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ASBTRACT
Taylor’s law, which originated in ecology, states that, in sets of measurements of population density, the
sample variance is approximately proportional to a power of the sample mean. Taylor’s law has been veri-
fied for many species ranging from bacterial to human. Here, we show that the variance V(x) and the mean
M(x) of the primes not exceeding a real number x obey Taylor’s law asymptotically for large x. Specifically,
V(x)∼ (1/3)(M(x))2 as x→ �. This apparently new fact about primes shows that Taylor’s lawmay arise in the
absenceof biological processes, and that patterns discovered inbiological data can suggest novel questions
innumber theory. If theHardy-Littlewood twinprimes conjecture is true, then the identical Taylor’s lawholds
also for twin primes. Taylor’s law holds in both instances because the primes (and the twin primes, given the
conjecture) not exceeding x are asymptotically uniformly distributed on the integers in [2, x]. Hence, asymp-
toticallyM(x)∼ x/2, V(x)∼ x2/12. Higher-ordermoments of the primes (twin primes) not exceeding x satisfy a
generalized Taylor’s law. The 11,078,937 primes and 813,371 twin primes not exceeding 2× 108 illustrate these
results.

1. Introduction

The empirical pattern that has come to be called Taylor’s law
(henceforth TL) originated from ecological studies of the abun-
dance of insect and plant populations (Bliss 1941; Fracker and
Brischle 1944; Hayman and Lowe 1961; Taylor 1961, 1986). TL
states that, in sets of measurements of population density, the
sample variance is usually nearly proportional to a power of the
samplemean. TL has been verified empirically andmodeled the-
oretically for population densities of many species ranging from
bacterial to human. TL also has been confirmed and modeled
for many other nonnegative quantities in fields beyond ecology
(review by Eisler, Bartos, and Kertész 2008), such as agricul-
ture, developmental biology, meteorology, genetics, cancer epi-
demiology, HIV/AIDS epidemiology, demography, computer
science, stock market analysis, currency trading, and physics
(where TL is called variously fluctuation scaling or “big” or
“giant” or “large” number fluctuations). TL has been observed
numerically in mathematical structures such as integer parti-
tions and integer compositions (Xiao, Locey, and White 2015)
and the absolute value of the Mertens function (Kendal and
Jørgensen 2011). To our knowledge, TL has not previously been
demonstrated, numerically or theoretically, for the mean and
variance of the primes or twin primes.

Here, we show that the variance V(x) and the mean M(x)
of the primes not exceeding a real number x obey Taylor’s law
asymptotically for large x. Specifically,

V (x) ∼ a(M(x))b or equivalently

lim
x→∞V (x) (M(x))−b = a

with a = 1/3, b = 2. (1)

CONTACT Joel E. Cohen cohen@rockefeller.edu The Rockefeller University and Columbia University, New York, NY .

Taking the square root of both sides, the coefficient of varia-
tion of the primes not exceeding x, cv(x)≡ V (x)

1
2 /M(x), there-

fore satisfies

lim
x→∞ cv(x) = √

a = √
3/3 ≈ 0.5774. (2)

Why might this matter? To biologists, this apparently new
finding confirms again, as the two previous citations have shown
in other cases, that TL may arise for reasons that have nothing
to do with ecological processes such as birth, death, migration,
or competition. Tomathematicians, this finding confirms again,
as physics has long done, the possible payoff of looking in math-
ematics for novel patterns suggested by biology. To statisticians,
this finding confirms again the power of probabilistic thinking
and statistical analysis in bridging diverse disciplines and pro-
viding essential tools of discovery.

Taylor’s law holds because, as we shall show, as x → �, the
primes not exceeding a real number x are asymptotically uni-
formly distributed on the integers in [2, x].Hence asymptotically
as x → �,

M(x) ∼ x
2
, V (x) ∼ x2

12
. (3)

Higher-order moments of the primes not exceeding x satisfy
a generalization (7) of Taylor’s law to higher-order moments.

