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a b s t r a c t

Taylor’s law (TL), a widely verified empirical relationship in ecology, states that the variance of population
density is approximately a power-law function of mean density. The growth-rate theorem (GR) states
that, in a subdivided population, the rate of change of the overall growth rate is proportional to the
variance of the subpopulations’ growth rates. We show that continuous-time exponential change implies
GR at every time and, asymptotically for large time, TL with power-law exponent 2. We also show why
diverse population-dynamic models predict TL in the limit of large time by identifying simple features
these models share: If the mean population density and the variance of population density are (exactly
or asymptotically) non-constant exponential functions of a parameter (e.g., time), then the variance of
density is (exactly or asymptotically) a power-law function of mean density.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Taylor’s (1961) law (TL) of fluctuation scaling states that the
variance of population density is proportional to some power,
denoted b, of the mean population density. The growth-rate
theorem (GR) states that, in a subdivided population, the rate of
change of the overall growth rate is proportional to the variance
of the subpopulations’ growth rates. Until now, it appears that GR
and TL have not been linked. Here we derive both GR and TL from
a simple model of exponential population dynamics and display a
link between them.

In addition, we show why very different population-dynamic
models lead to Taylor’s law. If the mean of population density
behaves as a non-constant exponential function of any parameter
(such as time) and the variance of population density behaves as
any exponential function of the same parameter, then TL holds.
This argument is not limited to the class of exponential functions.

2. Exponential model

Consider n clones, 1 < n < ∞, labeled i = 1, . . . , n. We think
of clone i as an exponentially changing population of idealized
bacteria reproducing asexually at a constant rate in continuous
time. The population density Ni(t) of clone i at time t satisfies:
dNi(t)
dt

= riNi(t), −∞ < t < +∞,

−∞ < ri < +∞, i = 1, . . . , n. (1)

Abbreviations: TL, Taylor’s law; GR, growth-rate theorem.
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The coefficient ri = (dNi(t)/dt)/Ni(t) is the rate of change of
the population density per capita, or the population growth rate,
or ‘‘Malthusian parameter’’ of clone i. Time does not appear as a
variable in (1), only as a parameter, and translating time on both
sides of (1) by any amount would not change the equation. Hence
it is natural to include negative time in the analysis because the
choice of an origin of time is arbitrary. Suppose that, at some
arbitrary time called t = 0, clone i has population density Ni(0) >
0. Then at any time t , clone i has positive population density

Ni(t) = Ni(0)erit , −∞ < t < +∞, i = 1, . . . , n. (2)

Assume that ri ≠ rj if i ≠ j. Some ri might be positive, some neg-
ative. At most one ri might be zero. Label the clones in decreasing
order of population growth rate so that r1 > r2 > · · · > rn.

Suppose that each clone is present in multiple copies, and that
the proportion of all copies that are clone i is pi, 0 < pi < 1,
where p1 + · · · + pn = 1. The proportion pi does not change in
time. For example, if in a laboratory experiment each Petri dish is
seeded with exactly one clone, pi might represent the proportion
of all Petri dishes seeded with clone i. In island biogeography, pi
might represent the proportion of all islands occupied by clone i.
The proportion of the total population represented by individuals
of clone i changes constantly as at least one clone grows or declines
exponentially. Variability enters this deterministic model only
through the different population growth rates ri, proportions pi and
population densities Ni(0) at time t = 0.

2.1. Taylor’s law (TL) of fluctuation scaling

Taylor (1961) and colleagues (Taylor et al., 1978, 1980; Taylor
and Woiwod, 1980, 1982; Taylor, 1984; Perry and Taylor, 1985;
Taylor, 1986) observed that, in many species, the logarithm of
the variance of the density (individuals per area or volume) of
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comparable populations was an approximately linear function of
the logarithm of the mean density. This relationship came to
be known as Taylor’s law (TL). TL was verified in hundreds of
species (Eisler et al., 2008) ranging in size from, recently, bacteria
(Ramsayer et al., 2011; Kaltz et al., 2012) to trees (Cohen et al.,
2012, 2013). TL is one of the most widely verified empirical
relationships in ecology. TL has also been widely discussed from
many theoretical points of view (e.g., Eisler et al., 2008, Engen
et al., 2008, Fronczak and Fronczak, 2010, and their extensive
references).

