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a  b  s  t  r  a  c  t

Taylor’s  power  law  describes  an  empirical  relationship  between  the mean  and  variance  of  population
densities  in  field  data,  in which  the  variance  varies  as  a power,  b, of  the  mean.  Most  studies  report
values  of b  varying  between  1 and  2.  However,  Cohen  (2014a)  showed  recently  that  smooth  changes
in  environmental  conditions  in  a model  can  lead  to  an  abrupt,  infinite  change  in b.  To  understand  what
factors  can  influence  the  occurrence  of an  abrupt  change  in b,  we used  both  mathematical  analysis  and
Monte Carlo  samples  from  a model  in  which  populations  of the same  species  settled  on  patches,  and
each  population  followed  independently  a stochastic  linear  birth-and-death  process.  We  investigated
how  the  power  relationship  responds  to  a smooth  change  of  population  growth  rate,  under  different
sampling  strategies,  initial  population  density,  and  population  age.  We  showed  analytically  that,  if the
initial  populations  differ  only  in  density,  and  samples  are taken  from  all patches  after  the  same  time  period
following  a  major  invasion  event,  Taylor’s  law  holds  with  exponent  b =  1, regardless  of the population
growth  rate.  If  samples  are  taken  at different  times  from  patches  that  have  the  same  initial  population

densities,  we  calculate  an  abrupt  shift  of  b, as  predicted  by  Cohen  (2014a). The  loss  of linearity  between
log  variance  and  log mean  is  a  leading  indicator  of  the  abrupt  shift.  If both  initial  population  densities  and
population  ages  vary  among  patches,  estimates  of  b lie  between  1  and  2, as in most  empirical  studies.  But
the  value  of  b  declines  to ∼1 as the system  approaches  a  critical  point.  Our  results can  inform  empirical
studies  that  might  be  designed  to demonstrate  an  abrupt  shift  in  Taylor’s  law.

© 2014  Elsevier  B.V.  All  rights  reserved.
. Introduction

Taylor’s power law (Taylor, 1961; Taylor et al., 1978, 1980) is a
elationship between the mean and variance of population density
hat has been found in empirical studies. According to this law, the
ariance is a power, b, of the mean; that is, Var(N(t)) = a[E(N(t))]b,
here E(N(t)) is the mean and Var(N(t)) is the variance of population
ensity N(t). Empirical values of b are usually between 1 and 2. A
umber of explanations have been offered for this empirical law
e.g., Gillis et al., 1986; Kilpatrick and Ives, 2003; Kendal, 2004),

ome of which have been reviewed by Engen et al. (2008). The law
as been found to extend far beyond the ecology, where it was first

∗ Corresponding author. Tel.: +1 3055867856.
E-mail address: jjiang@nimbios.org (J. Jiang).

ttp://dx.doi.org/10.1016/j.ecolmodel.2014.06.022
304-3800/© 2014 Elsevier B.V. All rights reserved.
discovered; it describes data from many areas of biology, physics,
and the stock market (Eisler et al., 2008).

Taylor’s law has multiple forms, depending on the sampling
schemes in a space-time diagram (Fig. 1). Assume there are K
patches of distinct populations, where each population is cen-
sused at L points in time (referred to as population ages in this
paper). The form of Taylor’s law depends on how one calculates
means and variances of population density. For a temporal Tay-
lor’s law, one calculates, separately for each of K patches, ln(mean)
and ln(variance) as a point for each row (across time), resulting
in K points. Then the K points are plotted to produce a relation-
ship of ln(variance) vs. ln(mean), as in Kilpatrick and Ives (2003).
For a spatial Taylor’s law, one calculates, separately for each of L

times, ln(mean) and ln(variance) for each column (across space).
The resulting L points are then plotted, as in Taylor et al. (1978,
1980). A hierarchical spatial Taylor’s law calculates ln(mean) and
ln(variance) over subplots within a patch at particular time (within

dx.doi.org/10.1016/j.ecolmodel.2014.06.022
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolmodel.2014.06.022&domain=pdf
mailto:jjiang@nimbios.org
dx.doi.org/10.1016/j.ecolmodel.2014.06.022


60 J. Jiang et al. / Ecological Mode

Fig. 1. A space–time diagram shows K patches (rows) of distinct populations cen-
sused at L points in time (columns) arranged in a K by L matrix. Population densities
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what will be encountered in field studies. First, following Cohen
re  represented as proportional to the size of gray circles, and population ages are
epresented as the distance from the initial time, which is show in the left column.

ne single circle in Fig. 1). Then K points from all the patches are
lotted to examine the variance–mean relationship. In some lab
xperiments, i.e., Petri dishes of bacteria, the “subplots” are repli-
ates and “patches” are treatments or plate environments (Kaltz
t al., 2012; Ramsayer et al., 2012). In these experiments the popu-
ations are usually controlled to have the same population age at
he end of experiments (the last column in the K by L matrix). How-
ver, in field surveys, i.e., plots of trees, one may  lack information on
opulation age, even though the plots are surveyed in the same year
Cohen et al., 2012). In these cases, the sampling scheme is anal-
gous to picking one time of observation for each row (patch) in
he space-time diagram, i.e., as indicated by the illustrative Roman
umerals in Fig. 1. The combined effects of different initial popula-
ion densities and population ages on Taylor’s law have apparently
ot been investigated previously.

Cohen (2014a) recently found an abrupt transition in the expo-
ent b of Taylor’s power law in a model that follows the growth
f a single population in a stochastic environment. Specifically,
e modeled varying environmental conditions (climate) with a
wo-state, discrete-time Markov chain in which the states repre-
ent weather conditions and in which different levels of temporal
utocorrelation of weather conditions from one day to the next
epresent different climates. One state of weather causes popu-
ation growth and the other state of weather causes reductions
n population density. By assuming discrete multiplicative pop-
lation growth with any finite number of states, Cohen (2014b)
erived analytically a long-term rate of change in mean density
nd variance in the Markovian stochastic environment. The slope

 of Taylor’s law in log–log form is thus a function of the transition
robabilities in the Markovian transition matrix, by which tempo-
al autocorrelation could be tuned. The change in b in response to
hanges of the autocorrelation was computed numerically from the
nalytical formulas.

What is remarkable about the model is that, under certain condi-
ions for the average multiplicative growth factor, when the climate
s changed smoothly by gradually increasing the level of autocor-
elation, at a certain point b undergoes an abrupt singularity in
esponse. Although b stays close to 2 over most of the range of
utocorrelation values, near the singularity it increases towards

nfinity, followed by a jump to an infinitely negative value, and then
eturns towards 2 as the autocorrelation parameter increases fur-
her beyond where the singularity occurs. Cohen (2014a) provides
lling 289 (2014) 59–65

mathematical details and discussion of the general circumstances
under which this sort of shift might occur.

This appears to be the first finding of a possible dramatic shift
in Taylor’s law. Cohen’s (2014a) paper raises questions about the
nature of the singularity that emerged in his model. Does this singu-
larity appear for a smoothly changing environment in other types of
models? Is the singularity something that may be noticed in empir-
ical data? Does the appearance of the singularity depend on how
sampling is done? Under what circumstances in nature might the
singularity occur? Does it have ecological consequences?

One of many alternatives to Cohen’s Markovian multiplicative
model, the linear birth-and-death model, was used by Anderson
et al. (1982) to show that Taylor’s law holds as a result of the
natural demographic stochastic processes of individual births and
deaths. Their simulations did not reveal the singularity found by
Cohen (2014a). In the setting of the linear birth-and-death model,
we examine here whether and under what conditions Taylor’s law
experiences abrupt change (singularity) in response to a smoothly
changing environment as predicted by Cohen’s model. We  are
interested in how differences in population age and initial den-
sity, which affect the final range of mean population density, can
affect the occurrence of abrupt transition. Our approach is through
mathematical analysis and simulations aimed at exploring possible
implications for field studies.

2. Model analysis

The linear birth-and-death process assumes that each individual
in a population has a probability ��t of giving birth to one offspring
and a probability ��t of dying in each small interval of time, �t.
The difference, �–�, is the intrinsic rate of growth per individual
of the population. Each individual is assumed to be independent
of all others. Let N(t) be the integer-valued random variable that
gives the density of a population in the birth-and-death model at t.
The population density is measured in whole numbers of individ-
uals, not in arbitrary positive real numbers, unlike the Markovian
multiplicative model in Cohen (2014a,b). The expected population
density at time t of a population with constant initial density N0 at
time 0 is

E(N(t)) = N0e(�−�)t (1)

and the variance is

Var(N(t)) = N0
� + �

� − �
e(�−�)t(e(�−�)t − 1) if � /= � (2a)

Var(N(t)) = 2N0�t if � = � (2b)

(Pielou, 1977). In the birth-and-death model, the probabilities of
births and deaths are density independent, so that if � /= �,  as time
goes to infinity, the average population goes either to infinity or to
zero.