To illustrate, the primes not exceeding x = 10 are p1 =
2, p2 = 3, p3 = 5, p4 = 7. For x = 10, the number π(x)
of primes not exceeding x is π(x) = 4, the mean M(x) of those
4 primes isM(x) = 4.25 = (2 + 3 + 5 + 7)/4, and the variance
V(x) of those 4 primes isV(x)= 3.6875= (22 + 32 + 52 + 72)/4–
4.252. This V(x) is the exact variance (the average squared devi-
ation of each prime from the mean), not the unbiased estimate
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of sample variance. The coefficient of variation of the 4 primes
is

√
59/17 (� 0.4518).

A natural number p is defined to be a twin prime if and only
if p is a prime and p+2 is a prime. For example, 3 and 5 are all the
twin primes not exceeding 10. (By this definition, 7 is not a twin
prime because 7 + 2 = 9 is not a prime.) The Hardy-Littlewood
twin prime conjecture (see Equation (6)) specifies a counting
function for the twin primes not exceeding x. Conditional on
the Hardy-Littlewood twin prime conjecture, the twin primes
not exceeding x are asymptotically uniformly distributed on the
integers in [2, x] and, ifM2(x), V2(x), cv2(x) are themean, vari-
ance, and coefficient of variation of the twin primes not exceed-
ing x, then (1), (2), and (3) remain valid withM replaced byM2
and V replaced by V2, and a generalized TL also holds asymp-
totically.

2. Definitions and Prior Results

If f(x) and g(x) are real-valued functions of a real x, then by defi-
nition f(x) is asymptotic to g(x) and we write f (x) ∼ g(x) if and
only if, as x→ �, we have f(x)→ � and g(x)→ � and f(x)/g(x)
→1. The relation “∼” is transitive. We write f (x) = O(g(x))
if and only if, for some real C > 0 and all real x (possibly in a
specified subset), | f (x)| ≤ C|g(x)|. The symbol “�” means “is
defined as.”

We now define TL formally, in three variants: exact (=),
approximate (�), and asymptotic (∼). Suppose a nonnegative
real-valued random variable X(x) whose distribution depends
on a parameter x has mean M(x) and variance V(x). Let X be
the set (finite or infinite) of possible values of x. Then, by defi-
nition, the family {X(x)}x�X satisfies TL if and only if there exist
two constants independent of x, namely, a > 0 and real b, such
that V(x) = a(M(x))b exactly for all x, or V (x) ≈ a(M(x))b
approximately (with error term unstated but small), orV (x) ∼
a(M(x))b asymptotically as x → �.

By a natural extension (Giometto et al. 2015), a family
{X(x)}x�X satisfies a generalized TL in three variants ( = , �,
∼) if and only if there exists a set of real pairs (j, k) including
j = 1, k = 2, and for each such pair (j, k) there exist real con-
stants a jk > 0 and b jk independent of x such that E[(X (x))k]
and a jk(E[(X (x)) j])b jk are equal exactly (=) or approximately
(�) or asymptotically (∼). TL is the special case j = 1, k = 2 of
the generalized TL. Giometto et al. (2015) gave theoretical and
ecological examples of a generalized TL.

Nowwe turn to primes and twin primes. LetN= {1, 2, 3, …}
be the natural numbers, O = N � {0} be the nonnegative inte-
gers, R+ = [0,�) and R2 = [2,∞). Let P = { p1 = 2, p2 =
3, p3 = 5, p4 = 7, . . .} be the primes and P2 = {3, 5, 11,
17, …} = {p ∈ P|p+ 2 ∈ P} be the twin primes. For x ∈
R+, define P(x) ≡ {p ∈ P|p ≤ x}, P2(x) ≡ {p ∈ P2|p ≤ x}.
For any finite set S, define #S as the number of elements in S. By
definition,π(x) ≡ #P(x) is the number of primes not exceeding
x, andπ2(x) ≡ #P2(x) is the number of twin primes not exceed-
ing x. If 0 � x < 2, then π(x) = π2(x) = 0.