We show (see the Appendix) that the exponential model
predicts a spatial TL in the limit of large time. Here we explain
what this means. We say that a spatial TL applies to N(t) exactly
for all times t if and only if there exist real constants a > 0 and
b such that, for all t,Var(N(t)) = a(E(N(t)))b, where the mean
E(N(t)) and the variance Var(N(t)) refer to the mean and variance
of population density over space at time t , and do not refer to a
mean and variance over a set of time points. (In a temporal TL,
which we do not consider here, the mean and variance are taken
over a set of time points separately for each population.)

In an important special case of TL, the coefficient of variation
(standard deviation divided by the mean, or CV) of population
density is constant if and only if b = 2. (If b = 2, then
Var(N(t)) = a(E(N(t)))2, hence Var(N(t))/(E(N(t)))2 = a, and
taking the square root of both sides yields CV = a1/2. Conversely,
if CV = k, then (CV)2 = k2. Because by definition (CV)2 =

Var(N(t))/(E(N(t)))2, we have Var(N(t)) = k2(E(N(t)))2, which
is TL with a = k2 and b = 2.)

Taking logs of both sides of Var(N(t)) = a(E(N(t)))b and
moving both functions of time t to the left side gives an equivalent
log-linear form of TL:

log Var(N(t)) − b log E(N(t)) = log a. (3)

We say that TL applies to N(t) in the limit as t approaches some
limit, e.g., t → ±∞, if and only if there exist real constants a > 0
and b such that

lim
t→±∞

[log Var(N(t)) − b log E(N(t))] = log a. (4)

These definitions intentionally leave unspecified the base of the
logarithms (e.g., e, 10, or 2) because TL is equally valid for
logarithms to any base. In the following mathematical analysis,
log = loge.

In TL, b does not depend on the units chosen to measure N(t).
For example, if TL holds when population density is measured in
organisms per cubic meter, it will also hold with the same value
of b when population density is measured in organisms per cubic
kilometer or any other units. By contrast, the coefficient a depends
on the units of measurement. Hence we focus on b.

In the exponential model at time t , the average population
density is

E(N(t)) =

n
i=1

piNi(t) =

n
i=1

piNi(0)erit . (5)

The variance of population density is

Var(N(t)) = E

N2(t)


− [E(N(t))]2

=

n
i=1

pi (Ni(0))2 e2r it − [E(N(t))]2 . (6)

A main result of this paper is that, in the exponential model, in the
limit as t → ±∞, TL (4) holds with b = 2 (see the Appendix
Theorem 4 for the proof).

The exponential model obeys TL only in the limit of large times
(positive or negative). How is the variance related to the mean in
the exponential model at finite time t? We assume the log mean

and the log variance are differentiable functions of t and introduce
b(t) as a finite-time approximation to b:

b(t) =
d log Var(N(t))
d log E(N(t))

=


dVar(N(t))

dt
Var(N(t))




dE(N(t))
dt

E(N(t))

 . (7)

This b(t), when it is defined, is the slope at a finite time t of
log Var(N(t)) as a function of log E(N(t)). (It is defined when
Var(N(t)) ≠ 0 and E(N(t)) ≠ 0 and dE(N(t))/dt ≠ 0.) When TL
holds exactly, as in (3), the right side of (7) is just b. If limt→±∞ b(t)
exists and is a finite constant, TL holds in the limit as t → ±∞ and
limt→±∞ b(t) = b. If limt→±∞ b(t) does not exist or is not a finite
constant, TL does not hold in the limit as t → ±∞.

A numerical example (Fig. 1) shows that, for finite t , the
behavior of the mean E(N(t)), the variance Var(N(t)), and b(t)
may be surprisingly complex, even in a model as simple as the
exponential model. Specifically, b(t) may be positive, negative,
increasing, or decreasing, and may pass through singularities.