Cohen (2014b) demonstrated for this linear birth-and-death
process that, if � > �, then as t → ∞,  a spatial Taylor’s law holds with
b = 2, whereas, if � < �, as t → ∞,  a spatial Taylor’s law holds with
b = 1. If � = �, then b is not defined. (He also demonstrated a similar
abrupt transition in b for the Galton–Watson branching process.)
Cohen (2014b) did not estimate the exponent, b, for finite time
periods t and he assumed all populations start with same initial
population density N0.

Our objective is to investigate the behavior of the birth-and-
death model for finite time periods and with varying initial
population densities, to relate model results more closely to
(2013, p. 95, his Eq. (7)), we approximated a “transient” value
of b = b(t) at a finite time t as the slope of the line tangent to
the curve of ln Var(N(t)) as a function of ln E(N(t)), or explicitly
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Fig. 2. Relationships of variance and mean on a log-scale, for (a) population increas-
ing with time, � = 0.0101 and (b) population decreasing with time, � = 0.0099. Initial
population density starts at N0 = 100, with mortality rate � = 0.01. Arrows indicate
direction of time t on the relationship curve. When � > �,  the ranges of t are [10
1000] and [40,000 41,000] before and after the break, respectively; when � < �,  the
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anges of t are [100 20,000] and [35,000 45,000] before and after the break, respec-
ively. Slopes after breaks are calculated from Eq. (3) as t → ∞,  and labeled here for
llustration.

(t) = d ln Var(N(t))/d ln E(N(t)). We  approximated the slope b(t) by
valuating (1) and (2) at times t and t + �t.  This parameter b(t)
ertains neither to a spatial nor to a temporal Taylor’s law in the
eanings described above, but to a “transient” Taylor’s law with

 temporally changing b(t). The “transient” b(t) can be obtained
xactly via limits of �t  → 0, as

(t) = 2 − e−(�−�)t

1 − e−(�−�)t
(3)

Mathematical details of the derivation are provided in Appendix
1. If t → ∞,  then Eq. (3) yields the same results as in Cohen (2014b).
owever, Eq. (3) also indicates that for finite times b(t) depends on

ime t, and that it can never lie between 1 and 2. The result of this

odel for finite times differs dramatically from empirical estimates

f b usually found for both the spatial and temporal versions of Tay-
or’s law, in which b generally lies between 1 and 2. Fig. 2 illustrates
he relationship between ln E(N(t)) and ln Var(N(t)) over a range of
lling 289 (2014) 59–65 61

time intervals. The slope b(t) of tangent lines at time t in Fig. 2 is
given by Eq. (3). When � is slightly greater than � (Fig. 2a), for
small initial t (in the lower left corner of Fig. 2a), b(t) � 0 and b(t)
approaches b = 2 as t → ∞.  When � is slightly less than � (Fig. 2b),
the population is declining and for small initial t (in the lower right
corner of Fig. 2b), b(t) � 0, but b(t) becomes positive at a very early
time (after the peak in Fig. 2b), then approaches b = 1 as t → ∞ (in
the lower left corner of Fig. 2b).

Fig. 2 rests on the assumption that all populations start with the
same initial population density N0. We  next evaluated Eqs. (1) and
(2) at different initial population density, N0 and N0 + M,  where M is
a small integer M � N0. We  then linearized to obtain an expression
for the b at N0 as M → 1, which yields b = 1 (see Appendix S1). This
is different from a stochastic population with randomly varying
initial population density, observed at time t (Appendix S2). In more
general cases, where both assumptions, equal time periods t and
equal initial population density N0, are relaxed, we had to estimate
b using simulations, as described in the following section.

3. Simulations

We consider populations of one species that are distributed
across patches, and are independent of each other (Fig. 1). The
populations can differ in their initial densities, their lengths of occu-
pation of the different patches (population age), or both. Sometimes
each patch will be divided into subplots, each with its own pop-
ulation. Each patch’s population or population of a subplot goes
through its birth-and-death process independently.

We ignore migration among patches, or subplots if applicable,
for simplicity. Migration contributes to stochastic birth or death
implicitly, if immigration occurs at a rate per unit of time that is
proportional to the resident population of the patch of destination
or if emigration occurs at a rate per unit of time that is proportional
to the resident population of the patch of origin.

We simulated each population as a birth-and-death process and
mimicked taking samples from the patches. We  followed the samp-
ling scheme in the space–time diagram (Fig. 1). When we examined
the temporal form of Taylor’s law, we calculated the means and
variances over a particular time period (see Scenario 4 later for
detail on how to choose the time period). When we  examined the
hierarchical spatial form of Taylor’s law, each patch was  equally
divided into one thousand subplots (Ms = 1000). We  calculated the
mean and variance of population densities of the subplots for that
patch as indicated by the Roman numerals in Fig. 1. We  assumed
that the population within each patch, or subplot, if sampled from
subplots, went through a birth-and-death process independently,
coded as Monte Carlo time steps for each 1 birth or 1 death (see
Appendix S3 for the Matlab codes). We  sampled 100 patches, which
resulted in 100 means and variances, and then performed linear
regression of ln(Var(N)) as a function of ln(E(N)) to obtain the
slope b. In all the simulations, we fixed the death rate, � = 0.01,
and decreased the birth rate � in small decrements, represent-
ing smoothly changing environmental conditions. The birth rate
� was constant in any given simulation, but different simulations
differed by small decrements of �. We  were interested in whether
the exponent b could experience an abrupt change when the popu-
lation growth rate changed smoothly from positive to negative;
i.e., changed from � > � to � < �. We  investigated the stochastic
demography close to the equilibrium of the deterministic model;
that is, around the net zero growth rate, � = �. The population under
these conditions approached neither infinity nor extinction in our
simulations.
Four different scenarios were simulated, representing different
sampling strategies, differences in initial population density, and
differences in population age (Table 1). In this paragraph, we sum-
marize the scenarios. In the following paragraphs, we describe the
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Table  1
Summary of scenarios’ assumptions and main results. To calculate one mean and variance, we  sampled 1000 subplots in Scenarios 1, 2 and 3; and sampled 1000 time points
in  Scenario 4. In all scenarios, there were 100 patches.

Scenario Initial population density was assumed to be Time of observation was assumed to be Result

1 Same for all patches and subplots Different for different patches b has singularity, Fig. 3
2 Same for subplots in each patch, different for different patches Same for all patches and subplots b ≈ 1, Fig. 4
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3 Same for subplots in each patch, different for different patches 

4 No subplots, different for different patches 

cenarios in detail. The first three scenarios approximated spatial
aylor’s laws, in which sampling across space (subplots) was  per-
ormed to calculate means and variances. Scenario 1 assumed all
atches were occupied with same initial population density. All
he subplots within any patch were of a uniform age associated
ith that patch, but the patches were of different ages. In Scenario

, we picked one column (time of observation) from the K by L
atrix, and we chose different initial population densities. Scenario

 combined differences in both population age and initial density.
cenario 4 approximated the usual temporal Taylor’s law, but we
dded differences in population age and initial density.

In Scenario 1, all patches were occupied with the same initial
opulation density, and within each patch the same initial popu-

ation density was assigned to each of the Ms subplots. Different
atches were assumed occupied for different periods of time. The
ge of the population on each patch, Tage, was selected randomly
rom a uniform distribution between 1000 and 2000. We  took sam-
les across space, where each patch consisted of Ms subplots with

nitial population density of each subplot n0 = 50, and calculated the
ean and variance of population density over the subplots for that

atch. In this scenario, the values of the “transient” b(Tage) should
e the same as the values calculated from Eq. (3). However, in our
onte Carlo sampling, we picked 100 patches with different values

f Tage chosen randomly across a time interval and then calculated
he slope b through regression. We  have already seen from Fig. 2
nd Eq. (3) that the “transient” slope b(t) is not constant over the
hole time period, especially when t (called Tage in the simulations

hat follow) is small. We  expected the same would occur in our
imulations. Therefore, to make sure in our simulations that any
hanges in b were caused by changes in �, as predicted by Cohen
2014a), and not by Tage, we picked the ranges of Tage where b(t)
aries only slightly, i.e., from the relatively linear parts in Fig. 2.

