
Allometric scaling of population variance with mean
body size is predicted from Taylor’s law and
density-mass allometry
Joel E. Cohena,1, Meng Xua, and William S. F. Schusterb

aLaboratory of Populations, The Rockefeller University and Columbia University, New York, NY 10065; and bBlack Rock Forest Consortium, Cornwall, NY 12518

Contributed by Joel E. Cohen, July 30, 2012 (sent for review July 15, 2012)

Two widely tested empirical patterns in ecology are combined
here to predict how the variation of population density relates to
the average body size of organisms. Taylor’s law (TL) asserts that
the variance of the population density of a set of populations is a
power-law function of the mean population density. Density–mass
allometry (DMA) asserts that the mean population density of a set
of populations is a power-law function of the mean individual
body mass. Combined, DMA and TL predict that the variance of
the population density is a power-law function of mean individual
body mass. We call this relationship “variance–mass allometry”
(VMA). We confirmed the theoretically predicted power-law form
and the theoretically predicted parameters of VMA, using detailed
data on individual oak trees (Quercus spp.) of Black Rock Forest,
Cornwall, New York. These results connect the variability of pop-
ulation density to the mean body mass of individuals.
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Understanding how and why living populations, natural and
engineered, vary in space and time is a core problem of

ecology. When a population fluctuates to a low density, its risk of
extinction may rise and its genetic diversity may pass through a
bottleneck with enduring evolutionary consequences. In fisher-
ies, forests, and agriculture, population fluctuations may directly
affect human supplies of food, fiber, and timber and have eco-
nomic consequences. Outbreaks of arthropod and molluscan
vectors of diseases of humans and animals may raise risks of
disease. These scientific and practical reasons make it important
to understand how and why population densities fluctuate.
An important generalization about population variability is

Taylor’s law (1–3). Taylor’s law (TL) is the subject of an estimated
1,000 papers (4) and has been confirmed for hundreds of species or
groups of species in field observations and laboratory experiments
(5, 6). The censused populations may include a single species,
a single genus, or more loosely related organisms. TL asserts that

variance of population density

= aðmean population densityÞb; a> 0:
[1]

On logarithmic scales, TL becomes a linear relationship:
logðvariance of population densityÞ = logðaÞ + b × logðmean
population densityÞ: Typically, b > 0: The mean and variance of
population density increase together. In many empirical exam-
ples, 1 ≤ b ≤ 2.
Density–mass allometry (DMA) (7–13) asserts that

mean population density
= uðmean body mass per individualÞv; u> 0:

[2]

Typically, bigger organisms are rarer and v < 0. DMA is some-
times called the self-thinning law (14). DMA applies to single
species, collections of species (15–18), and foodwebs (19–23).

Substituting DMA, Eq. 2, into TL, Eq. 1, gives

variance of population density

= aubðmean body mass per individualÞbv:
[3]

We called this predicted relation variance–mass allometry (VMA).
If b > 0 and v < 0, as is typical, then bv < 0: Increasing mean
body mass will be associated with decreasing variance of pop-
ulation density. In particular, if b≈ 2 and v≈−1, then bv≈−2
is predicted.
Here we confirmed TL and DMA and tested the predicted

power-law form and parameter values of VMA, using data from
Black Rock Forest (24, 25). This 1,500-ha preserve in the Hud-
son Highlands region of New York State (41° 24′ N, 74° 01′ W)
has been managed as a science field station with minimal human
disturbance since 1928. We calculated the variance and mean of
oak population density of subplots within each of 12 plots and
then plotted the log variance as a function of the log mean with
one point per plot. We carried out this analysis using data
gathered before (in 2007) and after (in 2010) girdling of some of
the trees in some plots (Materials and Methods). We used log=
log10 throughout.

Results
In 12 plots each divided into 9 subplots (Materials and Meth-
ods), TL described well the observed relationship between the
variance of oak (trees in the genus Quercus) population density
(over subplots within a plot) and the mean of oak population
density (over subplots within a plot) in 2007 before a 2008
girdling treatment [trunk incision to sever phloem and cam-
bium (26)] and in 2010 after girdling (Fig. 1). The exponent b of
TL significantly exceeded 0 but was not significantly different
from 2.
DMA with exponent v≈−1 described the relationship be-

tween mean population density and mean above-ground biomass
per individual tree in plots and subplots in 2007 and 2010 (Fig.
2). The 95% confidence intervals (CIs) of v always excluded 0.
Before (in 2007) and after (in 2010) girdling (in 2008), the

