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GENERALIZED MINIMAX AND MAXIMIN INEQUALITIES

FOR ORDER STATISTICS AND QUANTILE FUNCTIONS

JOEL E. COHEN

(Communicated by Walter Craig)

Abstract. Let A be a finite real matrix with element A(i, j) in row i and
column j. We generalize von Neumann’s inequality minjmaxiA(i, j) ≥
maximinjA(i, j) by replacing min by every order statistic.

History

Let m and n be finite positive integers, and let A be a real m × n matrix with
element A(i, j) in row i and column j. von Neumann [4] and Dresher [3, p. 13]
proved that

(1) minjmaxiA(i, j) ≥ maximinjA(i, j).

Equality holds in (1) if and only if for some (not necessarily unique) i′ and j′, A(i′, j′)
is the maximum of its column j′ and the minimum of its row i′.

For any real (row or column) vector x with l elements, and for any 1 ≤ k ≤ l,
let Λk(x) denote the kth smallest element of x (the kth order statistic of x). For
example, Λ1(x) = min(x), Λl(x) = max(x), and for odd l, Λ(l+1)/2(x) = median(x).
Let A(i, ·) denote the ith row and A(·, j) the jth column of A. With this notation,
(1) becomes

Λ1

(
Λm(A(·, j))nj=1

)
≥ Λm (Λ1(A(i, ·))mi=1) .

We generalize this result by replacing the minimum with any kth order statistic
Λk.

Theorem. In the notation above, for any 1 ≤ k ≤ n,

(2) Λk

(
Λm(A(·, j))nj=1

)
≥ Λm (Λk(A(i, ·))mi=1) .

If equality holds, then there exist 1 ≤ i′ ≤ m and 1 ≤ j′ ≤ n such that

(3) A(i′, j′) = Λm(A(·, j′)) = Λk(A(i′, ·));
i.e., A(i′, j′) equals a maximal element in column j′ and the kth order statistic of
row i′. Conversely, for k = 1 and k = n, (3) implies (2). However, for n > 2, if
1 < k < n, there exist A, i′, and j′ such that (3) holds, but strict inequality holds
in (2). Also, for any 1 ≤ k ≤ n,

(4) Λk

(
Λ1(A(·, j))nj=1

)
≤ Λ1 (Λk(A(i, ·))mi=1) ,

with analogous conditions for equality.
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The theorem may be translated into equivalent inequalities for quantile functions.

Proof. For all 1 ≤ p ≤ m and 1 ≤ q ≤ n, A(p, q) ≤ Λm(A(·, q)). Hence A(p, ·) ≤
Λm(A(·, j))nj=1. (Inequality between vectors applies element by element.) It is well
known (e.g., Davidson [2]) and elementary to prove that if x and y are vectors of
the same length l and x ≤ y, then for every 1 ≤ k ≤ l, Λk(x) ≤ Λk(y). Therefore
Λk(A(p, ·)) ≤ Λk(Λm(A(·, j))nj=1). This inequality holds for all 1 ≤ p ≤ m, so (2)
holds.

Now let g = Λm(Λk(A(i, ·))mi=1) and h = Λk(Λm(A(·, j))nj=1) (we have g ≤ h by
(2)) and suppose g = h. If every two elements of A are distinct, there must exist
1 ≤ i′ ≤ m and 1 ≤ j′ ≤ n such that g = h = A(i′, j′). Since g is the maximum over
rows of the kth order statistic of each row, element g = A(i′, j′) is, in particular,
the kth order statistic of row i′. Since h is the kth smallest of the column maxima,
element h = A(i′, j′) is, in particular, the maximum of column j′. Hence (3) holds.

If g = h and at least one element of A equals at least one other element of A,
let g = A(i′, j′) for some i′ and some j′. If the number of elements of A equal to g
equals 1, then again (3) holds by the previous argument. If two or more elements of
A equal g, then h = A(p′, q′) with p′ �= i′ or q′ �= j′ is possible. But g = h implies
that A(i′, j′) = A(p′, q′). By the previous argument, (3) holds.

