be

r 
4,

 2
01

6
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org/
http://dx.doi.org/10.1175/JCLI-D-14-00216.1
http://dx.doi.org/10.1198/016214505000000330
http://www.spc.noaa.gov/wcm/
http://www.esrl.noaa.gov/psd/
http://science.sciencemag.org/


First release: 1 December 2016  www.sciencemag.org  (Page numbers not final at time of first release) 5 
 

 
  

Fig. 1. Numbers of tornadoes per outbreak. (a) Annual 20th, 40th, 60th and 
80th percentiles of the number of E/F1+ tornadoes per outbreak (6 or more 
E/F1+ tornadoes), 1954-2015 (solid lines), and quantile regression fits to 1965-
2015 assuming linear growth in time (dashed lines). (b) Linear growth rates as a 
function of percentile probability. Error bars are 95% bootstrap confidence 
intervals and indicate linear trends that are statistically significantly different 
from zero. 
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Fig. 2. Extreme outbreaks. (a) Annual number of extreme outbreaks (12 or 
more E/F1+ tornadoes). (b) Annual 20th, 40th, 60th and 80th percentiles of 
the number of E/F1+ tornadoes per extreme outbreak 1965-2015 (jagged 
solid lines) along with quantile regression lines (dashed lines) and 
percentiles of the GP distribution with a linear trend in the scale parameter 
(solid lines). (c) Quantile regression linear growth rates (slopes) along with 
95% confidence intervals (blue) and corresponding growth rates of a GP 
distribution with linear trend in the scale parameter as functions of 
percentile probability (solid red line). (d) Annual maxima (black line) along 
with GP return levels as functions of year for return periods of 2, 5, and 25 
years (solid colored lines), and 90% bootstrap confidence intervals (dashed 
lines). 
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Fig. 3. Extreme environments. Percentiles of (a) CAPE and (b) SRH 
conditional on the proxy for the number of E/F1+ tornadoes per outbreak 
(see Methods for definition) exceeding 12. (c) Percentiles of the proxy for 
the number of tornadoes per extreme outbreak. (d) Linear growth rate 
(ordinary least squares estimates of slope and 95% confidence intervals) 
of the extreme outbreak proxy percentiles as a function of percentile. 
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 𝜎0� 𝜎1�  𝜉0 𝜉1 
Stationary (NLL=1449)     
Maximum likelihood estimates 7.6 − 0.3 − 
Standard error estimates 0.621 − 0.067 − 
     
𝜎� = 𝜎0� + 𝜎1� 𝑡 (NLL=1440)     
LR p-value =2x10-5     
Maximum likelihood estimates 4.73 0.12 0.26 − 
Standard error estimates 0.736 0.029 0.062 − 
     
𝜉 = 𝜉0 + 𝜉1𝑡 (NLL=1447)     
LR p-value = 0.04     
Maximum likelihood estimates 7.48 -0.13 0.0066 − 
Standard error estimates 0.61 − 0.088 0.0031 
     
𝜎� = 𝜎0� + 𝜎1�  ×  AMO (NLL=1442)     
LR p-value = 2x10-4     
Maximum likelihood estimates 8.18 8.48 0.28 − 
Standard error estimates 0.6531 2.2009 0.0626 − 
     
𝜎� = 𝜎0� + 𝜎1�  ×  PDO (NLL=1449)     
LR p-value = 0.3     
Maximum likelihood estimates 7.71 -0.52 0.29 − 
Standard error estimates 0.63 0.54 0.067 − 
     
𝜎� = 𝜎0� + 𝜎1�  ×  CONUS temperature (NLL=1444)     
LR p-value = 0.001     
Maximum likelihood estimates 8.31 1.62 0.28 − 
Standard error estimates 0.70 0.52 0.065 − 
 

Table 1. Generalized Pareto distribution parameters. Distributions are fitted to the number of 
E/F1+ tornadoes per outbreak for outbreaks with 12 or more E/F1+ tornadoes. The negative log 
likelihood (NLL), maximum likelihood estimates and their standard errors are indicated for each 
model. The likelihood ratio (LR) test p-value compares non-stationary models with the stationary 
distribution. 
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Materials and Methods 
 