3. Growth-rate theorem

The growth-rate theorem (GR) states that, in a subdivided
population, the rate of change of the overall growth rate
of population density is proportional to the variance of the
subpopulations’ growth rates. The origins of GRwill be reviewed in
the Discussion. In the exponential model, the overall growth rate
of the population at time t is the mean of ri, i = 1, . . . , n,

E(r(t)) =

n
i=1

piNi(t)ri

n
i=1

piNi(t)
=

n
i=1

piriNi(0)erit

n
i=1

piNi(0)erit
. (8)

The denominator on the right side of (8) is E(N(t)) in (5). From (5),
the first derivative of E(N(t)) with respect to time is

E ′(N(t)) =

n
i=1

piN ′

i (t) =

n
i=1

piNi(0)rierit . (9)

But this is just the numerator of the fraction on the right side of (8).
Putting together the numerator and the denominator gives

E(r(t)) = E ′(N(t))/E(N(t)) = d log E(N(t))/dt. (10)

In the exponential model, the mean population growth rate equals
the per capita rate of change of themean population size. Themean
population growth rate E(r(t)) in (10) is also the denominator
of the local slope of Taylor’s law b(t) in (7). Taking the second
derivative of (5) with respect to time gives

E ′′(N(t)) =

n
i=1

piN ′′

i (t) =

n
i=1

piNi(0)r2i e
rit > 0. (11)

The variance of the population growth rate is the variance of ri,

Var (r(t)) = E

r2(t)


− (E (r(t)))2

=
E ′′(N(t))
E(N(t))

−


E ′(N(t))
E(N(t))

2

=
d2 log E(N(t))

dt2
. (12)

In words, the variance of the population growth rate in the
exponential model equals the acceleration (second derivative) of
the log mean population density. Obviously the derivative with
respect to t of the first derivative d log E(N(t))/dt , the right
member of (10), equals the second derivative, which is the right
member of (12), so the derivative of the mean population growth
rate E(r(t)), the left member of (10), exactly equals the left
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Fig. 1. Finite-time behavior of the mean and variance of population density and the local slope of an example of the exponential model. For t ∈ [−5, +5], the panels
show (A) the mean E(t) = E(N(t)), (B) V (t) = Var(N(t)), (C) V (t) as a function of E(t) on log–log coordinates, and (D) b(t). Here n = 3, p = [5/12, 1/3, 1/4],N(0) =

[1, 2, 3], r = [1.6, 0.7, −1.2]. E(t) reaches a minimum value ≈1.7479 around t ≈ −0.20 while V (t) reaches a minimum value ≈0.0085 at t ≈ 0.25. For t < −0.20, both
E(t) and V (t) decrease with increasing t , so b(t) > 0. For t > 0.25, both E(t) and V (t) increase with increasing t , so again b(t) > 0. When either E(t) or V (t) passes through
its minimum, b(t) becomes singular or undefined. When −0.20 < t < +0.25, the time derivatives E ′(t) and V ′(t) have opposite signs so b(t) < 0. In (C), a log–log plot
of V (t) as a function of E(t), a straight line would correspond to TL. In the curve shown, the short upper limb corresponds to t in (−5, −0.20) and the long lower limb to t
in (+0.25, +5). For t near ±5, these limbs display the asymptotic slope near +2, the limiting value calculated theoretically. The small segment with negative slope in the
lower left corner of (C) connects these two limbs for t in approximately (−0.20, +0.25) where V (t) decreases and E(t) increases. This small segment shows that the same
dynamic processes that generate asymptotically perfect agreement with TL at large time (positive or negative) can also generate a nonlinear relationship and a decreasing
variance of density with increasing mean density at finite times.

member of (12), the variance of population growth rate Var(r(t)).
This proves GR with a constant of proportionality equal to 1.

Both the variance of population growth rate and the rate of
change of the variance of population growth rate approach zero
for large (positive or negative) time (Appendix Theorem 8).

Because r1 > r2 > · · · > rn by assumption, exp(r1t)
grows faster than any other exp(rjt), j = 2, . . . , n. Hence for
any j > 1, exp(rjt)/ exp(r1t) → 0 as t → ∞. Hence the upper
limit of d log E(N(t))/dt as t → ∞ is r1 and the upper limit of
mean population growth rate is also r1. The intuitive reason for
this conclusion is that clone 1 has the highest population growth
rate, hence as time increases clone 1 increasingly dominates
the population, hence the per capita growth rate of the overall
population density gets increasingly close to the per capita
growth rate of clone 1, which is r1. Symbolically, as t →

∞, E(r(t)) = d log E(N(t))/dt → r1. A parallel result is that
d log Var(N(t))/dt → 2r1 (see the proof of Appendix Theorem 4).
In the limit t → −∞, clone n dominates the population,
and parallel reasoning yields E(r(t)) = d log E(N(t))/dt →

rn, d log Var(N(t))/dt → 2rn, and again b(t) → 2.