For x ∈ R2, the logarithmic integrals are defined by

li(x) ≡
∫ x

2

dt
log t

, li2(x) ≡
∫ x

2

dt(
log t

)2 . (4)

The prime number theorem (e.g., Crandall and Pomerance
2005; Montgomery and Vaughan 2007) states that as nonnega-
tive real x → ∞,

π(x) ∼ li(x). (5)

The Hardy-Littlewood twin prime conjecture (e.g., Crandall
and Pomerance 2005, p. 15, their (1.7); Sebah and Gourdon
2002, p. 5, their (2)) states that, for some constant C2 > 0, as
nonnegative real x → ∞,

π2(x) ∼ 2C2li2(x). (6)

Approximately C2 ≈ 0.6601618158 . . . (Sebah and Gourdon
2002, p. 5). Although li2(x) → ∞ as x → ∞, it has not yet been
proved that π2(x) → ∞ as x → ∞.

We review some elementary information about the uni-
form distribution. By definition, a real-valued scalar random
variable X has the uniform distribution on [0, x], where
x > 0, if and only if, for every r ∈ [0, 1], Pr{X ≤ rx} = r.
If X has the uniform distribution on [0, x], then X has
mean E(X ) = x/2, second raw moment E(X2) = x2/3, vari-
ance var(X ) = E(X2) − (E(X ))2 = x2/12, and coefficient of
variation

√
3/3. For m ≥ 0, the uniform distribution on [0, x]

has mth raw moment E(Xm) = xm/(m + 1) and mth central
moment E((X − x/2)m) = 0 if m is an odd integer (since
the uniform distribution is symmetric about its mean x/2) and
E((X − x/2)m) = xm/cm if m is an even integer, where cm =
2m(m + 1) (which is sequence A058962 in the Online Encyclo-
pedia of Integer Sequences).

Given these moments, it follows that ifX is uniform on [0, x],
then for all x> 0, TL holds exactly, that is,V(x) = ( 13 )(M(x))2 ,
and if j > 0, k � 0, then the generalized TL holds exactly, that
is,

E(Xk) = ( j + 1)
k
j

k + 1
(E(X j))

k
j . (7)

Suppose Y has the uniform distribution on [2, x], that is, for
fixed x > 2 and every r ∈ [0, 1], Pr{Y − 2 ≤ r(x − 2)} = r. If
X has the uniform distribution on [0, x], then, as x → ∞, every
moment of X asymptotically equals the corresponding moment
of Y because Pr{X ∈ (0, 2)} → 0. For example, E(Y ) = 2 +
(x − 2)/2 = 1 + x/2 ∼ E(X ) = x/2.

3. Analytical Results for Primes and Twin Primes

We now interpret the primes and twin primes not exceed-
ing a real number x ∈ R2 as families of random variables.
For every x ∈ R2 and for every p � P(x), define X(x) to
be the random variable that takes the value p � P(x) with
probability 1/π(x). (Recall that π(x) is the number of primes
not exceeding x.) Then for any r ∈ [0, 1], the cumulative
distribution function of X(x) is, by definition, FX (x)(rx) =
Pr{X (x) ≤ rx} and the mean and variance of X(x) areM(x) ≡
E(X (x)) = (p1 + · · · + pπ(x))/π(x) and V (x) ≡ E(X (x)2) −
(E(X (x)))2 = (p21 + · · · + p2π(x))/π(x) − (M(x))2.

Similarly, for every x ∈ R2 and for every p � P2(x), define
X2(x) to be the random variable that takes the value p �
P2(x) with probability 1/π2(x). Then for any r ∈ [0, 1], the
cumulative distribution function of X2(x) is defined to be
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FX2(x)(rx) = Pr{X2(x) ≤ rx} and the meanM2(x) and variance
V2(x) of X2(x) are defined similarly.

Theorem 1. The primes not exceeding x are asymptotically uni-
form on [2, x], that is, for any r ∈ [0, 1], as x → ∞, FX (x)(rx) ∼
r.
Proof. For any x ∈ R2, the number of primes not exceeding x
is π(x), by definition. Therefore, for any r ∈ [0, 1], the number
of primes not exceeding rx is π(rx). Therefore the fraction of
primes not exceeding x that do not exceed rx is

FX (x)(rx) = #P(rx)
#P(x)

= π(rx)
π(x)

.