Tornado data  

U.S. tornado report data come from NOAA’s Storm Prediction Center (22). We 
consider only reports of tornadoes within the contiguous United States (CONUS) rated 
F1 and greater on the Fujita scale, or rated EF1 and greater on the Enhanced Fujita scale, 
and denoted here as E/F1+ tornadoes. There are no significant trends or apparent 
discontinuities in the annual number of tornadoes rated F1 or EF1 and greater (3). We 
make no further distinctions according to rating. Tornado start times are sorted in 
chronological order (accounting for time zone), and clusters of tornado reports are 
formed consisting of those tornadoes whose start time is no more than 6h after that of the 
previous tornado. Clusters with 6 or more E/F1+ tornadoes are defined as outbreaks (1). 
We define extreme outbreaks as outbreaks with 12 or more E/F1+ tornadoes. The tornado 
reports begin in 1950, but have known problems of quality prior to 1954 (8), and most of 
the analysis here is restricted to the 51-yr period 1965-2015. 
 
Environmental data  

Daily averages of 0-180 hPa convective available potential energy (CAPE) and 0-
3km storm relative helicity (SRH) interpolated to a 1◦ × 1◦ lat-lon grid are taken from the 
North American Regional Reanalysis (23) for the period 1979-2015. We use a two-part 
(occurrence and number of tornadoes) environmental proxy for outbreaks (5). The 
environmental proxy for occurrence is that the daily value of the product of CAPE and 0-
3km SRH exceeds 160,000 m2 s−2 J kg−1. The environmental proxy for number of 
tornadoes conditional on the environmental occurrence proxy is CAPE × SRH2/(3.6 × 106 
m4 s−4 J kg−1), a unitless quantity normalized to match approximately the average number 
of outbreaks per year. We define extreme environments as ones where the environmental 
proxy for number of tornadoes exceeds 12, though the main results are not sensitive to 
this choice.  
 
Climate indices  

Annual averages are computed from monthly values of the Pacific Decadal 
Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO; unsmoothed) indices 
taken from NOAA’s Earth System Research Laboratory (24). The CONUS annual 
average temperature anomaly (based on the nClimDiv dataset) comes from NOAA’s 
National Centers for Environmental Information (25).  

 
Quantile regression  

The median minimizes the sum of the absolute value of differences between itself 
and the data, while the mean minimizes the sum of the squares of differences between 
itself and the data. Analogously, quantile regression estimates conditional percentiles by 
minimizing weighted absolute residuals rather than squared residuals (26). Quantile 
regression uses the data from all years, in contrast to the alternative procedure of fitting a 
linear trend to percentiles computed separately for each year, though the results from the 
two approaches should be similar given sufficient data (27). Since the numbers of 
tornadoes per outbreak are integers, the quantile regression loss function being minimized 
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is discontinuous, and uniformly distributed random “jitter” on the interval [−0.5, 0.5] are 
added to smooth the data (28). Bootstrap confidence intervals (with bias correction and 
acceleration) for the quantile regression coefficients are computed from 5000 bootstrap 
samples. Independent jitter samples are used for each bootstrap sample. 
 
Extreme value analysis: Annual maxima  

Extreme value theory indicates that the generalized extreme value (GEV) 
distribution is asymptotically appropriate for modeling block maxima (29). Here we use 
the GEV distribution to approximate the distribution of the annual maxima of the number 
of tornadoes per outbreak. The location µ, scale σ and shape ξ parameters of the GEV 
distribution are found by maximum likelihood (ML) estimation, and approximate 
standard errors and confidence intervals follow from the asymptotic normality of the ML 
estimates. The return level zp of the GEV distribution for return time !

"
 is 

 
𝑧" = 𝜇 −	(

)
1 − 𝑦"

,) ,					𝜉 ≠ 0,     (1) 
 

where yp = − log (1 − p). Equivalently, zp is the 100(1 − p)-th percentile of the 
distribution of annual maxima. We introduce nonstationarity in the GEV distribution by 
allowing its parameters to be functions of the year t. For instance, we allow the location 
parameter to have linear trend in time by taking  
 

µ = µ2 + µ!𝑡. 
 
Again we estimate the constants µ0 and µ1 by ML. Approximate standard errors and 
confidence intervals follow from the asymptotic normality of the ML estimates. The 
model with no trend (µ1 = 0) is a special case of the general model. A likelihood ratio 
(LR) test can be used to decide if the improvement in fit from having a nonzero trend 
parameter is statistically significant.  
 
