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CAUCHY INEQUALITIES FOR THE SPECTRAL RADIUS OF

PRODUCTS OF DIAGONAL AND NONNEGATIVE MATRICES
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(Communicated by Walter Craig)

Abstract. Inequalities for convex functions on the lattice of partitions of
a set partially ordered by refinement lead to multivariate generalizations of
inequalities of Cauchy and Rogers-Hölder and to eigenvalue inequalities needed
in the theory of population dynamics in Markovian environments: If A is an
n× n nonnegative matrix, n > 1, D is an n× n diagonal matrix with positive
diagonal elements, r(·) is the spectral radius of a square matrix, r(A) > 0, and
x ∈ [1,∞), then rx−1(A)r(DxA) ≥ rx(DA). When A is irreducible and ATA
is irreducible and x > 1, then equality holds if and only if all elements of D
are equal. Conversely, when x > 1 and rx−1(A)r(DxA) = rx(DA) if and only
if all elements of D are equal, then A is irreducible and ATA is irreducible.

1. Introduction

The aim of this paper is to establish some inequalities for the spectral radius,
dominant eigenvalue, or Perron-Frobenius root of certain nonnegative matrices. In
the following sections, we first discuss inequalities for convex functions on a lattice
of partitions, then inequalities for the spectral radius of nonnegative matrices. The
proofs follow in a separate section. The remainder of this Introduction explains the
motivation and use of these inequalities.

In modeling stochastic population growth as a Markovian multiplicative (rather
than additive) random walk, we let N(t) > 0 represent the (real scalar) number
of individuals in a population at time t ∈ N = {0, 1, 2, . . .}. For t > 0, we assume
N(t) = G(t − 1)G(t − 2) · · ·G(0)N(0), where the growth factors G(t), t ∈ N take
values from a finite set d1, . . . , dn of positive numbers. Values of G(t) are selected
by a homogeneous stationary n-state Markov chain with column-to-row transition
matrix A according to Pr{G(t+1) = di|G(t) = dj} = aij , t ∈ N, Pr{G(0) = di} =
πi > 0, i, j = 1, . . . , n, and if A = (aij)

n
i,j=1, π = (π1, . . . , πn)

T (π is a column
n-vector), then Aπ = π, i.e., π is the stationary distribution of the Markov chain.
The sum of each column of A is 1.

Let D = diag(d1, . . . , dn) be a diagonal matrix with dii = di. The possible values
of the growth factors di are along the diagonal. The asymptotic long-run growth
rate of the pth moment of N(t), p ∈ R, is given by limt→∞

1
t logE[(N(t))p] =

log[r(DpA)] [3]. By definition, the variance of N(t) is V ar(N(t)) = E(N2(t)) −
[E(N(t))]2. Because V ar(N(t)) ≥ 0 by Cauchy’s inequality [13], we have r(D2A) ≥
[r(DA)]2 [14]. We needed a sufficient condition that r(D2A) > [r(DA)]2 to establish
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that the asymptotic long-run growth rate of the variance satisfies

(1.1) lim
t→∞

1

t
log V ar(N(t)) = log r(D2A) > −∞.

When r(D2A) > [r(DA)]2, the rate of growth of E(N2(t)) dominates the rate of
growth of [E(N(t))]2, hence [r(DA)]2 is absent from (1.1) [3]. The question of
determining when r(D2A) > [r(DA)]2 was the origin of this study. The answer is
in Corollary 3.5 and the discussion that follows.

2. Convex functions and a lattice of partitions

A convex cone X is defined as a subset of a vector space over R that is closed
under linear combinations with positive coefficients. A real-valued function f on a
convex cone X is defined to be convex if, for any w ∈ [0, 1] and any two distinct
elements x, y ∈ X, x �= y, f(wx+(1−w)y) ≤ wf(x)+(1−w)f(y), and f is defined
to be strictly convex if the inequality is strict when 0 < w < 1.