In Scenario 2, all the patches were assumed occupied by their
opulations for the same period of time, Tage = 2000, for example,
s if they were settled simultaneously through a major invasion
vent. But all the patches were assumed to differ in initial popu-
ation density. Again, we took samples across space, where each
atch consisted of Ms subplots. Initial population densities of sub-
lots were the same within a patch but were assumed to be integer
alues distributed uniform randomly between 10 and 100 initial
ndividuals per subplot for different patches, to produce different
nitial population densities for the patches. On the basis of analysis
f the birth-and-death model for the situation in which only the ini-
ial population densities differed among patches (see Appendix S1),
e expected the slope b to remain approximately 1.0 in this case,

egardless of the birth rate; therefore, no singularity was  expected.
In Scenario 3 we again sampled across space (subplots of each

atch), and both initial population density and age of the patches
ere randomly selected using the same distributions as in the
revious scenarios. All Ms subplots within a given patch had the
ame initial population density within a patch but differed among
atches as in Scenario 2. Age differed among patches, as in Sce-

ario 1. Scenario 3 was therefore a combination of Scenarios 1 and
. Our analytic results for b in Scenario 2 were close to b = 1 (see
ppendix S1), and thus we assumed that in the simulations the
ffect of different initial densities would overwhelm the tendency
rent for different patches, one time per patch b is U-shaped function, Fig. 5
rent ages, multiple times per patch b is U-shaped function, Fig. 6

for large values (positive or negative) of the slopes that occur in
Scenario 1 and Cohen (2014a) when � ≈ �. Therefore, we  did not
expect a singularity. Empirical observations tend to find values of
the slope, b, that lie between 1 and 2.

In Scenario 4 we sampled across time to evaluate a form
of temporal Taylor’s law. Again, we sampled 100 patches that
differed in both initial population densities and the ages. The
initial population density of each patch was  chosen from a uni-
form random distribution between 10 and 100. The age Tage of
a patch was chosen independently from a uniform distribution
between 1000 and 2000. We chose 1000 temporal samples for each
patch, with sampling at multiple time points that were uniformly
distributed between [Tage/2, Tage]. These simulations used an alter-
native approach such that there were multiple runs, and in each run
there was  a different sampling time. This alternative method was
used because our simulation of Monte Carlo time steps for birth-
and-death process could not produce a fixed number of samples for
a given time period in a single run. To make sure the final popula-
tion density of this scenario was  comparable to population density
in the previous three scenarios, we scaled the initial population
densities of patches in this scenario to that of subplots in previous
scenarios.

We  performed 20 replicates for each value of � in Scenario 3
and Scenario 4. No replications for Scenario 1 and Scenario 2 were
performed, because they were analyzed mathematically above. All
the simulations were done in Matlab 2012b.

4. Results

4.1. Cases in which a singularity could occur

Output from Scenario 1, in which all the populations were
assumed to have the same initial density but different final ages,
matched results predicted by Eq. (3) (Fig. 3, details are shown in Fig.
S1). Therefore, as predicted from Eq. (3), the “transient” exponent
b(t) can have a singularity when � = � (Fig. 3). The simulation shows
that b(t) jumps from a very large positive value to a highly nega-
tive value, when � passes from � > � to � < �, for every t > 0. The
relationship between ln(Var(N)) and ln(E(N)) loses linearity close
to � = � (Fig. S1), which corresponds to Cohen’s conclusion (2014b)
that b is not defined when � = �.

4.2. Cases of shifts without singularity

The remaining scenarios, when numerically evaluated, showed
no singularities. When all the patches were assumed to differ in
initial population densities but to have the same population age
(Scenario 2), Taylor’s law holds around b ≈ 1.0 for all values of �
(see Fig. 4, and compare with the results for this case in Appendix
S1).

When both the initial population density and the age of the pop-
ulation were different (Scenario 3 and Scenario 4), the exponent b

displayed U-shaped patterns, lying between 1 and 2, as a function of
� (Figs. 4 and 5). b moved toward 1 when � approached �, reaching
a minimum value close to 1. In both sampling strategies, b declined
rapidly when � decreased from � > � to � ≈ �. But b subsequently
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Fig. 3. Predicted “transient” Taylor’s law’s exponent b(t) at time t = 2000 against
birth rate � in the birth-and-death process (solid line plots Eq. (3)). Dots are val-
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Fig. 4. Selected outputs from Scenario 2, in which the sampling is across space, and
in  which all the populations of the patches were assumed to differ in initial density
es  derived from sampling from Scenario 1, assuming that population age varies
etween 1000 and 2000. Other parameters are � = 0.01, n0 = 50, number of subplots,
s = 1000. Details of the dots are shown in Fig. S1.

ounced back to larger values when � continued decreasing away
rom � ≈ � in the case of sampling across space (Fig. 5). When samp-
ing was performed across time (Scenario 4), b displayed a similar
attern, but with lower values than in Scenario 3 (Fig. 6).

. Discussion

Motivated by Cohen’s analytical finding that Taylor’s power
aw can experience an abrupt shift in the values of b along a
moothly changing environment (Cohen, 2014a), we investigated
his phenomenon by simulating linear birth-and-death processes
n different environments with smoothly changing values of �, the
irth rate per individual. Cohen (2014a) argued that the abrupt
hift can be general as long as the long-term rate of increase in
ean population density and variance are functions of some envi-

onmental conditions, and if there exists at least a critical point
here the mean density is long-run stationary but the long-run

ariance of population density is positive. However, most empirical
tudies have reported that b lies between 1 and 2, although expo-
ents greater than 2 or less than 1 have occasionally been observed

Anderson et al., 1982; Kendal, 2004).

We found that the abrupt shift can occur in certain situations.
e further found that, under other conditions and other sampling

esigns, the shift in b may  not be abrupt but that b may  move more

but  to have the same age. Three cases were plotted here when (a) � = 0.0102, (b)
�  = 0.01, and (c) � = 0.0098. In all cases, � = 0.01.
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Fig. 5. Outputs from Scenario 3, in which sampling was across space, and all the
populations had different initial densities and different ages. Box plots are from 20
replications for each �. On each box, the central mark is the median, the top and
bottom edges of the box are the 25th and 75th percentiles. By definition, outliers,
plotted individually (+), are values that are more than 1.5 times the interquartile
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ange away from the top or bottom of the box. The whiskers extend to the most
xtreme data points that are not outliers.

radually towards a lower bound as the system approaches a crit-
cal point. When both initial population densities and occupancy
istories were allowed to vary (in Scenarios 3 and 4), the following
ituation occurred around � ≈ �. When the population declined,
n average, to the left of the critical point (i.e., for � < �), the slope
ould be considered to have been a combination of two vectors,
ne with a large negative slope (as in Scenario 1) and the other
ith b = 1 (as in Scenario 2). But the data points that could result in

arge negative slope were very close to the initial population densi-
ies. Therefore, the tendency towards b = 1, caused by the different
nitial population densities, overwhelmed the tendency toward a
arge negative slope, caused by different population ages, and pre-
ented a singularity in the overall slope. At some point of � < �, the

arge negative slopes might have increased in strength and dragged
own the overall slope below 1 slightly (Fig. 5).
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ig. 6. Output from Scenario 4, in which sampling was across time, and in which all
opulations had different initial densities and different ages. Box plots are from 20
eplications for each �, same as Fig. 5.
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To calculate the slope of the relationship between ln(Var(N))
and ln(E(N)), we need at least two  data points. Different factors can
lead to the differences between the two data points, and therefore
different factors can contribute the value of b in Taylor’s law. Our
simulations suggest that in density-independent models, differ-
ences in both the initial population density and the population age
influenced the value of the slope. Data points of populations that
differ in initial population density will maintain the same slope at a
value of 1. However, if the amount of time following the establish-
ment of populations of the same density differs, then a singularity
can occur when the birth rate � approaches the death rate �. For
the latter case, in field studies a loss of linearity in the relationship
between ln(Var(N)) and ln(E(N)) could in principle be observed. A
large slope, which has very wide range of values of ln(Var(N)) over
a narrow range of values ln(E(N)), may  be difficult to observe. Any
errors in sampling or estimating the mean or the variance of pop-
ulation density can change the slope significantly. We  suggest that
the loss of a linear relationship between ln(Var(N)) and ln(E(N))
could be an indicator of approaching singularity in field studies (Fig.
S1). By doing multiple repeated simulations with � = �, we  found
that the coefficients of determination (R2) were very close to 0 (Fig.
S1 showing R2 = 0.0038 when � = �; results of multiple simulations
are not shown). When both factors (differences in initial popula-
tion density, differences in population age) were present (Scenario
3), then, near the critical point, � = �, we  found that the first factor
dominates, and hence the slope does not approach a singularity,
but approaches 1.