predicted VMA power law described well the changes in vari-
ance (over subplots within a plot) of oak population density as
a function of the mean above-ground biomass of oak trees with
diameter at breast height (dbh) ≥ 2.54 cm within the plot (Fig.
3). Substituting the quantitative estimate of DMA (Fig. 2) into
the quantitative estimate of TL (Fig. 1) gave a quantitative pre-
diction of the parameters of VMA.
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In 2007,

logðVariance of population densityÞ
= ð−1:4286+ 2:2620× 5:1365Þ

− ð0:9477× 2:2620Þ · logðMeanðbiomassÞÞ
= 10:1902− 2:1437 · logðMeanðbiomassÞÞ:

The predicted intercept 10.190 fell well within the 95%
CI (7.634, 12.486) of the intercept estimated by log-linear

regression. The predicted slope –2.144 fell well within the
95% CI (−2.896, −1.306) of the slope estimated by log-linear
regression.
In 2010,

logðVariance of population densityÞ
= ð−0:9205+ 2:0396× 5:8930Þ
− ð1:2201× 2:0396Þ · logðMeanðbiomassÞÞ

= 11:0989− 2:4885 · logðMeanðbiomassÞÞ:
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Fig. 1. Taylor’s law held in plots in Black Rock Forest. The log10 variance of oak density (trees per hectare) increased linearly with the log10 mean of oak
density, as predicted. The solid line is the least-squares regression line (on log–log coordinates). The 95% confidence intervals of each parameter of the
regression line are given after the point estimates. The dotted line is the best-fitting line with slope 2. (A) n = 12 plots in 2007: log variance = −1.429 (−3.068,
0.211) + 2.262 (1.536, 2.988) × log mean. R2 = 0.828, adjusted (adj.) R2 = 0.811, root mean-squared error (RMSE) = 0.212. (B) n = 9 plots in 2010: log variance =
−0.921 (−2.713, 0.872) + 2.040 (1.218, 2.861) × log mean. R2 = 0.831, adj. R2 = 0.807, RMSE = 0.295.
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Fig. 2. Density–mass allometry held in Black Rock Forest. (A–D) The log10 mean of oak density decreased linearly with increasing log10 mean above-ground
biomass of oak trees with diameter at breast height (dbh, cm) ≥ 2.54 cm, as predicted, in (A and B) plots and (C and D) subplots, in (A and C) 2007 (before
girdling) and (B and D) 2010 (after girdling). In A–D, the dotted line is the best-fitting line with slope −1. Solid lines and markers are defined in Fig. 1. (A) n = 12
plots in 2007: log mean oak density = 5.136 (4.814, 5.459) – 0.948 (−1.053, −0.842) × log mean above-ground biomass. R2 = 0.976, adj. R2 = 0.973, RMSE = 0.032.
(B) n = 9 plots in 2010: log mean oak density = 5.893 (4.192, 7.594) – 1.220 (−1.775, −0.665) × log mean above-ground biomass. R2 = 0.794, adj. R2 = 0.765, RMSE =
0.146. (C) n = 108 subplots in 2007: log oak density by subplot = 4.973 (4.544, 5.402) – 0.904 (−1.044, −0.764) × log mean above-ground biomass. R2 = 0.607, adj.
R2 = 0.604, RMSE = 0.169. (D) n = 81 subplots in 2010: log oak density by subplot = 5.351 (4.699, 6.002) – 1.054 (−1.266, −0.842) × log mean above-ground
biomass. R2 = 0.554, adj. R2 = 0.548, RMSE = 0.236. Only Fig. 2 shows subplots because the variance in Figs. 1 and 3 is not defined for a subplot.
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Again, the predicted intercept 11.099 fell well within the 95% CI
(7.071, 15.862) of the intercept estimated by log-linear regres-
sion. The predicted slope –2.489 fell well within the 95% CI
(−4.043, −1.174) of the slope estimated by log-linear regression.
Fitting the original variables by nonlinear least squares to a

power law in each year separately gave results that were very
similar to those of fitting logarithmic variables by linear regression
for TL (Fig. 4), DMA (Fig. 5), and VMA (Fig. 6). In each year, the
95% CI of the exponent in each nonlinear fit overlapped the 95%
CI of the slope in the corresponding log-linear regression. In 2007,