Let m ∈ N, m > 1. A partition of Sm = {1, . . . ,m} is a set of p ≥ 1, p ∈ N

nonempty mutually exclusive subsets Pi, i = 1, . . . , p of Sm whose union is Sm.
Each subset Pi in P is called a part of the partition P and p is the number of
parts. We write P = {P1, . . . , Pp}, where

⋃p
i=1 Pi = P and Pi ∩ Pj = ∅. If

Q = {Q1, . . . , Qq} is a partition of Sm with q ∈ N parts, we say that Q is a
refinement of P and we write P ≥ Q if and only if (using i to index the parts of P
and j to index the parts of Q) for every j = 1, . . . , q there exists i ∈ Sp such that
Qj ⊆ Pi. The lattice of partitions of Sm is defined as the set of all partitions of Sm

together with their partial ordering by the relation of refinement.

Example (Part 1). If m = 3, the partitions are partially ordered from most refined
(at the bottom) to least refined (at the top) as:

{{1,2,3}}
{{1} {2, 3}} {{2},{1, 3}} {{3},{1, 2}}

{{1},{2},{3}}

Each partition in this table is a refinement of every partition in any row above
its row, e.g., {{1, 2, 3}} ≥ {{2}, {1, 3}} ≥ {{1}{2}{3}} but partitions in the same
row are not related by refinement.

Theorem 2.1. Let P = {P1, . . . , Pp} and Q = {Q1, . . . , Qq} be partitions of Sm

with P ≥ Q. Let X be a convex cone and let xh, h = 1, . . . ,m be m distinct points
in X. Let f be a convex function on X. Also let wh > 0, h = 1, . . . ,m, satisfy∑m

h=1 wh = 1. Define

(2.1) w(Pi) =
∑
h∈Pi

wh, i = 1, . . . , p, w(Qj) =
∑
h∈Qj

wh, j = 1, . . . , q.

By definition, no part of any partition is an empty set, hence all these weights are
positive and

(2.2)

q∑
j=1

w(Qj)f

( ∑
h∈Qj

whxh

w(Qj)

)
≥

q∑
i=1

w(Pi)f

(∑
h∈Pi

whxh

w(Pi)

)
.

If f is strictly convex, then the inequality is strict.
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Example (Part 2). Corresponding to the above partial ordering of partitions is
a partial ordering of functionals of the convex function f , least at the top and
greatest at the bottom. If f is strictly convex, the ordering increases strictly from
top to bottom. We omitted the partitions {{1}{2, 3}} and {{3}, {1, 2}}, as the
corresponding functionals may be obtained by permuting the subscripts in the
second row.

{{1,2,3}} ⇔ f(w1x1 + w2x2 + w3x3)

{{2},{1,3}} ⇔ w2f(x2) + (w1 + w3)f
(

w1x1+w3x3

w1+w3

)
{{1},{2},{3}} ⇔ w1f(x1) + w2f(x2) + w3f(x3)

3. Convex functions of nonnegative matrices

Let m,n ∈ N, m, n > 1. All matrices here are n×n real unless n×m is specified.
A matrix is nonnegative if each element is nonnegative real. A nonnegative matrix
is column-stochastic if the sum of each column is 1. A nonnegative matrix A is
irreducible if for each row i and each column j with 1 ≤ i, j ≤ n, there exists an
integer p such that (Ap)ij > 0. The transpose of A is AT . A nonnegative matrix A
is two-fold irreducible if A is irreducible and ATA is irreducible [2, Definition 22].
A matrix is positive, A > 0, if all its elements are positive.

A matrix is diagonal if all elements off the main diagonal are 0. A matrix
is positive diagonal if it is diagonal and all elements on the main diagonal are
positive. Let Dn be the set of diagonal matrices and let D+

n be the set of positive
diagonal matrices. A one-to-one correspondence between Dn and D

+
n is given by

D
+
n = exp(Dn). A positive diagonal matrix is scalar if all its diagonal elements

equal some positive real number.
The spectral radius r(A) of a matrix A is the maximum of the magnitudes

(absolute values) of the eigenvalues of A. For any two matrices A, B, r(AB) =
r(BA) and for any constant c > 0, r(cA) = cr(A) and r(Ac) = rc(A) ≡ (r(A))c. If
A is irreducible, then r(A) > 0 but not conversely.