The results of this work are based on a linear birth-and-
death process, which is a highly simplified model. The model
assumes no density dependence and purely demographic rather
than environmental stochasticity. No population is entirely free of
density-dependence at the extremes of high and low population
density. Density dependence regulates population density over the
long term by increasing death rates or decreasing birth rates at high
densities. However, density independence may be a good approxi-
mate description of a population’s dynamics in many cases. Strong
(1986) reviewed evidence of ‘density vagueness’, or the condition
in which stochasticity is dominant over a wide range of popu-
lation densities, with density dependence becoming strong only
at ‘density floors’ or ‘density ceilings’. Evidence from populations
of many taxa supports the view that density has little influence
on dynamics over wide ranges of density. Similar conclusions go
back to Ehrlich et al. (1972) and Southwood and Comins (1976).
Anderson et al. (1982), who  studied the emergence of Taylor’s
law from a linear birth-and-death model, argued that patterns of
population dispersion observed in nature tended to reflect domi-
nance of density-independent processes. Based on this information,
the populations most likely to display the effects studied here
would be small to intermediate in density relative to their available
resources, so that competition or other density-dependent effects
are not likely to be important.

Some studies on Taylor’s law have investigated the fluctuation
of population density under the assumption that populations are
at steady state in the long run (Kilpatrick and Ives, 2003). In the
setting of the linear birth-and-death model, that is equivalent to
the birth rate equaling the death rate. If this is the case, we should
have seen many large values of b in Taylor’s law, with a narrow
range of ln(mean) and a wide range of ln(variance). It is probable,
however, that other factors overwhelm the singularity. For exam-
ple, carrying capacities were different for each simulation to obtain
a data point (ln(mean), ln(variance)) in Kilpatrick and Ives (2003).
Nutrient levels of the Petri dishes of the bacterial study of Ramsayer

et al. (2012) differed from one treatment to another (though nutri-
ent levels were constant for replicated Petri dishes within each
treatment), and singularities were not observed in the experiments
of Ramsayer et al. (2012). Some large values of b have been reported
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n literature. For example, Kaltz et al. (2012) found that bacte-
ial populations treated with antibiotic rifampicin had a narrow
ange of mean population densities. In Taylor et al. (1980), half of
he slopes in moths and aphids in the dataset were greater than
. Hanski (1987) explained this as low cross-correlation in local
opulations, which resulted in high variance. However, because we
id not include density dependence in our model, we cannot say
hether discontinuities might be observed in such situations.

Thus there are strong limitations on our model results. Our
uestions and methods are probably applicable to many other
tochastic population models, but so far our findings have not
een shown to be valid in general. However, the implication of
he model that the variance of population densities can continue
o increase even in the vicinity of zero net growth (� ≈ �)  is prob-
bly common among models of growth of populations distributed
cross patches. Our simulations showed a singularity in b at � ≈ �
hen sampling was done for populations that differed in age. This
nding reflects very slow changes in average population density
cross time, while variance continued to increase due to random
irths and deaths. However, past researches tried to avoid samp-

ing small range of mean population density. We  suggest that future
xperiments should identify causes of variation in mean popula-
ion density. Although a singularity in b occurs in certain special
ituations, robust statistical analysis to distinguish the two factors
f initial population density and population age might be able to
eveal the abrupt shift in additional circumstances and to interpret
xtreme (large or small) values of the exponent b.
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Supplementary Materials 

Figure S1. Selected outputs from Scenario 1, in which sampling was across space and all 

the populations were assumed to have the same initial size but different ages. µ=0.01 for 

all the graphs. All these slopes are shown in Figure 2 except when λ = µ. 

Appendix S1. Mathematical analysis of birth and death model in Scenarios 1 and 2. 

Appendix S2. Mathematical analysis of birth and death model in which patches have 

randomly varying initial population size.	  

Appendix S3. Matlab scripts to do simulations and to produce figures. 
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Appendix S1: Mathematical analysis of birth and death model in Scenarios 1 and 2 

The simple birth-and-death process assumes that an individual in a population has 

a probability λΔt of giving birth to another individual and µΔt of dying in each 

sufficiently small increment of time, Δt, independently for all individuals.  The 

difference, λ - µ, is the intrinsic rate of growth of the population. The expected population 

size at time t of a population with initial size N0 at time t = 0, is 

𝐸 𝑁 𝑡 =   𝑁!𝑒(!!!)!       (A1) 

and the variance is 

𝑉𝑎𝑟 𝑁 𝑡 =   𝑁!
!!!
!!!

𝑒 !!! !(𝑒 !!! ! − 1)       if λ ≠µ  (A2) 

𝑉𝑎𝑟 𝑁 𝑡 =   2𝑁!𝜇𝑡               if λ = µ  (A3) 

 (Pielou 1977). 

The logarithmic forms are 

lnE(𝑁 𝑡 ) = ln 𝑁! + 𝜆 − 𝜇 𝑡       

ln𝑉𝑎𝑟 𝑁(𝑡) = ln !! !!!
!!!

+ 𝜆 − 𝜇 𝑡 + ln  (𝑒 !!! ! − 1)  

To calculate slope of the relationship between lnVar(N(t)) and lnE(N(t)), at least 

two data points are needed. The slope between the two points [lnE(N1), lnVar(N1)] and 

[lnE(N2), lnVar(N2)] is  

𝑏!" =
!"!"# !! !!"!"# !!
!"! !! !!"! !!

       (A4) 

We investigated the change of slope as function of the intrinsic rate of growth λ – 

µ of the population, assuming the intrinsic growth rate to be same for the two data points. 

We derived slopes for data points that differ in N0 and t separately.  

For different initial population sizes 
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Assume two populations have size Nn0 and Nn0+m at time t if the initial population 

size is n0 and n0+m, respectively, where m<<n0. Then 

𝑏 =
ln𝑉𝑎𝑟 𝑁!!!!! − ln𝑉𝑎𝑟 𝑁!!
ln𝐸 𝑁!!!!! − ln𝐸 𝑁!!

 

=
ln (𝑛0+𝑚) 𝜆 + 𝜇𝜆 − 𝜇 − ln (𝑛0) 𝜆 + 𝜇𝜆 − 𝜇

ln 𝑛0+𝑚 − ln 𝑛0  

= 1.  

For fixed initial population size, different times t: 

Assume a fixed initial population size; let Nt and Nt+Δt represent the population 

size at time t and t+Δt, respectively. A “transient” value of b=b(t) at time t can be 

obtained via limits of Δt → 0. 

𝑏(𝑡) = lim
∆!→!

ln𝑉𝑎𝑟 𝑁!!∆! − ln𝑉𝑎𝑟 𝑁!
∆𝑡

ln𝐸 𝑁!!∆! − ln𝐸 𝑁!
∆𝑡   

= 1+ lim
∆!→!

ln 𝑒 !!! !!∆! − 1 − ln 𝑒 !!! ! − 1
𝜆 − 𝜇 ∆𝑡  

= 1+ lim
∆!→!

𝜆 − 𝜇 𝑒 !!! !!∆!

[𝑒 !!! !!∆! − 1]
𝜆 − 𝜇  

= 1+
1

1− 𝑒!(!!!)!
=
2− 𝑒!(!!!)!

1− 𝑒!(!!!)!
. 
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Appendix S2: Mathematical analysis of birth and death model in which patches 

have randomly varying initial population size 

N(t) is found from a birth and death model at time t following Equations (A1), 

(A2) and (A3). Now we assume that the initial value N(0) varies randomly with a mean 

value E(N(0)) and variance Var(N(0)). To find the logarithms of the variance, we use the 

general formula for the variance of a product (Goodman 1960): 

𝑉𝑎𝑟 𝑋𝑌 = 𝐸 𝑋 !𝑉𝑎𝑟 𝑌 + 𝐸 𝑌 !𝑉𝑎𝑟 𝑋 + 𝑉𝑎𝑟(𝑋)𝑉𝑎𝑟(𝑌)    (A5) 

where E(X) and E(Y) are the mean values of X and Y. 