4. Why very different models lead to Taylor’s law

Cohen et al. (2013) showed that the model of stochastic
population dynamics by Lewontin and Cohen (1969) (no relation to
this author) leads to an asymptotic spatial TL. The Lewontin–Cohen
(hereafter LC) model is a multiplicative random walk. It assumes
that the density of a population changes from one point in discrete
time to the next point in discrete time as a result of multiplication
by some positive-valued random variable which may be called a

‘‘growth factor’’, and that successive values of this ‘‘growth factor’’
are independently and identically distributed. The deterministic
exponentialmodel and the stochastic LCmodelmake very different
assumptions about population dynamics, but both lead to an
asymptotic spatial TL. Why? We will answer this question at two
different levels, first phenomenological, and second mechanistic.

Suppose the mean of population density changes (exactly or
asymptotically) as a non-constant exponential function of time,

E(t) = AeBt , A > 0, B ≠ 0. (13)

Suppose also that the variance of population density behaves
(exactly or asymptotically) as an exponential function of time,

V (t) = CeDt , C > 0, for any real D. (14)

Then t = (1/B) log(E(t)/A) from (13), and substituting this
expression for t into (14) gives, by elementary algebra,

V (t) = CeDt = C exp


D
B


log


E(t)
A



= C

E(t)
A

 D
B

= CA−
D
B (E(t))

D
B = a (E(t))b . (15)

This is a power-law relationship between the mean E(t) and the
variance V (t), equivalent to TL (3) with a = CA−

D
B , b = D/B.

This calculation assumes exact exponential behavior of the mean
and the variance. The conclusion remains validwhen themean and
variance change asymptotically exponentially.

Cohen et al. (2013) showed that the mean and the variance
of population density in the LC model asymptotically change
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exponentially. The mean and the variance of population density in
the exponential model also asymptotically change exponentially
(Appendix Theorem 4) with D = 2r1, B = r1, b = 2 as
t → ∞. This shared feature explains why the exponential
model, the LC model, and many other population models (Cohen,
submitted for publication) lead to TL.

The exponential function (13) is not the unique route to
a power-law relationship. An identical argument would work
equally well for many other invertible functions. For example, if
E(t) = AtB, A > 0, B ≠ 0, V (t) = CtD, C > 0, then E(t) is

invertible, t =


E(t)
A

 1
B
and V (t) = C


E(t)
A

 D
B

= CA−
D
B (E(t))

D
B ,

which is TL exactly as in (15).
This phenomenological answer leads to a question about

mechanisms:whydoboth the exponentialmodel and the LCmodel
have asymptotically exponentially changingmeans and variances?
The answer is that both are multiplicative with multipliers whose
distribution does not change with time. In the LC model, the
multipliers are independent and identically distributed random
variables. In the exponential model, the multipliers are the time-
invariant constants ri in (1). It does not matter whether the
multipliers have exactly the same distribution for all time. As long
as the multipliers asymptotically converge sufficiently rapidly to
a fixed distribution, the repeated multiplications give exponential
change in the mean and the variance.

5. Discussion

The exponential model implies Taylor’s law (TL) in the limit of
large time. The limiting exponent b = 2 of TL is independent of
the population growth rate of the clones (provided the population
growth rates are distinct), independent of the proportions of
clones (provided the proportions are positive), and independent of
whether the limit of time is taken toward +∞ or −∞.

Viewing the exponential model from the perspective of TL gave
a simple proof of the growth-rate theorem (GR) and new insight
into the population-dynamic interpretation of the quantities in
GR. Specifically, the mean population growth rate (10) is the first
derivative with respect to time of the logarithm of the mean
population density, and the variance of population growth rate
(12) is the second time derivative of the mean population density.
Unlike the approximate derivation of GR by Sato et al. (2003), our
proof of GR is exact.