Theorem 3.1. Let A be a nonnegative matrix such that r(A) > 0. Let D(1), D(2),
. . . , D(m) ∈ D

+
n . Let P = {P1, . . . , Pp} and Q = {Q1, . . . , Qq} be partitions of Sm

with P ≥ Q. Define the weights w as in Theorem 2.1 and (2.1). Then

(3.1)

q∏
j=1

rw(Qj)

⎛
⎝[ ∏

h∈Qj

D(h)wh

] 1
w(Qj)

A

⎞
⎠ ≥

p∏
i=1

rw(Pi)

([ ∏
h∈Pi

D(h)wh

] 1
w(Pi)

A

)
.

If, for each Pi ∈ P , there exists Di ∈ D
+
n such that, for every part Qj ⊆ Pi,

[
∏

h∈Qj
D(h)wh ]

1
w(Qj) is a scalar multiple of Di, then equality holds. If A is two-

fold irreducible, then equality holds only if, for each Pi ∈ P , there exists Di ∈ D
+
n

such that, for every part Qj ⊆ Pi, [
∏

h∈Qj
D(h)wh ]

1
w(Qj) is a scalar multiple of Di.

Conversely, when equality holds only if, for each Pi ∈ P , there exists Di ∈ D
+
n such

that, for every part Qj ⊆ Pi, [
∏

h∈Qj
D(h)wh ]

1
w(Qj) is a scalar multiple of Di, then

A is two-fold irreducible.
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Example (Part 3). Corresponding to the above partial ordering of functionals of
the convex function f , the following ordering of functionals of the spectral radius
r(·) is greatest at the bottom and least at the top:

{{1,2,3}} ⇔ r
(
D(1)w1D(2)w2D(3)w3A

)
{{2},{1, 3}} ⇔ rw2(D(2)A)rw1+w3

(
[D(1)w1D(3)w3 ]

1
w1+w3 A

)
{{1},{2},{3}} ⇔ rw1(D(1)A)rw2(D(2)A)rw3(D(3)A)

If we set wh = 1
3 , h = 1, 2, 3, replace each D(h)1/3 by D(h), and then cube the

left, middle, and right members of the inequalities, we get r3(D(1)D(2)D(3)A) ≤
r(D(2)3A)r2([D(1)3D(3)3]

1
2A) ≤ r(D(1)3A)r(D(2)3A)r(D(3)3A). If all the D(h)

are scalar multiples of some fixed D ∈ D
+
n , then equality holds on the left and the

right. When A is two-fold irreducible, equality holds on the left if and only if, for
some c > 0, D(2) = c[D(1)D(3)]1/2, and equality holds on the right if and only if,
for some c > 0, D(1) = cD(3).

Corollary 3.2. Let P = {P1, . . . , Pp} and Q = {Q1, . . . , Qq} be partitions of Sm

with P ≥ Q. Define the weights w as in Theorem 2.1 and (2.1). Let X be a positive
n×m matrix with element xgh > 0 in row g and column h. Then

(3.2)

q∏
j=1

n∑
g=1

[ ∏
h∈Qj

xwh

gh

] 1
w(Qj)

≥
p∏

i=1

n∑
g=1

[ ∏
h∈Pi

xwh

gh

] 1
w(Pi)

.

Equality holds if and only if, for each Pi ∈ P , for every part Qj ⊆ Pi, the vectors
with n elements [ ∏

h∈Qj

xwh

gh

] 1
w(Qj)

, g = 1, . . . , n,

are scalar multiples of one another.

A special case of (3.2) with P = {{1, 2, . . . ,m}} and Q = {{1}, {2}, . . . , {m}} is
[13, p. 152, Eq. (9.35)].

Example (Part 4). Corresponding to the above ordering of functionals of the
spectral radius r(·), the following quantities are greatest at the bottom and least at
the top. If column 3 of X is proportional to column 1, but neither is proportional
to column 2, then the second and third rows are equal and both exceed the first.