Assuming that the initial population size N(0) is a random variable and we look at 

the difference between two times, we use the relation for Var(XY) to get  

𝑉𝑎𝑟 𝑁 𝑡 = 𝐸(𝑁(0)) ! 𝜆 + 𝜇
𝜆 − 𝜇 𝑒

!!! ! 𝑒 !!! ! − 1 + 𝑒 !!! ! !
𝑉𝑎𝑟 𝑁 0  

+  𝑉𝑎𝑟(𝑁(0)) !!!
!!!

𝑒 !!! ! 𝑒 !!! ! − 1    

and 

𝑉𝑎𝑟 𝑁 𝑡 + ∆𝑡 = 𝐸 𝑁(0) ! !!!
!!!

𝑒 !!! !!∆! 𝑒 !!! (!!∆!) − 1           

+   𝑒 !!! (!!∆!) !
𝑉𝑎𝑟 𝑁 0   

+𝑉𝑎𝑟(𝑁(0)) !!!
!!!

𝑒 !!! (!!∆!) 𝑒 !!! (!!∆!) − 1   

≈ 𝐸(𝑁(0)) ! !!!
!!!

𝑒 !!! ! 𝑒 !!! ! − 1 + (𝜆 + 𝜇)𝑒 !!! !(2𝑒 !!! ! − 1)∆𝑡     

+  𝑉𝑎𝑟 𝑁 0 𝑒! !!! ![1+ 2(𝜆 − 𝜇)∆𝑡]  

+𝑉𝑎𝑟(𝑁(0)) !!!
!!!

𝑒 !!! ! 𝑒 !!! ! − 1 + (𝜆 + 𝜇)𝑒 !!! !(2𝑒 !!! ! − 1)∆𝑡   

Then, expanding lnVar(N(t)) and lnE(N(t)), we use the expansions 

ln𝑉𝑎𝑟(𝑁(𝑡 + ∆𝑡)) ≈ ln𝑉𝑎𝑟 𝑁 𝑡 + [!"#$ ! ! !"]∆!
!"#(!(!))

    (A6) 
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ln𝐸 𝑁 𝑡 + ∆𝑡 − ln𝐸 𝑁 𝑡 = ln𝐸(𝑁(0))𝑒 !!! !!∆! − ln𝐸 𝑁 0 𝑒 !!! !  

= 𝜆 − 𝜇 ∆𝑡     (A7) 

Therefore, substituting (A6) and (A7) into the expression for b (A4), we find 

𝑏 𝑡 =
ln𝑉𝑎𝑟 𝑁 𝑡 + ∆𝑡 − ln𝑉𝑎𝑟 𝑁 𝑡
ln𝐸 𝑁 𝑡 + ∆𝑡 − ln𝐸 𝑁 𝑡

≈
𝑑𝑉𝑎𝑟 𝑁 𝑡 𝑑𝑡
𝜆 − 𝜇 𝑉𝑎𝑟 𝑁 𝑡

 

where 

𝑑𝑉𝑎𝑟 𝑁 𝑡
𝑑𝑡 = 𝐸 𝑁 𝑡 ! 𝜆 + 𝜇 𝑒 !!! ! 2𝑒 !!! ! − 1  

+  2𝑉𝑎𝑟 𝑁 0 𝜆 − 𝜇 𝑒! !!! !   

+  𝑉𝑎𝑟(𝑁(0)) 𝜆 + 𝜇 𝑒 !!! ! 2𝑒 !!! ! − 1    

Then, b(t) can be further expressed as 

𝑏 𝑡 ≈
2+ 2𝐴 − 𝐴𝐵
1+ 𝐴 − 𝐴𝐵  

where  

𝐴 = !"# ! ! ![!(!(!))]!

!"# ! !
!!!
!!!

,  

𝐵 = 𝑒! !!! ! 

It can be show that 

lim!→! 𝑏 =   2, when λ > µ; 

lim!→! 𝑏 =   1, when λ < µ. 

 

Citation: 

Goodman,	  L.A.,	  1960.	  On	  the	  exact	  variance	  of	  products.	  J.	  Am.	  Stat.	  Assoc.,	  55,	  708–

713.  
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Appendix S3. Matlab scripts to do simulations and to produce figures. 

Texts from 7 Matlab M-files are attached here. 

File “birthdeathExample.m” gives an example run of birth-and-death process 

File “birthdeathSimulator.m” is a function of Monte Carlo time steps simulation of birth-

and-death process, which is called by other files when needed. 

Files “Codes_for_Scenario1.m”, “Codes_for_Scenario2.m”, “Codes_for_Scenario3.m”, 

and “Codes_for_Scenario4.m” are simulation experiments. See paper for detail 

descriptions. 

File “Codes_for_Figures.m” generates all the figures except Figure 1. Need data outputs 

from the above simulation experiments to run this file. 
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File “birthdeathExample.m”   
 
% Example for Birth-death stochastic simulation  
%       (Monte Carlo steps, 1 birth or 1 death each time step) 
%  
% Equation: dN/dt = (lambda-mu)*N 
% 
% Contact: Jiang Jiang (jjiang@nimbios.org) 
% Date:         14 January, 2014 
  
mu = 0.01;           % Death rate   
lambda = 0.012;      % Birth rate 
  
n = 10;              % Initial population size 
tMax = 1000;         % Maximum time span (e.g. 1000 years) 
  
M= n.*exp((lambda-mu).*[0:tMax]); % Mean population size 
figure(1) 
hold on 
plot([0:tMax],M,'r','LineWidth',1.4) 
xlim([0 tMax]) 
xlabel('Time') 
ylabel('Population size') 
  
for rep = 1:20      % Repeat 20 times  
    clear tjump state n 
n = 10;     
tjump(1) = 0;       % Start at time 0 
state(1) = n;       % at time 0, number of population = n 
k = 1;              % Index used for store tjump(k) and state(k) 
tcum = 0;           % Cumulate time 
while tcum<tMax     % Run the loop until time reach tMax 
    k = k + 1; 
    lambda_n = lambda*n;    % This can be changed by the Equation  
    mu_n = mu*n;            % This can be changed by the Equation 
    time_lambda = -log(rand)/lambda_n; % Waiting time for one birth 
    time_mu = -log(rand)/mu_n;         % Waiting time for one death 
    time = min(time_lambda,time_mu);   % Inter-step times 
    if time_lambda<time_mu 
        n = n + 1;          % Birth 
    else 
        n = n - 1;          % Death 
    end 
    state(k) = n;           % Record the population size 
    tjump(k) = time;        % Record the time interval 
    tcum = tcum + time;     % Update the cumulate time 
end 
tjump = cumsum(tjump); 
stairs(tjump,state);        % Plot a stairstep graph  
  
end 
M = mean(state(end,:)) 
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File “birthdeathSimulator.m”   
 
% Birth-death stochastic simulation    
%       (Monte Carlo steps, 1 birth or 1 death each time step) 
% 
% Equation: dN/dt = (lambda-mu)*N 
%  This code is a function called by other scenario simulations 
%    to see how this function works, run birthdeathExample.m 
% 
% Contact: Jiang Jiang (jjiang@nimbios.org) 
% Date:         14 January, 2014 
  
function storeN=birthdeathSimulator(lambda,mu,subplots,sampletime,n0) 
  
tMax = sampletime;   % Maximum time span (e.g. 1000 years) 
storeN = zeros(1,subplots); 
for rep = 1:subplots 
  
n = n0;     
%tjump(1) = 0;       % Start at time 0 
%state(1) = n;       % at time 0, number of population = n 
k = 1;              % Index used for store tjump(k) and state(k) 
tcum = 0;           % Cumulate time 
while tcum<tMax     % Run the loop until time reach tMax 
    k = k + 1; 
    lambda_n = lambda*n;    % This can be changed by the Equation  
    mu_n = mu*n;            % This can be changed by the Equation 
    time_lambda = -log(rand)/lambda_n;  % Waiting time for one birth 
    time_mu = -log(rand)/mu_n;          % Waiting time for one death 
    time = min(time_lambda,time_mu);    % Inter-step times 
    if time_lambda<=time_mu 
        n = n + 1;          % Birth 
    else 
        n = n - 1;          % Death 
    end 
    %state(k) = n;           % Record the population size 
    %tjump(k) = time;        % Record the time interval 
    tcum = tcum + time;     % Update the cumulate time 
end 
%tjump = cumsum(tjump); 
storeN(rep) = n; 
  
end 
  
end 
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Files “Codes_for_Scenario1.m” 
 