Our proof of GR could be interpreted to apply to any quantity
Ni(t) that satisfies (2), and would imply that the rate of change of
the mean of the ‘‘population growth rates’’ {ri} equals the variance
of the ‘‘population growth rates’’ of that quantity (see Edwards,
1987). Likewise, our derivation of an asymptotic spatial TL could
be interpreted to apply to any quantity Ni(t) that satisfies (2),
and not only to population density. For example, if Ni(t) were
interpreted as the valuation (number of shares timesmarket price)
of the outstanding stock of company i at time t , then to the extent
that (2) applied one should expect TL to apply to the valuations of
companies’ stocks and GR to apply to the rate of change of their
mean ‘‘population growth rates’’ or percentage growth rates of
valuation per unit of time. In fact, TL does describe some aspects
of stock market transactions (Eisler et al., 2008), but the specific
form of TL suggested here may not yet have been tested.

History dependence in multiplicative population growth mod-
els may range from complete (as in the deterministic exponential
model) to absent (as in the LC model). Yet both models yield TL
in the limit of large time. Considering the differences in underlying
assumptions between the exponentialmodel and the LCmodel, the
value of the exponent b of TL and agreement with the log-linear
form (3) of TL cannot shed light on the detailed dynamics of popu-
lation growth.

In statistical physics, probabilistic models are often viewed
as falling along a continuum of models from ‘‘quenched’’ to
‘‘annealed’’. A model is quenched if its defining parameters are
random variables that are constant in time (they are ‘‘quenched’’,
like the configuration of molecules in a piece of metal that was
heated, then dropped in cold water). The population growth rates
ri of the exponential model are quenched, unchanging in time,
though they may have been generated by some random variable.
By contrast, in an annealed model, the defining parameters are
random variables that evolve in or toward some equilibrium
distribution (they are ‘‘annealed’’, like the configuration of
molecules in a piece of metal that was heated, then allowed to cool
slowly). The statistically independent ‘‘growth factors’’ of the LC
model are annealed parameters. Both the quenched exponential
model and the annealed LC model (Cohen et al., 2013) lead to TL in
the limit of large time. So agreement with TL cannot shed light on
whether the underlying process is quenched or annealed.

Taylor (1986, p. 25) described ‘‘the interpretation of the power-
law relationship between mean and variance’’ as ‘‘one of the most
contentious and potentially far-reaching’’ of the lines of research
originating from the Rothamsted Insect Survey. In Taylor’s view,
the ‘‘question [is] whether the power law has stochastic roots
as claimed by Anderson et al. (1982) or behavioural as claimed
by Taylor’’ and colleagues in multiple publications. According to
Anderson et al. (1982, p. 248), ‘‘The patterns of dispersion gener-
ated by simplemodels of population growth lead us to believe that
observed relationships between variability in population abun-
dance and average density, highlighted by the work of Taylor, are
in general a simple and inevitable consequence of demographic
and environmental stochasticity. It is not necessary to invoke ex-
planations based on the behavioural tendencies of species to ag-
gregate and migrate in order to. . . account for the approximately
linear relationship between the logarithms of variance and mean
abundance and for the slopes of such relationships lying on av-
erage between 1 and 2. . . ’’. This stochastic perspective continues
(e.g., Jørgensen et al., 2009, Cohen et al., 2013). By contrast, Arruda-
Neto et al. (2012) wrote, in accord with Taylor’s perspective: ‘‘The
ubiquity of Taylor’s power-law slopes in the interval 1 < b < 2
is intimately associated with long-range interactions among all
the elements of a given system, plus negative interactions among
species in a community. . . ’’.

The exponential model indicates that complex behavioral
interactions are not necessary to generate TL, though they may be
sufficient. Perhaps the conflict between stochastic and behavioral
models results from emphasis on different levels of description.
The behavioral models have the potential to explain how the
interactions of individuals could generate the population-level
phenomenology summarized by the stochastic models.