{{1,2,3}} ⇔
∑n

g=1 x
w1
g1 x

w2
g2 x

w3
g3

{{2},{1, 3}} ⇔ (
∑n

g=1 xg2)
w2

(∑n
g=1[x

w1
g1 x

w3
g3 ]

1
w1+w3

)w1+w3

{{1},{2},{3}} ⇔ (
∑n

g=1 xg1)
w1(

∑n
g=1 xg2)

w2(
∑n

g=1 xg3)
w3

If we set wh = 1/3, h = 1, 2, 3, replace each x
1/3
gh by xgh, and then cube all

terms, we get multivariate versions of Hölder’s inequality [13, p. 151]:( n∑
g=1

xg1xg2xg3

)3

≤
( n∑

g=1

x3
g2

)( n∑
g=1

[xg1xg3]
3
2

)2

≤
( n∑

g=1

x3
g1

)( n∑
g=1

x3
g2

)( n∑
g=1

x3
g3

)
.
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Corollary 3.3. Let A be a nonnegative matrix such that r(A) > 0. Let D(1), D(2),
. . . , D(m) ∈ D

+
n . Then

(3.3) r(D(1)mA)r(D(2)mA) · · · r(D(m)mA) ≥ rm(D(1)D(2) · · ·D(m)A).

If, for some D ∈ D
+
n and m positive numbers c1, . . . , cm, D(h) = chD, h = 1, 2,

. . . ,m, then equality holds in (3.3). If A is two-fold irreducible, then equality holds
only if, for some D ∈ D

+
n and m positive numbers c1, . . . , cm, D(h) = chD, h = 1, 2,

. . . ,m. Conversely, when equality holds only if, for some D ∈ D
+
n and m positive

numbers c1, . . . , cm, D(h) = chD, h = 1, 2, . . . ,m, then A is two-fold irreducible.

Corollary 3.4. Let A be a nonnegative matrix such that r(A) > 0. Let D ∈ D
+
n .

Then for any real x ∈ [1,∞),

(3.4) rx−1(A)r(DxA) ≥ rx(DA).

If D is scalar or x = 1, then equality holds. Assume x > 1. If A is two-fold
irreducible, then equality holds only if D is scalar; and conversely, when equality
holds only if D is scalar, then A is two-fold irreducible.

Corollary 3.5. If A is column-stochastic, D ∈ D
+
n , then

(3.5) r(D2A) ≥ r2(DA) = r([DA]2).

If D is scalar, then equality holds. If A is two-fold irreducible, then equality holds
only if D is scalar; and conversely, when equality holds only if D is scalar, then A
is two-fold irreducible.

Assuming A is column-stochastic and irreducible and D is not scalar does not
guarantee strict inequality in (3.5). For example, let d > 1 and

D =

(
d 0
0 1

)
, A =

(
0 1
1 0

)
.

Then A is column-stochastic and irreducible and D is not scalar and for p ∈ (0,∞),

Dp =

(
dp 0
0 1

)
, DpA =

(
0 dp

1 0

)
,

r(DpA) = dp/2; hence r(D2A) = d = [r(DA)]2. Altenberg [2, Theorem 18, Propo-
sition 31] showed that the condition that A be two-fold irreducible cannot be weak-
ened even to the condition that A be primitive, which is stronger than irreducibil-
ity. (A nonnegative matrix A is primitive if for some finite positive integer p, every
element of Ap is positive.)

Corollary 3.6. Let A be a nonnegative matrix such that r(A) > 0. Let D(1), D(2),
. . . , D(m) ∈ D

+
n and let D(1)D(2) · · ·D(m) = I, where I is the identity matrix.

Then

(3.6)
[
r(D(1)A)r(D(2)A) · · ·r(D(m)A)

]1/m ≥ r(A).

If D(h) is scalar for h = 1, 2, . . . ,m, then equality holds. If A is two-fold irreducible,
then equality holds only if every D(h) is scalar, h = 1, 2, . . . ,m. Conversely, if
equality holds only if every D(h) is scalar, h = 1, 2, . . . ,m, then A is two-fold
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irreducible. In particular, if D ∈ D
+
n , then

(3.7)
(
r(DA)r(D−1A)

)1/2 ≥ r(A)

and

(3.8) inf{
(
r(DA)r(D−1A)

)1/2 | D ∈ D
+
n } = r(A).