Establishing whether (3) implies equality in (2) involves three cases: k = 1,
k = n, and 1 < k < n. Assume (3).

If k = 1, then A(i′, j′) = Λ1(A(i′, ·)) ≤ Λm(Λ1(A(i, ·))mi=1) and A(i′, j′) =
Λm(A(·, j′))≥Λ1(Λm(A(·, j))nj=1), whence Λ1(Λm(A(·, j))nj=1)≤Λm(Λ1(A(i, ·))mi=1).
But for k = 1, (2) becomes Λ1(Λm(A(·, j))nj=1) ≥ Λm(Λ1(A(i, ·))mi=1). Hence equal-
ity holds in (2). If k = n, (2) becomes Λm(Λm(A(·, j))nj=1) ≥ Λm(Λm(A(i, ·))mi=1).
Here equality holds trivially because both sides refer to the maximal element(s) of
matrix A.

When 1 < k < n, let

A =

(
1 2 5
6 4 3

)
.

Then the column maxima of A are Λ2(A(·, j))3j=1 = (6, 4, 5), and the vector of order

statistics is Λ(Λ2(A(·, j))3j=1) = (4, 5, 6), while the maxima of the ordered rows are

Λ2(Λ(A(i, ·)2i=1)) = Λ2

(
1 2 5
3 4 6

)
= (3, 4, 6).

Hence, as required by (2), Λ(Λ2(A(·, j))3j=1) = (4, 5, 6) ≥ Λ2(Λ(A(i, ·)2i=1)) =
(3, 4, 6). Element A(2, 2) = 4 is the maximum element in its column and the second
order statistic (k = 2) in its row, but Λ2(Λ2(A(·, j))3j=1) = 5 > Λ2(Λ2(A(i, ·))2i=1) =
4, so equality does not hold in (2) when k = 2.

To prove (4), observe that for vector x as above and for any 1 ≤ k ≤ l, Λk(x) =
−Λl+1−k(−x). Therefore (using (2) multiplied by −1 for the inequality step below)

Λk

(
Λ1(A(·, j))nj=1

)
= −Λn+1−k

(
−Λ1(A(·, j))nj=1

)
= −Λn+1−k

(
Λm(−A(·, j))nj=1

)

≤ −Λm(Λn+1−k (−A(i, ·))mi=1) = −Λm (−Λk(A(i, ·))mi=1) = Λ1 (Λk(A(i, ·))mi=1) . �

The special case of a 2 × 2 matrix is easy to analyze completely. The numbers
1, 2, 3, 4 may be entered in a 2 × 2 matrix in 4! = 24 ways. Because the order
statistics of rows and columns are invariant under exchanges of rows and exchanges
of columns, there are only 4!/(2!2!) = 6 distinct cases to consider. We may select
those 6 cases by setting A(1, 1) = 1 and filling in the remaining elements with
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all permutations of 2, 3, 4. Equality in (2) for k = 1, 2 holds in four cases. An
inequality arises in (2) if

A =

(
1 3
4 2

)
or A =

(
1 4
3 2

)
.

In these cases, Λ
(
Λ2(A(·, j))2j=1

)
= (3, 4), while Λ2

(
Λ(A(i, ·)2i=1)

)
= (2, 4).

Interpretations

The theorem is relevant to applied problems in bootstrap sampling [1], industrial
life testing, and the economic analysis of poverty. In bootstrap sampling, one
computes a statistic A(i, j) for each case i and each sample j, obtaining an m× n
matrix A. A central tendency of the maximal value of A(i, j) could be estimated
as the maximum over cases i of the median of A(i, ·) or as the median over samples
j of the maximum of A(·, j). The theorem shows that the second procedure gives
the (weakly) larger value. In life testing, one observes the life lengths A(i, j) of n
machines labeled j under m conditions labeled i. In the economics of poverty, one
observes the incomes of n people labeled j in m localities labeled i. Order statistics
of the minimal (respectively, maximal) life length (or income) may be estimated
from the expressions on the left and right sides of (4) (resp., (2)), and the theorem
relates these estimates.
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