The results obtained here raise questions for further research.
First, the exponential model (2) may be written in vector–matrix
form

−→
N (t) =

−→
N (0) exp(Rt)where

−→
N (t) is an n-element row vec-

tor, R is an n × n diagonal matrix with diagonal elements r1 >
r2 > · · · > rn, and t is a real scalar. It assumes no migration be-
tween clones or subpopulations. Now suppose migration occurs.
Mathematically, let Q be an n × n matrix with non-negative el-
ements (rates of migration from clone i to clone j) off the main
diagonal and zero row sums (so that Q has the form of the inten-
sity matrix of a continuous-time Markov chain). Does the dynam-
ical system

−→
N (t) =

−→
N (0) exp([R + Q ]t) satisfy an asymptotic

TL in the limit of large positive or negative time, and if so, does
b(t) → 2? Second, does a growth-rate theorem apply to this more
general model, i.e., is the rate of increase of the growth rate of total
population proportional to the variance of the growth rates of the
clones or subpopulations, either exactly for all time or asymptoti-
cally for large times? Third, in the version of Fisher’s Fundamental
Theorem of Natural Selection (1958) stated and proved by Ewens
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(1989), fitnesses are rescaled so that only the relative frequencies
of genes and genotypes are considered. In effect, every generation
has the same size. If, instead, fitnesses are interpreted as factors of
absolute change from one generation to the next, can an exact or
asymptotic TL be proved for the mean and variance of the absolute
frequency (abundance) of different genes or genotypes?

I conclude with some remarks on the provenance of GR. Crow
and Kimura (1970, p. 10) proved a continuous-time version of GR
with interpopulation selection only and called it a rather special
example of Fisher’s Fundamental Theorem of Natural Selection.
Fisher’s Fundamental Theorem is based on the genetic make-up
of a single population and relies heavily on the concept of the
additive genetic variance in fitness in that population (Edwards,
2000). Only in simplifiedmodels of the Fundamental Theoremwith
no selection and epistasis is there a formalmathematical similarity
with GR, which has no genetic content. Since the definitive
explication of Fisher’s Fundamental Theorem by Ewens (1989), it
seems no longer acceptable to refer to GR as a simplified form of
Fisher’s Fundamental Theorem (Edwards, 1994; Plutynski, 2006),
notwithstanding earlier (Crow, 1955, p. 58; Li, 1955, pp. 272–273;
Crow and Kimura, 1970, p. 10) and some continuing (Sato et al.,
2003) confusion on this point.
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Appendix. Proofs of mathematical claims

All the following results are in the context and the notation of
the exponential model.

Theorem 1. d log E(N(t))/dt is positive for all t if all ri ≥ 0, negative
for all t if all ri ≤ 0, and zero for exactly one value of t if there exist
i ≠ j such that rirj < 0.

Proof. In the identity (d log E(N(t)))/dt = E ′(N(t))/E(N(t)), the
denominator, E(N(t)) =

n
i=1 piNi(0)erit , must be positive for all

finite t . If ri ≥ 0 for all i, the numerator
n

i=1 piriNi(0)erit cannot
vanish for any t since every term in it must be non-negative for
all t and (since n > 1) at least one term must be positive for all t .
Similarly, if ri ≤ 0 for all i, the numerator

n
i=1 piriNi(0)erit cannot

vanish for any t since every term in it must be non-positive for all
t and (since n > 1) at least one term must be negative for all t . If
ri = 0, then piriNi(0)erit vanishes and at most one term can vanish.
So
n

i=1 piriNi(0)erit = 0 at time t if and only if ri > 0 for at least
one i and ri < 0 for at least one i and

−


i:ri<0

piriNi(0)erit = +


i:ri>0

piriNi(0)erit . (16)

The left side of (16) is a strictly decreasing function of t , while the
right side of (16) is a strictly increasing function of t , so equality
can hold in (16) for at most one t . Moreover, equality must hold in
(16) for one t if ri < 0 for one or several clones i and ri > 0 for one
or several clones i. For as t → −∞, the left side of (16) becomes
arbitrarily large and the right side of (16) becomes arbitrarily close
to 0 from above, while as t → +∞, the left side of (16) becomes
arbitrarily close to 0 from above and the right side of (16) becomes
arbitrarily large, so the two sides must coincide exactly once. �

We shall use Lagrange’s identity (Steele, 2004, p. 39). For real
numbers a1, . . . , an, b1, . . . , bn,
n

i=1

a2i
n

i=1

b2i −


n

i=1

aibi

2

=


1≤i<j≤n


aibj − ajbi

2
.