Corollary 3.6 has interesting consequences that are well known and require no
detailed proof here. First [13, pp. 12-13], if p(i) ≥ 0, x(i) > 0, i = 1, . . . , n, p(1)+
· · ·+p(n) = 1, then (

∑n
i=1 p(i)x(i))(

∑n
i=1 p(i)/x(i)) ≥ 1. Equality holds if and only

if all elements of the set {x(i) | p(i) > 0} are equal. Second, setting x(i) = p(i)/q(i)
gives: if p(i) > 0, q(i) > 0, i = 1, . . . , n,

∑n
i=1 p(i) =

∑n
i=1 q(i) = 1, then∑n

i=1(p(i)
2/q(i)) ≥ 1. Equality holds if and only if all p(i)/q(i) are equal. Third,

if x(i) > 0, y(i) > 0, i = 1, . . . , n are the elements of vectors x, y with sums
X =

∑n
i=1 x(i), Y =

∑n
i=1 y(i), and if the corresponding normalized probability

vectors are px = x/X, py = y/Y , then

(3.9) mx :=
n∑

i=1

px(i)
x(i)

y(i)
≥ my :=

n∑
i=1

py(i)
x(i)

y(i)
=

X

Y
.

Equality holds if and only if all x(i)/y(i) are equal. (To prove, set p(i) = px(i),
q(i) = py(i), i = 1, . . . , n in the previous inequality.) If x(i) is the population size
and y(i) is the land area of province i of a country with n provinces, then x(i)/y(i)
is the population density of province i. The population-weighted mean population
density is mx, the area-weighted mean population density is my, mx ≥ my, and
mx = my if and only if the population density of every province is the same. In
particular, if y(i) = 1, i = 1, . . . , n, then mx ≥ X/n and equality holds if and only
if all x(i) are equal. Inequality (3.9) is known from studies of the distribution of
recurrence times [5, p. 64, Eq. (3)], the length-biased sampling of fibers of yarns
[5, p. 65], the number of students in classes [7, p. 217], the numbers of friends per
person [6, p. 1470], and other social scientific studies [8, pp. 143–144].

Corollary 3.7. For any n × m positive matrix X with element xij > 0 in row i
and column j,

(3.10)
m∏
j=1

n∑
i=1

xm
ij ≥

( n∑
i=1

m∏
j=1

xij

)m
.

Equality holds if and only if X has rank one, i.e., X = dcT .

If m = 2, Corollary 3.7 reduces to Cauchy’s inequality [13, p. 1] limited to
positive numbers. The extension to all real numbers is very easy for m = 2.

Cohen, Friedland, Kato, and Kelly [4, p. 66, Lemma 5] proved that if A and D
are nonnegative n × n matrices and D is diagonal, then r(D2A2) ≥ r2(DA), and
if A2 and ATA are irreducible and D is positive diagonal but not scalar, then
this inequality is strict. Altenberg [2, Theorem 23] proved that A2 and ATA
are irreducible if and only if A is two-fold irreducible. The right side of the in-
equality r(D2A2) ≥ r2(DA) is the same as the right side of (3.4) with x = 2,
which is r(A)r(D2A) ≥ r2(DA), but the left sides differ. Comparing the left
sides, it is easy to find a nonscalar positive diagonal matrix D and a positive ma-
trix A such that r(D2A2) > r(A)r(D2A) and another such D and A such that
r(D2A2) < r(A)r(D2A). Thus neither upper bound on r2(DA) is always better
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than the other for nonscalar positive diagonalD and positive A. In an earlier version
of this paper, we asked for additional conditions on D and A sufficient to guarantee
one or the other ordering r(D2A2) ≥ r(A)r(D2A) ≥ r2(DA) or r(A)r(D2A) ≥
r(D2A2) ≥ r2(DA) and conditions for strict inequality. Lee Altenberg (personal
communication, May 29, 2012) observed that [10, Theorem 5.1] implies that if A is
the column-stochastic transition matrix of an ergodic reversible Markov chain with
all positive eigenvalues, then r(A) = 1 and r(A)r(D2A) ≥ r(D2A2) and equality
holds if and only if D is scalar. Altenberg further remarked that the inequality
will reverse if all the non-Perron eigenvalues of A are negative, an immediate con-
sequence of [1, Theorem 33]. He will develop details elsewhere.

4. Proofs

Proof of Theorem 2.1. First we establish an inequality for a fixed i on the right
side of (2.2) and then we sum over i. Fix i. The partition Q partitions part Pi ∈ P
into pi ≥ 1 parts Q1(i), . . . , Qpi

(i) ∈ Q, where

p∑
i=1

pi = q,

p⋃
i=1

(
Q1(i) ∪ · · · ∪Qpi

(i)
)
= Q,

w(Pi) =

pi∑
g=1

w(Qg(i)),

pi⋃
g=1

Qg(i) = Pi.

