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Markov’s Inequality and Chebyshev’s Inequality for
Tail Probabilities: A Sharper Image

Joel E. COHEN

Markov’s inequality gives an upper bound on the probabil-
ity that a nonnegative random variable takes large values. For
example, if the random variable is the lifetime of a person or a
machine, Markov’s inequality says that the probability that an
individual survives more than three times the average lifetime in
the population of such individuals cannot exceed one-third. Here
we give a simple, intuitive geometric interpretation and deriva-
tion of Markov’s inequality. These results lead to inequalities
sharper than Markov’s when information about conditional ex-
pectations is available, as in reliability theory, demography, and
actuarial mathematics. We use these results to sharpen Cheby-
shev’s tail inequality also.

KEY WORDS: Demography; Lifetime; Reliability; Remaining
life expectancy; Survival curve.

1. INTRODUCTION

In reliability theory, mathematical demography (Keyfitz
1968), and probability theory generally (Feller 1971; Loève
1977; Janson et al. 2000; Haccou et al. 2005), Markov’s in-
equality and Chebyshev’s inequality (Ghosh 2002, Steele 2004,
Haccou et al. 2005) give upper bounds on the probability that a
nonnegative random variable takes large values. Here we derive
Markov’s inequality in simple ways, sharpen it by using infor-
mation about conditional expectations, and interpret it geomet-
rically. We use these results to sharpen Chebyshev’s inequality
also.

Let X be a random variable that takes nonnegative real values
x in R+ = [0, ∞). For x in R+, let F(x):= Prob(X ≤ x) be
the cumulative distribution function (cdf) of X, and let S(x): =
1–F(x) = Prob(X > x) be the complement of the cumulative
distribution function, or the survival function, of X. If X is
lifetime, then S(x) gives the probability of surviving to at least
age x. Assuming no atom of probability at x = 0, we have F(0)
= 0, S(0) = 1, F(∞):= limx→∞ F(x) = 1, S(∞):= limx→∞
S(x) = 0. The average, expectation, or expected value of X
is defined as EX := ∫ ∞

0 xdF (x). Henceforth we assume that
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EX < ∞ and that X is continuous, meaning that its probability
density function f (x) = F′(x) is absolutely continuous (Hong
2012). Then, EX = ∫ ∞

0 xf (x)dx.
Markov’s inequality states that S (x) ≤ EX/x for all x in R+.

Ghosh (2002) established the sharpest statements one can make
about Prob(X ≥ x) for −∞ < x < ∞ for all distributions of
X with EX = μ > 0, var (X) = σ 2 > 0, and Prob(X ≥ 0) =
1. Here we assume nothing about the existence or positivity
of the variance except in Section 5 on Chebyshev’s inequality.
Unlike Ghosh (2002), our purpose here is to sharpen Markov’s
inequality by using information about conditional expectations
of the sort likely to be encountered in actuarial mathematics,
demography, and reliability theory. Our results serve a different
purpose from those of Ghosh (2002), who also gives useful
references to much prior literature.

2. MAIN RESULT: ABC THEOREM

To prove and improve Markov’s inequality, we decompose
EX in the following ABC theorem. Let E(X|X ≤ x) be the
conditional expectation of X given X ≤ x. When X is the lifetime,
E(X|X ≤ x) is the average lifetime of individuals who die at
any age up to and including x. Let E(X − x|X > x) be the
conditional expectation of X–x given X > x. When X is the
lifetime, E(X − x|X > x) is the average remaining duration of
life beyond age x of individuals who have just attained age x.

ABC Theorem. For all x in R+,

EX = F (x)E(X|X ≤ x) + xS(x) + S(x)E(X − x|X > x).

If A = F (x)E(X|X ≤ x), B = xS (x), C = S(x)E(X −
x|X > x), then EX = A + B + C.

A simple but intuitively opaque proof follows quickly from
the definition of conditional expectation: EX = F (x)E(X|X ≤
x) + S(x)E(X|X > x) = F (x)E(X|X ≤ x) + S(x)E(X − x +
x|X > x). Since the expectation is linear in its arguments,
E(X − x + x|X > x) = E (X − x | X > x) + E(x|X > x) =
E(X − x|X > x) + x. Substituting into the previous expression
gives the theorem.