% Codes for Scenario 1 in  
% Jiang et al. http://dx.doi.org/10/1016/j.ecolmodel.2014.06.022 
% 
% Contact: Jiang Jiang (jjiang@nimbios.org) 
% Date:         14 January, 2014 
 
clear all 
time_begin = cputime; 
mu = 0.01;             % Death rate 
n0 = 50;               % Initial subplots population size 
subplots = 1000;       % Number of subplots 
% Selected points for lambda 
pointx = [0.0085 0.009 0.0095 0.0098 0.0099 0.01 0.0101 ... 
    0.0102 0.0105 0.011 0.0115]; 
  
% For each lambda we selected, sample 100 patches,  
% each plot has different age varies between 1000-2000 years. 
len = length(pointx); 
r2 = zeros(1,len);      % Store R2 
b = zeros(1,len);       % Store slope b 
x_save = zeros(100,len);% Store data for log(Mean) 
y_save = zeros(100,len);% Store data for log(Variance) 
  
% Seeds the random number generator. If you use older version of 
matlab, rng(2014) may doesn't work. use rand('seed',0) instead. 
rng(2014)                
% rand('seed',0) 
  
for k = 1:len           % Select lambda 
    lambda = pointx(k) 
    meansav = zeros(1,100); 
    varsav = zeros(1,100); 
for i = 1:100           % 100 patches 
    sampletime = 1000+(rand*1000); 
% Call the simulator function, and return population size 
    StoreN =  birthdeathSimulator(lambda,mu,subplots,sampletime,n0); 
    meansav(i) = mean(StoreN); 
    varsav(i) = var(StoreN); 
end 
x = log(meansav); 
y = log(varsav); 
[p s] = polyfit(x,y,1); 
r1 = corrcoef(x,y); 
r2(1,k) = r1(1,2)^2; 
b(1,k) = p(1); 
x_save(:,k) = x'; 
y_save(:,k) = y'; 
end 
  
% Save data on a file named Scenario1 
save Scenario1 x_save y_save b r2 pointx 
time_end = cputime; 
time_elapse = (time_end-time_begin)/60; 
disp(['Scenario1 COMPLETED! Elapsed time = ' num2str(time_elapse) ' 
Minutes']); 
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Files “Codes_for_Scenario2.m” 
 
% Codes for Scenario 2 in  
% Jiang et al. http://dx.doi.org/10/1016/j.ecolmodel.2014.06.022 
% 
% Contact: Jiang Jiang (jjiang@nimbios.org) 
% Date:         14 January, 2014 
 
clear all 
time_begin = cputime; 
mu = 0.01;             % Death rate 
sampletime = 2000;     % Age of patches 
subplots = 1000;       % Number of subplots 
  
% Selected points for lambda 
pointx = [0.0098 0.01 0.0102]; 
% For each lambda we selected, sample 100 patches,  
% each plot has different age varies between 1000-2000 years. 
len = length(pointx); 
r2 = zeros(1,len);      % Store R2 
b = zeros(1,len);       % Store slope b 
x_save = zeros(100,len);% Store data for log(Mean) 
y_save = zeros(100,len);% Store data for log(Variance) 
  
% Seeds the random number generator. If you use older version of 
matlab, rng(2014) may doesn't work. use rand('seed',0) instead. 
rng(2014)                
% rand('seed',0) 
  
for k = 1:len 
    lambda = pointx(k) 
    % Record mean and variance of subplots for each of the 100 patches 
    meansav = zeros(1,100); 
    varsav = zeros(1,100); 
for i = 1:100          % 100 plots 
    n0 = 10+fix(rand*90); 
% Call the simulator function, and return population size 
    StoreN =  birthdeathSimulator(lambda,mu,subplots,sampletime,n0); 
    meansav(i) = mean(StoreN); 
    varsav(i) = var(StoreN); 
end 
x = log(meansav); 
y = log(varsav); 
[p s] = polyfit(x,y,1); 
r1 = corrcoef(x,y); 
r2(1,k) = r1(1,2)^2; 
b(1,k) = p(1); 
x_save(:,k) = x'; 
y_save(:,k) = y'; 
end 
  
% Save data on a file named Scenario2 
save Scenario2 x_save y_save b r2 pointx 
time_end = cputime; 
time_elapse = (time_end-time_begin)/60; 
disp(['Scenario2 COMPLETED! Elapsed time = ' num2str(time_elapse) ' 
Minutes']); 
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Files “Codes_for_Scenario3.m” 
 
% Codes for Scenario 3 in  
% Jiang et al. http://dx.doi.org/10/1016/j.ecolmodel.2014.06.022 
% 
% Contact: Jiang Jiang (jjiang@nimbios.org) 
% Date:         14 January, 2014 
 
clear all 
time_begin = clock; 
mu = 0.01;             % Death rate 
subplots = 1000;       % Number of subplots 
  
% Selected points for lambda 
pointx = [0.008:0.0005:0.012]; 
% For each lambda we selected, sample 100 patches, repeat 20 times 
% each plot has different age varies between 1000-2000 years. 
% each subplot has different initial population size between 10-100. 
len = length(pointx); 
r2 = zeros(20,len);      % Store R2 
b = zeros(20,len);       % Store slope b 
  
% Seeds the random number generator. If you use older version of 
matlab, rng(2014) may doesn't work. use rand('seed',0) instead. 
rng(2014)                
% rand('seed',0) 
  
for k = 1:len                % Select lambda 
    lambda = pointx(k) 
for m = 1:20                 % Repeat 20 times 
    Repeat = m 
    % Record mean and variance of subplots for each of the 100 patches 
    meansav = zeros(1,100); 
    varsav = zeros(1,100); 
for i = 1:100                % 100 patches 
    sampletime = 1000+(rand*1000);    % Age of patches 
    n0 = 10+fix(rand*90);             % Initial subplot population size 
% Call the simulator function, and return population size 
    StoreN =  birthdeathSimulator(lambda,mu,subplots,sampletime,n0); 
    meansav(i) = mean(StoreN); 
    varsav(i) = var(StoreN); 
end 
x = log(meansav); 
y = log(varsav); 
[p s] = polyfit(x,y,1); 
r1 = corrcoef(x,y); 
r2(m,k) = r1(1,2)^2; 
b(m,k) = p(1); 
end 
end 
  
% Save data on a file named Scenario3 
save Scenario3 b r2 pointx 
time_end = clock; 
time_elapse = (time_end-time_begin); 
hours = time_elapse(3)*24+time_elapse(4)+time_elapse(5)/60; 
disp(['Scenario3 COMPLETED! Elapsed time = ' num2str(hours) ' Hours']); 
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Files “Codes_for_Scenario4.m” 
 
% Codes for Scenario 4 in  
% Jiang et al. http://dx.doi.org/10/1016/j.ecolmodel.2014.06.022 
% 
% Contact: Jiang Jiang (jjiang@nimbios.org) 
% Date:         14 January, 2014 
 
clear all 
time_begin = clock; 
mu = 0.01;             % Death rate 
% Selected points for lambda 
pointx = [0.008:0.0005:0.012]; 
% For each lambda we selected, sample 100 patches, repeat 20 times 
% Sample across time, between [Tage/2 Tage] 
% each plot has different age varies between 1000-2000 years. 
% each subplot has different initial population size between 10-100. 
len = length(pointx); 
r2 = zeros(20,len);      % Store R2 
b = zeros(20,len);       % Store slope b 
% Seeds the random number generator. If you use older version of 
matlab, rng(2014) may doesn't work. use rand('seed',0) instead. 
rng(2014)                
% rand('seed',0) 
for k = 1:len            % Select lambda 
    lambda = pointx(k) 
for m = 1:20             % Repeat 20 times 
    Repeat = m 
    % Record mean and variance for each of the 100 patches 
    meansav = zeros(1,100); 
    varsav = zeros(1,100); 
for j = 1:100            % 100 patches 
    n0 = 10+fix(rand*90);     % Initial population size 
    Tage = 1000+(rand*1000);  % Age of patches 
    StoreNs = zeros(1,1000);  % Record population size at sampling time 
for i = 1:1000           % Pick 1000 sample times 
    sampletime = Tage/2+rand*Tage/2; 
    StoreNs(i) =  birthdeathSimulator(lambda,mu,1,sampletime,n0); 
end 
meansav(j) = mean(StoreNs); 
varsav(j) = var(StoreNs); 
end 
x = log(meansav); 
y = log(varsav); 
[p s] = polyfit(x,y,1); 
r1 = corrcoef(x,y); 
r2(m,k) = r1(1,2)^2; 
b(m,k) = p(1);         
end 
end 
  