Annual maxima of the number of tornadoes per outbreak  

The annual maxima of tornadoes per outbreak in 1974 and 2011 are at the edge and 
outside, respectively, of the 95% confidence intervals for the return levels of a GEV 
distribution fitted to outbreak data 1965-2015 (Fig. S1a). The annual maximum for 2011 
has an estimated return period of several hundred years. The shape parameter is positive 
and less than 0.5 indicating unbounded heavy tails, but finite mean and variance. 
Including a trend in the GEV location parameter µ improves the fit to the data and the 
improvement is statistically significant according to the likelihood ratio test. Estimated 
GEV parameters, their standard errors and the results of the likelihood ratio test com- 
paring stationary and nonstationary distributions are given in Table S1. However, a trend 
in the location parameter results in a nonstationary distribution with percentile trends that 
are independent of percentile probability, or equivalently, with return levels that have the 
same trends for all return periods (see Eq. S1 and Fig. S1b). This behavior is not 
consistent with that of the data in Fig. 1.  

Allowing a linear trend in the scale parameter σ gives percentile trends that depend 
on percentile probability, but the estimate of the trend in the scale parameter is negative 
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with 95% confidence intervals that include zero (Table S1), and the improvement in fit is 
not statistically significant by the likelihood ratio test. A negative trend in the scale 
parameter means that return levels decrease with time (Fig. S1c), which is not realistic. 
Allowing a linear trend in the shape parameter ξ gives percentile trends that increase with 
percentile probability (Fig. S1d), but the 95% confidence interval of the trend estimate 
includes zero (Table S1), and the improvement in fit is not statistically significant by the 
likelihood ratio test. Including trends in either the scale or the shape parameters, in 
addition to the trend in the location parameter, neither improves the overall performance 
nor is the improvement statistically significant according to the likelihood ratio test (not 
shown). We conclude that none of these GEV distributions adequately describes the data.  
 
Extreme value analysis: Peaks over threshold  

The “peaks over threshold” (POT) approach is an alternative to the analysis of block 
maxima. It considers exceedances over some large threshold, here outbreaks with more 
tornadoes than some specified value. An advantage of the POT method is that more data 
enter the analysis than in the analysis of annual maxima. Asymptotic theory says that for 
a large enough threshold u, the generalized Pareto (GP) distribution approximates the 
distribution of exceedances (Y − u) conditional on Y > u (29). The GP distribution 
parameters are the threshold u, a scale parameter 𝜎 and a shape parameter ξ. These 
parameters are related (at least asymptotically) to those of the GEV distribution because 
the shape parameters ξ are the same and the scale parameters are related by 𝜎 = 𝜎 +
	𝜉(𝑢 − 𝜇). For the GP, the N-year return level zN is  

 
𝑧: = 𝑢 +	(

)
[ 𝑁𝑛>

,) − 1] , 
 

where 𝑛> is the average number of exceedances per year. Linear trends in the GP 
parameters (as functions of time or climatic indices) are introduced and estimated as for 
the GEV distribution. The analysis of peaks over threshold requires choosing a threshold 
that is large enough that the asymptotic theory applies and small enough that sufficient 
data remain for estimation. We consider integer thresholds and make a so-called 
continuity correction by adding 0.5 to the observed number of tornadoes per outbreak. 
The results are similar if random numbers uniformly distributed on the interval zero to 
one are added. The GP estimated scale (reparameterized as 𝜎∗ = 𝜎 − 𝜉𝑢 so that it is not 
intrinsically a function of threshold) and shape parameter 𝜉 are shown as functions of the 
threshold in Figs. S2a and b, respectively. For thresholds ≥ 8, both quantities show little 
variation relative to their uncertainty. Overall, point estimates of the shape parameter 
decrease as the threshold increases. For thresholds in the range of 8-12, the GP shape 
parameter is around 0.3 and consistent with the GEV estimated shape parameter. None of 
the main results is particularly sensitive to this choice. Thresholds ≥ 8 give similar 
results.  
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Fig. S1. 
GEV return levels. Number of tornadoes per outbreak for a GEV distribution with (a) 
constant parameters (the circles show the observed annual maximum number of 
tornadoes per outbreak, one circle per year), (b) a linear trend in the location parameter, 
(c) a linear trend in the scale parameter and (d) a linear trend in the shape parameter. The 
dashed lines in (a) are 95% confidence intervals for the return level estimated by the delta 
method. 
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Fig. S2 
Threshold selection. (a) Reparameterized scale and (b) shape parameters of the 
generalized Pareto distribution fitted to the number of tornadoes per outbreak as a 
function of threshold. Vertical lines indicate 95% confidence intervals; open circles 
indicate medians of bootstrap estimates. (c) The autocorrelation function for the number 
of tornadoes per extreme outbreak (outbreaks with 12 or more E/F1+ tornadoes) as a 
function of the lag between extreme outbreaks measured in number of extreme outbreaks, 
not in chronological time. Dashed lines indicate the 95% significance level. 
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Fig. S3 
Quantile-quantile plot. Standardized (exponential) quantiles of the data and the 
generalized Pareto distribution with a linear trend in the scale parameter. Solid lines show 
2.5 and 97.5 percentiles of the data quantiles of 5000 samples of the fitted distribution.  
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Fig. S4 
Indices of multidecadal climatic variability. Annual time series 1965-2015 of (a) the 
Atlantic Multidecadal Oscillation (AMO), (b) the Pacific Decadal Oscillation (PDO) and 
(c) the contiguous United States (CONUS) temperature anomaly. 
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Fig. S5 
Environments. Percentiles of (a) CAPE and (b) SRH conditional on the environmental 
occurrence proxy (see Methods for definition). (c) Percentiles of the proxy for the 
number of tornadoes per outbreak. (d) Linear growth rate (ordinary least squares 
estimates of slope and 95% confidence intervals) of the proxy for the number of 
tornadoes per outbreak as a function of percentile. The 95% confidence interval of the 
20th percentile linear growth rate includes zero and is omitted.  
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Table S1. 
Generalized Extreme Value distribution parameters. Parameters are estimated from 
the annual maxima of the number of tornadoes per outbreak 1965-2015. For each model 
the negative log likelihood (NLL) is indicated. The likelihood ratio (LR) test p-value is 
shown for models with trends, comparing that model to the stationary GEV distribution. 
  