The ABC theorem has a nice geometric interpretation and
derivation. A standard formula (proved in two ways by Hong
(2012)) for the expectation of a nonnegative continuous random
variable X is that

EX =
∫ ∞

0
S(x)dx.
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We use this formula to derive integral expressions for
E(X|X ≤ x) and E(X − x|X > x). The event {X ≤ x} has prob-
ability F(x). Hence, for 0 < a ≤ x, the cdf of X at a conditional
on {X ≤ x} is F(a)/F(x) and the survival function of X at a
conditional on {X ≤ x} is 1 – F(a)/F(x). Applying the formula
above to X conditional on {X ≤ x} then gives

E(X|X ≤ x) =
∫ x

0

(
1 − F (a)

F (x)

)
da =

∫ x

0

[F (x) − F (a)]

F (x)
da

= 1

F (x)

∫ x

0
[S (a) − S (x)] da.

Likewise, the event {X > x} has probability S(x). Hence for
x < a < ∞, the cdf of X – x at a – x conditional on {X > x}
is (F(a) – F(x))/S(x) and the survival function of X – x at a –
x conditional on {X > x} is 1 – (F(a) – F(x))/S(x) = (S(x) –
F(a) + F(x))/S(x) = (1 – F(a))/S(x) = S(a)/S(x). By the same
formula for EX applied to X – x conditional on {X > x}, we
have

E(X − x|X > x) = 1

S (x)

∫ ∞

x

S (a) da.

This formula is well known in actuarial mathematics (e.g., Bow-
ers et al. 1997, p. 68, their eq. (3.5.2)) and demography (e.g.,
Keyfitz 1968, p. 6).

We now decompose EX. For all x in R+,

EX =
∫ ∞

0
S (a) da =

∫ x

0
S (a) da +

∫ ∞

x

S (a) da

= F (x) · 1

F (x)

∫ x

0
S (a) da + S (x) · 1

S (x)

∫ ∞

x

S (a) da

= F (x) · 1

F (x)

∫ x

0
[S (a) − S (x) + S (x)] da

+S (x) E(X − x|X > x)

= F (x)
∫ x

0

[S (a) − S (x)]

F (x)
da

+S(x)
∫ x

0
da + S (x) E(X − x|X > x)

= F (x) E(X|X ≤ x) + x · S(x) + S (x) E(X − x|X > x).

This expression shows that A, B, and C have geometric inter-
pretations as areas under the survival function S(x):

A = F (x)E(X|X ≤ x) =
∫ x

0
[S (a) − S (x)] da

=
∫ x

0
S(a)da − xS (x) ,

B = xS (x) ,

C = S(x)E(X − x|X > x) =
∫ ∞

x

S (a) da.

These three nonnegative quantities are represented by the
areas of the regions labeled A, B, and C, respectively, in the
numerical example given in Figure 1(a) and their sum is EX.
Thus Figure 1(a) illustrates the ABC theorem.

Figure 1. (a). Survival function S(x) (solid line) of the total United
States human population in 2008 as a function of age x (years), and me-
dian age m at death, S(m) = 1/2, m = 82. A = F (x)E(X|X ≤ x), B =
xS (x) , C = S(x)E(X − x|X > x), and EX = A + B + C. (b) A (dot-
ted line), B (solid line), and C (dashed line) as functions of age x (years)
for the total United States human population in 2008. Calculations by
author based on data of Arias (2012).

3. DERIVATION OF MARKOV’S AND SHARPER
INEQUALITIES

Corollary. EX is greater than or equal to the sum of any subset
of {A, B, C} for all x in R+ (assuming an empty subset has sum
zero).

In particular, EX ≥ B = xS(x) for all x ≥ 0. Dividing this by
x gives Markov’s inequality EX/x ≥ Prob(X > x). Although
this proof of Markov’s inequality is longer than some purely
analytical alternatives (e.g., Ghosh 2002), Figure 1(a) gives an
easily remembered, intuitively appealing visualization of why
Markov’s inequality is true: the area under the solid curve EX is
greater than or equal to the area B = xS(x) of the rectangle (with
base x and height S(x)) bounded by the dashed lines and the axes.

Figure 1(a) also suggests intuitively why limx→∞ xS(x) = 0,
which Hong (2012) proved rigorously without interpretation.
The total area under S(x) from x = 0 to x = ∞ is the life
expectancy, which we assumed to be finite. From Figure 1(a), it
seems clear intuitively that as x → ∞, A → EX, B = xS(x) →
0, and C → 0.
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The corollary implies two sharpenings of Markov’s inequal-
ity. We propose to call these inequalities Hansel and Gretel
(which are the names of characters in a German fairy tale pub-
lished by the Brothers Grimm in 1812 and dramatized in an
opera and a movie) because these siblings, offspring of a sim-
ple father, follow an interesting path. From EX ≥ B + C (an
inequality previously derived by Cohen 2011), we get Hansel:

EX

x + E(X − x|X > x)
≥ Prob (X > x) .