% Save data on a file named Scenario4 
save Scenario4 b r2 pointx 
time_end = clock; 
time_elapse = (time_end-time_begin); 
hours = time_elapse(3)*24+time_elapse(4)+time_elapse(5)/60; 
disp(['Scenario4 COMPLETED! Elapsed time = ' num2str(hours) ' Hours']); 
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File “Codes_for_Figures.m”  
 
% Codes for Figures in  
% Jiang et al. http://dx.doi.org/10/1016/j.ecolmodel.2014.06.022 
%  
% Figure 2.Two break plots illustrate relationship between Var and Mean 
% Figure 3.Illustration of Equation (3) overlaps points from Scenario 1 
%           (needs data produced by "Codes_for_Scenario1.m") 
% Figure 4. Three sample plots for Scenario 2 (need data produced by 
%           "Codes_for_Scenario2.m") 
% Figure 5. Boxplot for Scenario 3 (Data from "Codes_for_Scenario3.m") 
% Figure 6. Boxpolt for Scenario 4 (Data from "Codes_for_Scenario4.m") 
% Figure S1. Four sample plots for Scenario 1, each plot produce a 
point in Figure 3. (Data from "Codes_for_Scenario1.m") 
% 
% Contact: Jiang Jiang (jjiang@nimbios.org) 
% Date:         14 January, 2014 
  
clear all 
close all 
%% Figure 2. 
% Relationships of variance and mean in log scale 
% 
% Figure 2a. when lambda greater than mu, both mean and variance of 
% population increase with time from the birth-and-death process.  
% I set up a break for axis and the relationship curve. Right and above 
% of the break (larger time) are scaled for illustration purpose. 
% 
% Figure 2b. when lambda smaller than mu, mean of population decrease, 
% variance increases when t is small, then decreases as t increase. 
% No break for axis, but a break for the relationship curve. 
  
lambda = 0.0101; 
mu = 0.01; 
n0 = 100; 
% Two sample times, before and after break 
sampletime1 = [10:10:1000];  
sampletime2 = [40000:10:41000]; 
% Mean and variance are calculated from birth-death process (Pielou 
1977) 
M_est1 = n0.*exp((lambda-mu).*sampletime1); 
V_est1 = n0.*(lambda+mu)./(lambda-mu).*exp((lambda-mu).*sampletime1).* 
... 
    (exp((lambda-mu).*sampletime1)-1); 
x1 = log(M_est1); 
y1 = log(V_est1); 
M_est2 = n0.*exp((lambda-mu).*sampletime2); 
V_est2 = n0.*(lambda+mu)./(lambda-mu).*exp((lambda-mu).*sampletime2).* 
... 
    (exp((lambda-mu).*sampletime2)-1); 
x2 = log(M_est2); 
y2 = log(V_est2); 
  
figure 
set(gcf,'Color','White') 
hold on 
% Plot first half before break 
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plot(x1,y1,'k','LineWidth',1.5) 
xtick=get(gca,'XTick'); 
xbreak = xtick(xtick>x1(end)); 
xbreak = xbreak(1); 
ytick=get(gca,'YTick'); 
ybreak = ytick(ytick>y1(end)); 
ybreak = ybreak(1); 
  
% Rescale second half after break, and then plot 
x2_rescale_coef = (x1(end)-x1(1))/(x2(end)-x2(1))/3; 
y2_rescale_coef = (y1(end)-y1(1))/(y2(end)-y2(1))/10; 
x2_rescale = (x2 - x2(1))*x2_rescale_coef + xbreak+0.01; 
y2_rescale = (y2 - y2(1))*y2_rescale_coef + ybreak+0.5; 
plot(x2_rescale,y2_rescale,'k','LineWidth',1.5) 
axis([4.6 4.78 3 10]) 
xlabel('ln(Mean)','FontSize',14) 
ylabel('ln(Variance)','FontSize',14) 
  
% Set up axis tick labels 
set(gca,'XTick',[4.6:0.02:4.7 4.74]) 
set(gca,'XTickLabel',{'4.6';'4.62';'4.64';'4.66';'4.68';'4.7';... 
    num2str(fix(x2(end)))}) 
set(gca,'YTick',[3:7 9]) 
set(gca,'YTickLabel',{'';'4';'5';'6';'7';num2str(fix(y2(end)))}) 
  
% Plot the break sign "//" on axis 
annotation('rectangle',[0.63 0.08 0.05 
0.05],'EdgeColor','None','FaceColor','White') 
annotation('line',[0.64 0.65],[0.09 0.12],'LineWidth',1.5,'Color','k') 
annotation('line',[0.65 0.66],[0.09 0.12],'LineWidth',1.5,'Color','k') 
annotation('rectangle',[0.11 0.7 0.05 
0.05],'EdgeColor','None','FaceColor','White') 
annotation('line',[0.12 0.14],[0.70 0.72],'LineWidth',1.5,'Color','k') 
annotation('line',[0.12 0.14],[0.715 
0.735],'LineWidth',1.5,'Color','k') 
  
% Plot the break sign on the curve 
line([4.713 4.714],[8.1 8.2],'LineWidth',1.1,'Color','k') 
line([4.713 4.714],[8.1 8.05],'LineWidth',1.1,'Color','k') 
line([4.714 4.713],[8.05 7.95],'LineWidth',1.1,'Color','k') 
line([4.715 4.716],[8.1 8.2],'LineWidth',1.1,'Color','k') 
line([4.715 4.716],[8.1 8.05],'LineWidth',1.1,'Color','k') 
line([4.716 4.715],[8.05 7.95],'LineWidth',1.1,'Color','k') 
  
% Write notes on graphs, showing which direction t is larger or smaller 
text(4.7, 6,'0','FontSize',14) 
text(4.72,6.5,'t','FontSize',14) 
text(4.74,7,'\infty','FontSize',14) 
text(4.73,9.2,'Slope = 2.0','FontSize',14) 
text(4.62,10,'a','FontSize',14) 
annotation('arrow',[0.63 0.58],[0.505 0.47],'Color','k') 
annotation('arrow',[0.67 0.72],[0.53 0.56],'Color','k') 
  
% Save graph as .eps file, resolution 600. 
print('-depsc','-r600','Fig2a') 
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%% Figure 2b 
n0 = 100; 
lambda = 0.0099; 
mu = 0.01; 
% Two sample times, before and after break 
sampletime1 = [100:10:20000];  
sampletime2 = [35000:10:45000]; 
% Mean and variance are calculated from birth-death process (Pielou 
1977) 
M_est1 = n0.*exp((lambda-mu).*sampletime1); 
V_est1 = n0.*(lambda+mu)./(lambda-mu).*exp((lambda-mu).*sampletime1).* 
... 
    (exp((lambda-mu).*sampletime1)-1); 
x1 = log(M_est1); 
y1 = log(V_est1); 
M_est2 = n0.*exp((lambda-mu).*sampletime2); 
V_est2 = n0.*(lambda+mu)./(lambda-mu).*exp((lambda-mu).*sampletime2).* 
... 
    (exp((lambda-mu).*sampletime2)-1); 
x2 = log(M_est2); 
y2 = log(V_est2); 
  
% Combine the break as Not a Number 
x = [x1 NaN x2]; 
y = [y1 NaN y2]; 
  
figure 
set(gcf,'Color','White') 
hold on 
plot(x,y,'k','LineWidth',1.5) 
xlabel('ln(Mean)','FontSize',14) 
ylabel('ln(Variance)','FontSize',14) 
  
% Write notes on graphs, showing which direction t is larger or smaller 
text(4, 7,'0','FontSize',14) 
text(3.5,7.5,'t','FontSize',14) 
text(3,7,'\infty','FontSize',14) 
text(0.5,5.6,'Slope = 1.0','FontSize',14) 
text(0.5,9,'b','FontSize',14) 
annotation('arrow',[0.66 0.61],[0.6 0.53],'Color','k') 
annotation('arrow',[0.69 0.74],[0.6 0.53],'Color','k') 
  