 
	 𝜇2	 𝜇!	 𝜎2	 𝜎!	 𝜉2	 𝜉!	
Stationary	(NLL=221)	 	 	 	 	 	 	
Maximum	likelihood	estimates	 34.44	 −	 14.12	 −	 0.19	 −	
Standard	error	estimates	 2.23	 −	 1.74	 −	 0.11	 −	
	 	 	 	 	 	 	
𝜇 = 𝜇2 +	𝜇!𝑡	(NLL=217)	 	 	 	 	 	 	
LR	p-value=0.004	 	 	 	 	 	 	
Maximum	likelihood	estimates	 26.13	 0.33	 12.66	 −	 0.23	 −	
Standard	error	estimates	 3.24	 0.10	 1.60	 −	 0.11	 −	
	 	 	 	 	 	 	
𝜎 = 	𝜎2 +	𝜎!𝑡	(NLL=220)	 	 	 	 	 	 	
LR	p-value=0.2	 	 	 	 	 	 	
Maximum	likelihood	estimates	 35.81	 −	 18.23	 -0.16	 0.23	 −	
Standard	error	estimates	 2.27	 −	 3.57	 0.10	 0.12	 −	
	 	 	 	 	 	 	
𝜉 = 	 𝜉2 +	𝜉!𝑡	(NLL=221)	 	 	 	 	 	 	
LR	p-value=0.6	 	 	 	 	 	 	
Maximum	likelihood	estimates	 34.75	 −	 13.98	 −	 0.095	 0.0034	
Standard	error	estimates	 2.30	 −	 1.74	 −	 0.18	 0.0061	
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Table S2. 
Outlier sensitivity. As in Table 1 but withholding the maximum value in 2011.   
 
	 𝜎2	 𝜎! 	 𝜉2 	 𝜉!	
Stationary	(NLL=1449)	 	 	 	 	
Maximum	likelihood	estimates	 7.83	 −	 0.26	 −	
Standard	error	estimates	 0.65	 −	 0.068	 −	
	 	 	 	 	
𝜎 = 𝜎2 + 𝜎!𝑡	(NLL=1440)	 	 	 	 	
LR	p-value	=2x10-5	 	 	 	 	
Maximum	likelihood	estimates	 4.95	 0.12	 0.23	 −	
Standard	error	estimates	 0.764	 0.02	 0.062	 −	
	 	 	 	 	
𝜉 = 𝜉2 + 𝜉!𝑡	(NLL=1447)	 	 	 	 	
LR	p-value	=	0.04	 	 	 	 	
Maximum	likelihood	estimates	 7.62	 	 0.14	 0.0048	
Standard	error	estimates	 0.63	 −	 0.089	 0.0032	
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