From EX ≥ A + B, using F(x) = 1 – S(x), we get Gretel:

EX − E(X|X ≤ x)

x − E(X|X ≤ x)
≥ Prob(X > x).

The three upper bounds in Markov’s inequality, Hansel,
and Gretel exceed 1 for some combinations of cdf and x. In
such cases, the inequalities give no useful information about
Prob(X > x).

Other paths also lead to Hansel and Gretel. For exam-
ple, to prove Hansel, observe that EX ≥ E(X · 1{X>x}) =
E[(X − x + x) · 1{X>x}] = E (X − x|X > x) P (X > x) +
xP (X > x), equivalent to Hansel.

The remaining four cases of the corollary are less interest-
ing. EX ≥ A + B + C is always an equality. EX ≥ A gives
a trivial bound, S(x) ≥ 0. EX ≥ C yields EX/E(X − x|X >

x) ≥ Prob(X > x) and the ratio on the left of this inequal-
ity may be greater or less than 1. From EX ≥ A + C, if
E(X − x|X > x) − E(X|X ≤ x) > 0, then

EX − E(X|X ≤ x)

E(X − x|X > x) − E(X|X ≤ x)
≥ Prob(X > x).

But if E(X − x|X > x) − E(X|X ≤ x) < 0, then we get a
lower bound on S(x).

4. ILLUSTRATION OF INEQUALITIES BY
U.S. LIFETIME

We illustrate Markov’s inequality, Hansel and Gretel when X
is interpreted as the length of human life in the United States,
using data from 2008 (Arias 2012, table 1). The National Cen-
ter for Health Statistics used death certificates and population
estimates to estimate S(x), the fraction of people who would
survive from birth to age x according to age-specific death
rates in the United States in 2008 (solid descending curve in
Figure 1(a)). All the following numerical values are approxi-
mate because the number of deaths at ages 100 and over was
small. Expectations of remaining life at very advanced ages
were not directly measurable. All values here are rounded to the
nearest whole year.

Life expectancy at birth in 2008 was the area under the curve
S(x). Crudely estimating this quantity by summing the tabu-
lated values of S(x) for the 101 values x = 0, 1, . . . , 100 gives
approximately EX = 79 years. (The official life expectancy at
birth was 78.1 years.) The median lifetime m is defined as the
lifetime at which half of newborns would survive, that is, m is
the solution for x of S(x) = 1/2. Approximately, m = 82 years,
which is where the vertical dashed line through the point S(x) =

1/2 intersects the x-axis. To illustrate A, B, and C numerically,
we set x = m = 82 years. Then B = m·S(m) = 82/2 = 41 years
and Markov’s inequality becomes 79/82 ≈ 0.96 ≥ 1/2. Hansel
becomes 79/[82 + 8] ≈ 0.88 ≥ 1/2, which is an upper bound
on 1/2 that is closer than Markov’s inequality provides. Since
A = F (m)E(X|X ≤ m) = 34, we have E(X|X ≤ m) = 2 × 34
= 68 and Gretel becomes [79 – 68]/[82 – 68] ≈ 0.79 ≥ 1/2,
which is still better. At some ages x other than m, it appears
numerically that Hansel is better than Gretel.

5. APPLICATIONS TO CHEBYSHEV’S INEQUALITY

Markov’s inequality gives a very easy proof of Chebyshev’s
famous inequality (Ghosh 2002, Steele 2004, p. 86) for tail
probabilities. Hansel and Gretel can follow the same path. Let
Z be a random variable with finite mean μ = EZ and finite
variance σ 2 = E(|Z − μ|2). Then X = (Z – μ)2 is nonnegative
and EX = σ 2. Substituting this X into Markov’s inequality gives
σ 2/x ≥ Prob

(
(Z − μ)2 > x

)
for all x in R+. Steele (2004, p.

247, Solution to Exercise 5.11) gives an equivalent proof. Using
X = (Z – μ)2, Hansel and Gretel give, respectively,

σ 2

x + E((Z − μ)2 − x| (Z − μ)2 > x)
≥ Prob

(
(Z − μ)2 > x

)
,

σ 2 − E( (Z − μ)2 | (Z − μ)2 ≤ x)

x − E( (Z − μ)2 | (Z − μ)2 ≤ x)
≥ Prob

(
(Z − μ)2 > x

)
.

[Received February 2014. Revised September 2014]
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