If not all bj = 0, then the right side is zero if and only if there exists
a constant c such that ai = cbi, i = 1, . . . , n.

Theorem 2. The variance of population density is the mean squared
difference in population density of all pairs of clonal types weighted
by the proportions of clonal types in the population: Var(N(t)) =

1≤i<j≤n pipj

Ni(t) − Nj(t)

2.
Proof. Use Lagrange’s identity with ai =

√
pi, bi =

√
piNi(0)erit .

Then
n

i=1 a
2
i =

n
i=1 pi = 1,

n
i=1 b

2
i =

n
i=1 pi (Ni(0))2 e2r it =

E((Ni(t))2), and
n

i=1 aibi =
n

i=1 piNi(0)erit = E(N(t)). Hence
from (6), Var(N(t)) = E((Ni(t))2)− [E(N(t))]2 =


1≤i<j≤n


aibj −

ajbi
2

=


1≤i<j≤n pipj

Ni(t) − Nj(t)

2. �

Theorem 3. Var(N(t)) > 0 except possibly for at most one value
of t.

Proof. By assumption, pi ≠ 0, i = 1, . . . , n. Suppose there exists
a constant c such that ai = cbi, i = 1, . . . , n. Equivalently, 1 =

cNi(0)erit hence c ≠ 0 hence 1/c = Ni(0)erit , i = 1, . . . , n, hence
for all i ≠ j, Ni(0)erit = Nj(0)erjt or Ni(0)/Nj(0) = exp((rj − ri)t) .
Because ri ≠ rj for all i ≠ j, exp((rj − ri)t) is strictly monotone
(increasing or decreasing) and can equal Ni(0)/Nj(0) for at most
one value of t . Hence ai = cbi, i = 1, . . . , n can hold for at most
one value of t . Hence Var(N(t)) > 0 except possibly for at most
one value of t . �

An example when Var(N(t)) = 0 is t = 0 and N1(0) = · · · =

Nn(0) > 0.

Theorem 4. In the limit as t → ±∞, the spatial log-linear
TL (4) holds with b = 2. This limit b = 2 is independent of Ni(0), ri
and pi, i = 1, . . . , n, when the ri are all distinct and the pi and Ni(0)
are all positive.

Proof. We calculate limt→±∞ b(t) . The assumption that r1 >
· · · > rn implies that exp(tr1) > · · · > exp(trn) if t > 0 and
that exp(tr1) < · · · < exp(trn) if t < 0. Combining (10), (9) and
(5) gives

d log E(N(t))
dt

=
E ′(N(t))
E(N(t))

=

n
i=1

piriNi(0)erit

n
i=1

piNi(0)erit
. (17)

We proved above that d log E(N(t))/dt is positive for all t if all
ri ≥ 0, negative for all t if all ri ≤ 0, and is zero for exactly one value
of t if there exist i ≠ j such that rirj < 0. Now divide the numerator
and denominator of (17) by the largest exponential factor exp(tr1)
(if t > 0) or exp(trn) (if t < 0), and pass, respectively, to the limits
+∞ or −∞ to find

d log E(N(t))/dt → r1 as t → +∞,

d log E(N(t))/dt → rn as t → −∞.
(18)

From (6),

d log Var(N(t))
dt

=

dVar(N(t))
dt

Var(N(t))

= 2




n
i=1

piri (Ni(0))2 e
2rit


−


n

i=1
piriNi(0)erit


n

i=1
piNi(0)erit




n
i=1

pi (Ni(0))2 e2rit


−


n

i=1
piNi(0)erit

2

 . (19)
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Divide the numerator and denominator of (19) by the largest
exponential factor exp(2tr1) or exp(2trn), and

d log Var(N(t))/dt → 2(p1 − p21)r1/(p1 − p21) = 2r1
as t → +∞,

d log Var(N(t))/dt → 2(pn − p2n)rn/(pn − p2n) = 2rn
as t → −∞.