By the prime number theorem and Lemma A.1 (see
the Appendix), as x → ∞, π(x) ∼ li(x) ∼ x/ log x. Therefore
π(rx) ∼ (rx)/ log(rx) and

π(rx)
π(x)

∼
(

rx
log rx

)
(

x
log x

) = r log x
log x + log r

→ r as x → ∞.

�
Theorem 2. If the Hardy-Littlewood twin prime conjecture (6)
holds, the twin primes not exceeding x are asymptotically uni-
form on [2, x].

Proof. For any x ∈ R2, the number of twin primes not exceed-
ing x is π2(x), by definition. Therefore, for any r ∈ [0, 1], the
number of twin primes not exceeding rx is π2(rx). Therefore,
the fraction of twin primes not exceeding x that do not exceed
rx is #P2(rx)

#P2(x)
= π2(rx)

π2(x)
. If (6) holds, then, as x → ∞, π2(x) ∼

2C2li2(x) ∼ 2C2
x

(log x)2 by Lemma A.1 (the Appendix), and like-
wise π2(rx) ∼ 2C2

rx
(log rx)2 . Therefore,

π2(rx)
π2(x)

∼

(
rx

(log rx)
2

)
(

x
(log x)

2

) = r
(

log x
log x + log r

)2

→ r.

�

This proof remains valid regardless of the value of C2 > 0.

Corollary 1. For any x ∈ R, (1), (2), and (3) hold and (7) holds
asymptotically (not exactly) for the number X(x) of primes not
exceeding x. If the Hardy-Littlewood twin prime conjecture (6)
holds, the same is true for the number X2(x) of twin primes not
exceeding x.

4. Logarithmic Integral Approximations

Crandall andPomerance (2005, pp. 10–11) “note that one useful,
albeit heuristic, interpretation of [the logarithmic integral (4) in
the prime number theorem (5)] is that for random large integers
x the ‘probability’ that x is prime is about 1/ln x.” This perspec-
tive suggests, and rigorous proof provided below will confirm,
an alternative asymptotic expression for the mean and the vari-
ance of the primes (and twin primes) not exceeding x. Define

μ(x) ≡
∫ x

2

t · dt
log(t )

/∫ x

2

dt
log(t )

, (8)

σ 2(x) ≡
∫ x

2

t2 · dt
log(t )

/∫ x

2

dt
log(t )

−(μ(x))2. (9)

Similarly, for the twin primes, define

μ2(x) ≡
∫ x

2

t · dt(
log t

)2
/∫ x

2

dt(
log t

)2 , (10)

σ 2
2 (x) ≡

∫ x

2

t2 · dt(
log t

)2
/∫ x

2

dt(
log t

)2 −(μ2(x))2. (11)

Corollary 2. As x → �,

M(x) ∼ μ(x) ∼ π
(
x2
)

π(x)
∼ x

2
, (12)

V (x) ∼ σ 2(x) . (13)

Moreover, if the Hardy-Littlewood twin prime conjecture (6)
holds, then

M2(x) ∼ μ2(x) ∼ C2(π(x))2

π2(x)
∼ x

2
, (14)

V2(x) ∼ σ 2
2 (x) , (15)

C2(π(x))3

π2(x) π(x2)
∼ 1. (16)

Proof. As M(x) and μ(x) are both asymptotically x/2, they are
asymptotic to one another, and similarly for the other moments.
From the definition (8) and Lemma A.1,

μ(x) ∼ li(x2)
li(x)

∼
x2

2 log x
x

log x
= x

2
∼ M(x).

The prime number theorem also gives li(x2)
li(x) ∼ π(x2)

π(x) . This
proves (12).

Similarly, from the definition (9) and Lemma A.1,

σ 2(x) ∼ li
(
x3
)

li(x)
−
(
li
(
x2
)

li(x)

)2

∼
x3

3 logx ·(
x

log x

) −
(x
2

)2

= x2

12
∼ V (x) .