% Plot the break sign on the curve 
line([1.7 1.72],[7.1 7.2],'LineWidth',1.1,'Color','k') 
line([1.7 1.72],[7.1 7.05],'LineWidth',1.1,'Color','k') 
line([1.72 1.7],[7.05 6.95],'LineWidth',1.1,'Color','k') 
line([1.74 1.76],[7.1 7.2],'LineWidth',1.1,'Color','k') 
line([1.74 1.76],[7.1 7.05],'LineWidth',1.1,'Color','k') 
line([1.76 1.74],[7.05 6.95],'LineWidth',1.1,'Color','k') 
  
% Save graph as .eps file, resolution 600. 
print('-depsc','-r600','Fig2b') 
  
%% Figure 3 
% Illustration of Equation (3), overlap data points from Scenario 1 
mu = 0.01; 
t =  2000; 
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k=0; 
xs = [];     % Record lambda 
  
% When lambda=mu,singularity.  
% So we plot two parts separately lambda<mu and lambda>mu  
clear b1 b2   
for lambda = 0.005:0.00005:0.00999999  % When lambda<mu 
    k=k+1; 
    xs = [xs lambda]; 
    b1(k) = 1 + 1/(1-exp(-(lambda-mu)*t)); 
    b2(k) = NaN; 
end 
k2 = k; 
xs2 = xs; 
for lambda = 0.01005:0.0001:0.015      % When lambda>mu 
    xs2 = [xs2 lambda]; 
    k2=k2+1; 
    b2(k2) = 1 + 1/(1-exp(-(lambda-mu)*t)); 
end 
  
% Set up figure properties 
fig1=figure; 
set(fig1,'Units','inches'); 
set(fig1,'Position',[5 4 5 8]) 
set(gcf,'PaperPositionMode','auto') 
plot(xs,b1,'linewidth',1.4) 
hold on 
plot(xs2,b2,'linewidth',1.4) 
xlabel('\lambda','fontsize',14) 
ylabel('b','fontsize',14) 
set(gca,'YTick',[-10 -5 0 1 2 5 10 15]) 
grid on 
  
% Load data from Scenario 1  
% first need to run "Codes_for_Scenario1.m", which generate  
%       a data file named "Scenario1.mat" 
load Scenario1.mat 
b(pointx==0.01)=[]; 
pointx(pointx==0.01)=[]; 
plot(pointx,b,'kO') 
hold off 
  
print('-depsc','-r600','Fig3') 
  
%% Figure 4 
% Three selected outputs from Scenario 2. 
% first need to run "Codes_for_Scenario2.m", which generate 
%       a data file named "Scenario2.mat" 
load Scenario2.mat 
  
for index = 3:-1:1 % Index for lambda values stored in Scenario 2 
    lambda = pointx(index);  
    x = x_save(:,index); % Extract stored log(Mean) 
    y = y_save(:,index); % Extract stored log(Variance) 
     
    % Linear regression. p1 is slope; p2 is intercept   
    [p s] = polyfit(x,y,1); 
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    p1 = sprintf('%0.2f', p(1)); 
    p2 = sprintf('%0.2f', p(2)); 
    % Calculate R2 
    r1 = corrcoef(x,y); 
    r2 = r1(1,2)^2; 
    r2 = sprintf('%0.4f', r2); 
  
    % Plot dots and linear regression 
    figure 
    plot(x,y,'.') 
    xx = min(x):0.1:max(x); 
    yy = p(1).*xx+p(2); 
    hold on 
    plot(xx,yy,'k','LineWidth',1.4) 
    xlabel('ln(Mean)','FontSize',14) 
    ylabel('ln(Variance)','FontSize',14) 
     
    % Write equation on each graph 
    switch index 
        case 3 
        text(3,8.9,['ln(Variance)=', num2str(p1), 'ln(Mean)+', ... 
            num2str(p2)], 'FontSize',14) 
        text(3,8.7,['R^2=', num2str(r2)],'FontSize',14) 
        text(2.75,9.2,'a') 
        print('-depsc','-r600','Fig4a') 
        case 2 
        text(2.5,8,['ln(Variance)=', num2str(p1), 'ln(Mean)+', ... 
            num2str(p2)], 'FontSize',14) 
        text(2.5,7.8,['R^2=', num2str(r2)],'FontSize',14)        
        text(2.25,8.25,'b') 
        print('-depsc','-r600','Fig4b') 
        case 1 
        text(2.4,7.5,['ln(Variance)=', num2str(p1), 'ln(Mean)+', ... 
            num2str(p2)], 'FontSize',14) 
        text(2.4,7.3,['R^2=', num2str(r2)],'FontSize',14) 
        text(2.2,7.75,'c') 
        print('-depsc','-r600','Fig4c')         
    end 
     
end 
  
%% Figure 5 
% Outputs for Scenario 3. 
% first need to run "Codes_for_Scenario3.m", which generate 
%       a data file named "Scenario3.mat" 
  
load Scenario3.mat 
lambda = pointx; 
figure 
boxplot(b,lambda) 
xlabel('\lambda','FontSize',14) 
ylabel('b','FontSize',14) 
print('-depsc','-r600','Fig5') 
  
%% Figure 6 
% Outputs for Scenario 4. 
% first need to run "Codes_for_Scenario4.m", which generate 
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%       a data file named "Scenario4.mat" 
load Scenario4.mat 
lambda = pointx; 
figure 
boxplot(b,lambda) 
xlabel('\lambda','FontSize',14) 
ylabel('b','FontSize',14) 
print('-depsc','-r600','Fig6') 
  
%% Figure S1 
% Four selected outputs from Scenario 1. 
% first need to run "Codes_for_Scenario1.m", which generate 
%       a data file named "Scenario1.mat" 
  
load Scenario1.mat 
  
% Set up figure properties 
fig1=figure; 
set(fig1,'Units','inches'); 
set(fig1,'Position',[4 4 12 8]) 
set(gcf,'PaperPositionMode','auto') 
  
  
len = length(pointx);    % How many lambdas 
for index = 1:len  % Index for lambda values stored in Scenario 1 
    lambda = pointx(index);  
    x = x_save(:,index); % Extract stored log(Mean) 
    y = y_save(:,index); % Extract stored log(Variance) 
     
    % Linear regression. p1 is slope; p2 is intercept   
    [p s] = polyfit(x,y,1); 
    r1 = corrcoef(x,y); 
    r2 = r1(1,2)^2; 
    r2 = sprintf('%0.4f', r2); 
    b = sprintf('%0.2f', p(1)); 
  
    % Plot dots and linear regression 
    position = index; 
    if index>=8; position=index+1;end 
    subplot(3,4,position) 
    plot(x,y,'.') 
    xx = min(x):0.01:max(x); 
    yy = p(1).*xx+p(2); 
    hold on 
    plot(xx,yy,'k') 
    if position>=9 
        xlabel('ln(Mean)','FontSize',12) 
    end 
    if mod(position-1,4)==0 
        ylabel('ln(Variance)','FontSize',12) 
    end 
    axis([min(x)-0.2*(max(x)-min(x)) max(x)+0.1*(max(x)-min(x)) ... 
        min(y)-0.1*(max(y)-min(y)) max(y)+0.2*(max(y)-min(y))]) 
     
    % Write lambda, b, and R2 on each graph 
    if index==4 | index==5 
    text(min(x)-0.1*(max(x)-min(x)),max(y)-0.6*(max(y)-min(y)), ... 
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        ['\lambda = ', num2str(lambda)],'FontSize',12) 
    text(min(x)-0.1*(max(x)-min(x)),max(y)-0.75*(max(y)-min(y)), ... 
        ['b = ', num2str(b)],'FontSize',12) 
    text(min(x)-0.1*(max(x)-min(x)),max(y)-0.9*(max(y)-min(y)), ... 
        ['R^2 = ', num2str(r2)],'FontSize',12) 
    else 
    text(min(x)-0.1*(max(x)-min(x)),max(y)+0.1*(max(y)-min(y)), ... 
        ['\lambda = ', num2str(lambda)],'FontSize',12) 
    text(min(x)-0.1*(max(x)-min(x)),max(y)-0.05*(max(y)-min(y)), ... 
        ['b = ', num2str(b)],'FontSize',12) 
    text(min(x)-0.1*(max(x)-min(x)),max(y)-0.2*(max(y)-min(y)), ... 
        ['R^2 = ', num2str(r2)],'FontSize',12) 
    end 
     
end 
  
print('-depsc','-r600','Fig_s1') 
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