(20)

Substituting (17) and (19) into the definition (7) and taking the
limit gives

lim
t→±∞

b(t) = 2 = b. � (21)

Theorem 5. If ri are all distinct, pi are all positive, Σpi = 1, and
t ∈ (−∞, +∞), then Var(r(t)) > 0.

Proof. Multiply (12) by (E(N(t)))2 to get

Var(r(t)) (E(N(t)))2 = E ′′(N(t))E(N(t)) −

E ′(N(t))

2
. (22)

So Var(r(t)) > 0 if and only if the right side of (22) is positive. But
from (5), (9), and (11),

E ′′(N(t))E(N(t)) −

E ′(N(t))

2
=


n

i=1

piNi(0)r2i e
rit


n

i=1

piNi(0)erit


−


n

i=1

piNi(0)rierit
2

. (23)

By Lagrange’s identity (Steele, 2004, p. 39)with ai =


piNi(0)r2i erit ,

bi =
√
piNi(0)erit , we have aibi = piriNi(0)erit and

Var(r(t)) (E(N(t)))2

=


1≤i<j≤n


piNi(0)r2i erit


pjNj(0)erjt

−


pjNj(0)r2j e

rjt

piNi(0)erit

2

=


1≤i<j≤n

piNi(0)pjNj(0)e(ri+rj)t

ri − rj

2
=


1≤i<j≤n

piNi(t)pjNj(t)

ri − rj

2
. (24)

This is the population-weighted mean squared difference of
population growth rate over all pairs of types of clones. Because
all piNi(t) > 0 and ri ≠ rj if i ≠ j by assumption, the right member
of (24) is positive, hence Var(r(t)) > 0. �

Theorem 6. The rate of increase per capita (E ′(N(t)))/E(N(t)) =

d log E(N(t))/dt is strictly increasing with t. The mean population
growth rate is strictly increasing with t. log E(N(t)) is strictly convex.

Proof. Weprove the three statements in the theorem in sequence.
First, d (d log E(N(t))/dt) /dt = d2 log E(N(t))/dt2 = Var(r(t)) >

0, where the inequality is proved in the previous theorem. Second,
by GR, dE(r(t))/dt = Var(r(t)) > 0 so the mean population
growth rate is strictly increasingwith t . Third, log E(N(t)) is strictly
convex if and only if its second derivative with respect to t is
positive, and that follows from (12) and Var(r(t)) > 0. �

Theorem 7. The variance of population growth rate is

Var(r(t)) =


1≤i<j≤n

piNi(t)pjNj(t)

ri − rj

2


n
i=1

piNi(t)
2 . (25)

Proof. Combine (5) and (24). �

Theorem 8. The variance of population growth rate and the rate of
change of the variance of population growth rate approach zero for
large (positive or negative) time.

Proof. We use the abbreviations E, E ′, E ′′, E ′′′ for, respectively, the
mean population density (5), its first derivative (9), its second
derivative (11), and its third derivative

E ′′′(N(t)) =

n
i=1

piN ′′′

i (t) =

n
i=1

piNi(0)r3i e
rit . (26)

From (12), we write the variance of population growth rate as

Var (r(t)) =
E · E ′′

−

E ′
2

E2
. (27)

Divide the numerator and the denominator of the fraction on the
right by exp(2r1t). As t → ∞, only the leading terms will not
vanish. In the denominator, the leading term will be (p1N1(0))2 >
0. In the numerator, the leading term will be (p1r1N1(0))2 −

(p1r1N1(0))2 = 0. As t → −∞, the same argument applies to
clone n instead of clone 1. From the time derivative of (12) or (27),
the rate of change of the variance of population growth rate is the
third derivative of the log mean population growth rate:

dVar (r(t))
dt

=
d3 log E(N(t))

dt3
=

E2E ′′′
− 3EE ′E ′′

+ 2

E ′
3

E3
. (28)

By the same argument, as t → ∞, in the denominator, the leading
term will be (p1N1(0))3 > 0. In the numerator, the leading term
will be 3(p1r1N1(0))3 − 3(p1r1N1(0))3 = 0. A similar argument
applies to clone n as t → −∞. �

Numerical examples show that dVar(r(t))/dt may be positive or
negative for finite t .
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