This proves (13). The proofs of (14) and (15) follow the same
procedure. In the proof of (14), after proving that M2(x) ∼
μ2(x) because both are asymptotic to x/2, one notes that

x
2

=
x2

2(log x)
2

x
(log x)

2

∼ (li(x))2

2li2(x)
∼ C2(π(x))2

π2(x)
.

Finally, (16) follows from dividing (14) by (12). �

5. Numerical Comparisons of Asymptotic Formulas
with Exact Counts

For 31 values of x selected from 10 through 2 × 108, I com-
puted (starting from the “primes” function of Matlab, Release
2015a) the number, mean, variance, and cv of the primes (twin
primes) not exceeding x, the asymptotic approximations to these
quantities based on the ratios of logarithmic integrals, and x/2
and x2/12. The 31 values of x examined were integral rounded
approximations to increments by one-quarter on a log10 scale
from 10 to 108, plus the geometric mean between 108 and
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Table . For selected x, values of the number, mean, variance, and cv of primes not exceeding x, the asymptotic number, mean, variance, and cv based on the logarithmic
integral in the prime number theorem, and the limiting expressions given by the right sides of (). The limiting cv, ., is the same for all x. The notation E+nn means
multiply by +nn.

Column           
x π (x) M(x) V(x) cv(x) li(x) μ(x) σ (x) σ (x)/μ(x) x/ x/

  . . . . . . .  .
,  .  . . .  .  
,  . .E+ . . . .E+ . , .E+
,, , . .E+ . . . .E+ . , .E+
,, , ,, .E+ . . ,, .E+ . ,, .E+
 ,, ,, .E+ . ,, ,, .E+ . ,, .E+
× ,, ,, .E+ . ,, ,, .E+ . E+ .E+

Table . For selected x, values of the number, mean, variance, and cv of twin primes not exceeding x, the asymptotic number, mean, variance, and cv based on the loga-
rithmic integral in the twin primes conjecture, and the limiting expressions given by the right sides of (). The limiting cv, ., is the same for all x.

Column           
x π (x) M(x) V(x) cv(x) li(x) μ(x) σ 

(x) σ (x)/μ(x) x/ x/

  . . . . . . .  .
,  . ,, . . . ,, .  ,,
,  . .E+ . . . .E+ . , .E+
,,  . .E+ . . . .E+ . , .E+
,, , ,, .E+ . . ,, .E+ . ,, .E+
 , ,, .E+ . . ,, .E+ . ,, .E+
× , ,, .E+ . . ,, .E+ .  .E+

2 × 108, namely, 10, 18, 32, 56, 100, 178, 316, 562, 1000, 1778,
3162, 5623, 10,000, 17,783, 31,623, 56,234, 100,000, 177,828,
316,228, 562,341, 1,000,000, 1,778,279, 3,162,278, 5,623,413,
10,000,000, 17,782,794, 31,622,777, 56,234,133, 100,000,000,
141,421,356, 200,000,000. For the sake of brevity, only a subset of
these values of x and associated results are presented in Table 1
for primes and Table 2 for twin primes. All the selected values of
x are represented in Figures 1–3.

For all values of x examined here, M(x) < x/2, that is, the
mean of the primes not exceeding x is less than the asymptotic
mean, which is half of x. The following numerical observations

Figure . As functions of selected values of x, the (a) number, (b) mean, and (c) vari-
ance of primes not exceeding x, according to exact enumeration (marker ×), the
formulas based on the logarithmic integral (marker ©), and (for (b) and (c)) the
asymptotic expressions given by () (marker �). Panel (d) tests the power law ()
by plotting log(variance of primes) as a function of log(mean of primes), using
the same markers. In (d), the markers� are perfectly linear with slope  on log-log
coordinates. The superposition of all three markers in (b), (c), and (d) confirms the
accuracy of the asymptotic expressions.