For this fixed i,

f

(∑
h∈Pi

whxh

w(Pi)

)
= f

( pi∑
g=1

∑
h∈Qg(i)

whxh

w(Pi)

)
= f

( pi∑
g=1

w(Qg)

w(Pi)

∑
h∈Qg(i)

whxh

w(Qg)

)

(4.1) ≤
pi∑
g=1

w(Qg)

w(Pi)
f

( ∑
h∈Qg(i)

whxh

w(Qg)

)

by convexity of f(·). Multiply by w(Pi) and sum over i to get

(4.2)

p∑
i=1

w(Pi)f

(∑
h∈Pi

whxh

w(Pi)

)
≤

p∑
i=1

w(Pi)

pi∑
g=1

w(Qg)

w(Pi)
f

( ∑
h∈Qg(i)

whxh

w(Qg)

)

=

q∑
j=1

w(Qj)f

( ∑
h∈Qj

whxh

w(Qj)

)
.

If f is strictly convex, then strict inequality holds in (4.1), since all xh, h = 1, . . . ,m
are distinct and all weights are positive, and therefore strict inequality holds in
(4.2). �

The following results depend on this theorem:

Theorem 4.1 (Friedland [9, Theorem 4.2] and Altenberg [2, Theorem 21]). Let A
be a nonnegative matrix such that r(A) > 0. For any C1, C2 ∈ Dn, t ∈ (0, 1),

(4.3) log r(e(1−t)C1+tC2A) ≤ (1− t) log r(eC1A) + t log r(eC2A).

If C2−C1 is scalar, then (4.3) is an equality. Moreover, the following are equivalent:

(1) A is two-fold irreducible (A is irreducible and ATA is irreducible);
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(2) (4.3) is an equality only if C2 − C1 is scalar;
(3) (4.3) is a strict inequality for all C1, C2 ∈ Dn such that C2 − C1 is not

scalar.

The weak inequality in (4.3) follows easily from [11]. We need an obvious gen-
eralization of Theorem 4.1.

Theorem 4.2. Let A be a nonnegative matrix such that r(A) > 0. For any positive
integer m > 1 and any C1, C2, . . . , Cm ∈ Dn and any t1, . . . , tm ∈ (0, 1) such that
t1 + · · ·+ tm = 1,

(4.4) r(et1C1+t2C2+···+tmCmA) ≤ rt1(eC1A) · · · rtm(eCmA),

and in particular when all ti = 1/m,

(4.5) rm(e(C1+C2+···+Cm)/mA) ≤ r(eC1A)r(eC2A) · · · r(eCmA).

If there exist C ∈ Dn and real numbers c1, c2, . . . , cm such that

(4.6) Ch = chI + C, h = 1, 2, . . . ,m,

then equality holds in (4.4) and (4.5). Moreover, the following are equivalent:

(1) A is two-fold irreducible (A is irreducible and ATA is irreducible);
(2) (4.4) is an equality only if (4.6) holds;
(3) (4.4) is a strict inequality for all C1, C2, . . . , Cm ∈ Dn such that for some

Ci, Cj , i �= j, Ci − Cj is not scalar.

Proof of Theorem 3.1. Let Ch = logD(h), h = 1, . . . ,m. Then all Ch ∈ Dn and
Dn is a convex cone. By Theorem 4.2, for C ∈ Dn, if R(C) = log r(eCA), then
R(C) is a convex function of C ∈ Dn. Then from (2.2), replacing f by R, and
replacing xh by Ch, we have successively

q∑
j=1

w(Qj)R

( ∑
h∈Qj

whCh

w(Qj)

)
≥

p∑
i=1

w(Pi)R

(∑
h∈Pi

whCh

w(Pi)

)
,

q∏
j=1

rw(Qj)

⎛
⎝exp

[ ∑
h∈Qj

whCh

w(Qj)

]
A

⎞
⎠ ≥

p∏
i=1

rw(Pi)

(
exp

[∑
h∈Pi

whCh

w(Pi)

]
A

)
,

q∏
j=1

rw(Qj)

⎛
⎝[ ∏

h∈Qj

D(h)wh

] 1
w(Qj)

A

⎞
⎠ ≥

p∏
i=1

rw(Pi)

([ ∏
h∈Pi

D(h)wh

] 1
w(Pi)

A

)
.

Exponentiating both sides of (4.6) and writing D = expC gives the equivalent
condition

expCh = D(h) = (exp ch) expC = (exp ch)D.

Conditions (i) and (ii) of Theorem 4.2 give the claimed necessary and sufficient
condition for equality. �

Proof of Corollary 3.2. Let J be the n × n matrix with all elements equal to 1.
Then J is two-fold irreducible. In Theorem 3.1, set A = J, D(h) =
diag(xgh, g = 1, . . . , n), h = 1, . . . ,m. Since 1TD(h)J =

(∑n
g=1 xgh

)
1T , i.e.,

since all column sums of D(h)J equal
∑n

g=1 xgh, a theorem of Frobenius [12, p. 24]

gives r(D(h)J) =
∑n

g=1 xgh. The conditions for equality restate those in Theo-
rem 3.1. �
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Proof of Corollary 3.3. In Theorem 3.1, let P = {{1, . . . ,m}}, Q={{1}, . . . , {m}},
wh = 1/m, h = 1, . . . ,m. Then P ≥ Q and (3.1) becomes

m∏
j=1

r1/m(D(j)A) ≥ r([

m∏
h=1

D(h)1/m]A).

Raising both sides to the power m gives
m∏
j=1

r(D(j)A) ≥ rm([
m∏

h=1

D(h)1/m]A).

Replacing D(h)1/m with D(h) (so that what was D(j) becomes D(j)m) yields (3.3).
If A is two-fold irreducible, then by Theorem 4.2 applied to Ch = logD(h), h =

1, 2, . . . ,m, equality holds in (3.3) if and only if there exist C ∈ Dn and real numbers
c1, c2, . . . , cm such that Ch = logD(h) = chI + C, h = 1, 2, . . . ,m or equivalently
D(h) = exp ch expC = exp chD, where D = expC. �

Proof of Corollary 3.4. In (3.1), let m = 2, P = {P1} = {{1, 2}}, and Q =
{Q1, Q2} = {{1}, {2}}. Then P ≥ Q. We are given D ∈ D

+
n and a real x ∈ [1,∞).

If x = 1 or D is scalar, then both sides of (3.4) are trivially equal. Henceforth
assume x > 1 and D is not scalar. Define E = Dx. Then E is scalar if and only
if D is scalar, so E is not scalar. Define D(1) = I,D(2) = E,w1 = 1 − 1/x, w2 =
1/x. Because E is not a scalar multiple of I, Theorem 3.1 and (3.1) imply that
r1−1/x(A)r1/x(EA) > r(E1/xA). Raising both sides of the inequality to the power
x and replacing E by Dx give rx−1(A)r(DxA) > rx(DA). �

Proof of Corollary 3.5. If A is column-stochastic, then r(A) = 1. Apply Corol-
lary 3.4 with x = 2. The condition for equality follows from that for Corol-
lary 3.4. �

Proof of Corollary 3.6. Apply Corollary 3.3. By changing variables, E(h)=D(h)m,
h = 1, . . . ,m, in (3.3), and then replacing E(h) by D(h), we have

r(D(1)A)r(D(2)A) · · ·r(D(m)A) ≥ rm
(
D(1)1/mD(2)1/m · · ·D(m)1/mA

)
= rm

(
[D(1)D(2) · · ·D(m)]1/mA

)
= rm(IA) = rm(A).

On the right side of (3.3), D(1)D(2) · · ·D(m) = I by assumption. Inequality (3.7)

is (3.6) with m = 2. Equality (3.8) follows because
(
r(DA)r(D−1A)

)1/2
is a con-

tinuous function of D ∈ D
+
n and as D → I,

(
r(DA)r(D−1A)

)1/2 → r(A). �

Proof of Corollary 3.7. Apply Corollary 3.2 with P = {{1, . . . ,m}}, Q = {{1}, . . . ,
{m}}, wh = 1/m, h = 1, . . . ,m. �
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