characterize all but the first five of the 31 values of x examined,
that is, x � 178, but all these inequalities fail to hold for some
smaller values of x. The meanM(x) of the primes not exceeding
x satisfies μ(x) < M(x) and |M(x) − μ(x)| < |x/2 − M(x)|,
that is, the ratio μ(x) of logarithmic integrals approximates
M(x) more closely than the mean of the asymptotic uniform
distribution approximates M(x). Moreover, x/2 − M(x) is
monotonically increasing in x (for this limited selection and
range of x). As for the variance V(x) of the primes, for the
selected values of x � 1000, but not for some smaller values,
x2/12 < V (x) < σ 2(x) and |σ 2(x) −V (x)| < |V (x) − x2/12|,

Figure . As functions of selected values of x, the (a) number, (b) mean, and (c) vari-
ance of twin primes not exceeding x, according to exact enumeration (marker ×),
the formulas based on the logarithmic integral (marker©), and (for (b) and (c)) the
asymptotic expressions given by () (marker �). Panel (d) tests Taylor’s law () by
plotting log(variance of twin primes) as a function of log(mean of twin primes),
using the same markers. In (d), the markers � are perfectly linear with slope  on
log-log coordinates. The superposition of all three markers in (b), (c), and (d) con-
firms the accuracy of the asymptotic expressions.
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Figure . As functions of selected values of x, the coefficient of variation (cv) of the (a) primes and (b) twin primes not exceeding x, according to exact enumeration (marker
×), the formulas based on the logarithmic integral (marker©), and the limiting value . on the right side of () (marker�).

that is, the ratio of logarithmic integrals approximates the actual
variance V(x) more closely than the variance of the asymptotic
uniform distribution approximates V(x). It is tempting to con-
jecture that there exists an integer x0 such that for all x � x0, the
preceding inequalities hold.

Figure 1 plots the number, mean, and variance of the primes
not exceeding selected values of x, according to exact enu-
meration, the formulas based on the logarithmic integral, and
the asymptotic expressions given by the right sides of (3).
Figure 1(d) tests Taylor’s power law (1) by plotting log10(variance
of primes) as a function of log10(mean of primes).

In Table 2 for the twin primes, the only consistent inequal-
ity (for this limited selection and range of x) is that, for x � 32,
M2(x) < x/2, and for x� 103, x/2 − M2(x) increasesmonoton-
ically with x. Figure 2 for twin primes is analogous to Figure 1
for primes, with similar results.

Figure 3 plots the coefficient of variation (cv) of the (a) primes
and (b) twin primes not exceeding the 31 selected values of
x, according to exact enumeration, the formulas based on the
logarithmic integral, and the asymptotic expressions given by
the right side of (2). Evidently, the convergence of the cv to the
limiting value 0.5774 is slow, but for x = 2 × 108 the enumera-
tion (×) agrees with the logarithmic integrals (◦) to better than

one part in 104 for primes and agrees to better than one part in
103 for twin primes.

Comparing the 31 values for primes and twin primes shows
that, for all selected x � 10, μ(x) > μ2(x) and σ (x)/μ(x) <

σ2(x)/μ2(x). For each selected x � 32 (but not for x =
18), M(x) > M2(x), cv(x) < cv2(x). For all selected x � 316,
σ 2(x) < σ 2

2 (x). For all selected x � 17783, V (x) < V2(x). It is
tempting to conjecture that all these inequalities hold for all x
sufficiently large. If these conjectures hold, it is somewhat sur-
prising that Taylor’s law (1) holds with identical parameters for
primes and twin primes.

Table 3 gives, for selected x, the numbers of primes and
twin primes not exceeding x, three asymptotic estimates of their
mean, and the ratio of two such estimates. In Table 3, the num-
bers of primes not exceeding x are from “How Many Primes
Are There?”, by Chris K. Caldwell, https://primes.utm.edu/
howmany.html#table, accessed 2015-10-11, and the numbers of
twin primes not exceeding x are from Sebah and Gourdon
(2002). All other quantities in Table 3 are my computations
using Matlab (Release 2015a). Other counts of primes and twin
primes are available at “Tables of values of pi(x) and of pi2(x)”,
by Tomás Oliveira e Silva, http://sweet.ua.pt/tos/primes.html,
accessed 2016-02-16.

Table . For selected x, values of the number of primes and number of twin primes not exceeding x, their asymptoticmean x/, and the asymptotic estimates of their mean
π(x2)/π(x) from () andC2(π(x))2/π2(x) from (). The last column is asymptotic to  from ().

x π (x) π (x) x/ π(x2)/π(x) C2(π(x))2/π2(x) C2(π(x))3/(π2(x)π(x2))

.E+   .E+   .
.E+   .E+   .
.E+   .E+   .
.E+ ,  .E+ , , .
.E+ , , .E+ , , .
.E+ , , .E+ , , .
.E+ , , .E+ ,, ,, .
.E+ ,, , .E+ ,, ,, .
.E+ ,, ,, .E+ ,,
.E+ ,, ,, .E+ ,,,
.E+ ,,, ,, .E+ ,,,
.E+ ,,, ,,, .E+ ,,,
.E+ ,,, ,,, .E+ ,,,,
.E+ ,,,, ,,, .E+ ,,,,
.E+ ,,,, ,,,, .E+ ,,,,
.E+ ,,,, ,,,, .E+ ,,,,,

https://primes.utm.edu/howmany.html\043table
http://sweet.ua.pt/tos/primes.html
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6. Conclusions and Open Questions

By viewing a classic area of number theory in the light of an eco-
logical pattern, Taylor’s law, we have been led to apparently new
facts about primes and twin primes. This stimulation of mathe-
matics by biology is not a fluke, but a productive strategy (Cohen
2004). This discovery demonstrates, once again, that the bread-
and-butter tools of probability and statistics (e.g., random vari-
ables, the cumulative distribution function, expectation, vari-
ance) matter in seemingly unrelated areas of pure mathematics.
It also gives one more confirmation that Taylor’s law can show
up where it is least expected.

Many further mathematical questions arise from these ele-
mentary results, and the tools of probability and statistics may
prove useful in addressing these questions as well. How fast
does the mean of primes (twin primes) not exceeding x con-
verge to x/2? How fast does the variance of primes (twin
primes) not exceeding x converge to x2/12? How fast do the
mean and variance of primes and twin primes converge to
the asymptotic formulas based on ratios of logarithmic inte-
grals for the mean and variance of primes and twin primes?
Answers to these questions may follow from a more pre-
cise version of the prime number theorem, which bounds the
error of the logarithmic integral approximation (5): for some
C > 0, for all x ∈ R2, π(x) = li(x) + O( f (x)), where f (x) =
x exp(−C(log x)3/5(log log x)−1/5) (Montgomery and Vaughan
2007, p. 194, their eq. (6.28)).

Of the inequalities observed numerically in the comparisons
between exact counts and asymptotic formulas in the previous
section, which are true for all sufficiently large x?

Can any or all of (1), (3), (2) and (7) for primes and their
analogs for twin primes be derived fromHawkins’s random sieve
or other random models of the primes (Lorch and Ökten 2007;
Bui and Keating 2010)?

Which of these results can be extended to prime pairs with
a gap pn+1 − pn other than 2 or to other sequences of primes
(Lorch and Ökten 2007; Bui and Keating 2010)?

In addition to these new questions for mathematics is a ques-
tion for further biological research.Do any processes involved in
generating the primes (and twin primes) have biological coun-
terparts where TL has been observed empirically?

Appendix
Lemma A.1. Form � {0, 1, 2, …}, n � {1, 2, 3, …}, x > 2,

∫ x

2

tm · dt
(log(t ))n

∼ xm+1

(m + 1)(log x)n
.

In particular,

∫ x

2

tm · dt
log(t )

∼ xm+1

(m + 1) log x
∼ li(xm+1),

∫ x

2

t · dt(
log t

)2 ∼ (li(x))2

2
,

∫ x

2

t2 · dt(
log t

)2 ∼ x(li(x))2

3
.

Proof. Integration by parts gives

∫ x

2

tm · dt(
log(t )

)n = xm+1

(m + 1)
(
log x

)n + n
m + 1

∫ x

2

tm+1 · dt
t
(
log(t )

)n+1 −C,

where C= 2m+1/[(m+ 1)(log 2)n]. As x→ �, the ratio of the second term
on the right to the first term on the right approaches 0. �
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