Variance of population density

=
�
0:4351× 148; 420:53611:8821

�
· ðMeanðbiomassÞÞ1:8821×ð−0:9593Þ

= 2:3543× 109 · ðMeanðbiomassÞÞ−1:8055:

The predicted coefficient 2.354 × 109 fell well within the 95% CI
(−1.350 × 1010, 1.717 × 1010) of the coefficient estimated by
nonlinear fitting. The predicted exponent −1.806 fell well within
the 95% CI (−3.106, −0.430) of the exponent estimated by non-
linear fitting. In 2010,

Variance of population density
=
�
0:9500× 739; 140:60581:7525

�
· ðMeanðbiomassÞÞ1:7525×ð−1:2066Þ

= 1:8309× 1010 · ðMeanðbiomassÞÞ−2:1146:

Again, the predicted coefficient 1.831 × 1010 fell well within the
95% CI (−3.728 × 1010, 4.336 × 1010) of the coefficient estimated
by nonlinear fitting. The predicted exponent −2.1146 fell well
within the 95% CI (−3.927, 0.256) of the exponent estimated by
nonlinear fitting.
In every comparison of the goodness of fit of each TL, DMA,

and VMA power law before and after girdling, using linear re-
gression of the logged variables or nonlinear fitting of the orig-
inal variables, the root mean-squared error (RMSE) was smaller
in 2007 before girdling than in 2010 after girdling (Figs. 1–6).
Although the sample size was always greater before girdling than
after (12 vs. 9 plots and 108 vs. 81 subplots), RMSE adjusted
for this difference because RMSE is defined as the square root of
the sum of the squared deviations between predictions and ob-
servations divided by the number of units of observation.

Discussion
Data on oak population density in Black Rock Forest confirmed
TL, DMA, and the predicted relationship of VMA. Girdling
loosened the agreement between the power laws and the data.
If this consistent pattern in the Black Rock Forest data is con-
firmed elsewhere, it may suggest that badness of fit to these
power laws is associated with, and may serve as an index of,
natural or anthropogenic disturbance.
Marquet et al. (27, p. 1761) proposed that if TL described

the variance over time in abundance as a function of the mean
abundance over time with exponent between 1 and 2, and if the
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Fig. 3. Variance–mass allometry held in Black Rock Forest. The log10 variance of oak population density decreased linearly with increasing log10 mean above-
ground biomass of oak trees with dbh ≥ 2.54 cm, as predicted. Solid lines and markers are defined in Fig. 1. The dotted line is the best-fitting line with slope −2.
(A) n = 12 plots in 2007: log variance of oak population density = 10.060 (7.634, 12.486) – 2.101 (−2.896, −1.306) × log mean above-ground biomass. R2 = 0.776,
adj. R2 = 0.754, RMSE = 0.242. (B) n = 9 plots in 2010: log variance of oak population density = 11.467 (7.071, 15.862) – 2.609 (−4.043, −1.174) × log mean
above-ground biomass. R2 = 0.725, adj. R2 = 0.686, RMSE = 0.377.
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Fig. 4. Taylor’s power law held in plots in Black Rock Forest. The variance of oak density (trees per hectare) increased as a power function of the mean of oak
density, as predicted. The solid line is the least-squares power-law regression line. Markers represent treatments as in Fig. 1. (A) n = 12 plots in 2007: variance =
0.435 (−3.043, 3.913) × (mean)1.882 (0.537, 3.227). R2 = 0.625, adj. R2 = 0.588, RMSE = 10,841.269. (B) n = 9 plots in 2010: variance = 0.950 (−10.259, 12.159) ×
(mean)1.753 (−0.249, 3.754). R2 = 0.627, adj. R2 = 0.574, RMSE = 11,211.405.

Cohen et al. PNAS | September 25, 2012 | vol. 109 | no. 39 | 15831

EC
O
LO

G
Y



mean abundance over time were a power-law function of body
size with negative exponent −3/4, then “population variability
should show a negative scaling relationship with body mass,
taking values between −3/4 and −3/2. . . .[But] this relationship
has not been tested explicitly in the literature . . .” We learned of
this proposal only after submitting this work for publication. We
confirmed the predicted VMA for variation in space of pop-
ulation density. Our point estimates of the scaling exponent of
VMA before treatment, −2.101 (log-linear) and −1.768 (non-
linear), did not fall in the range Marquet et al. proposed, but our
confidence intervals for the point estimates [(−2.896, −1.306)

(log-linear) and (−3.106, −0.430) (nonlinear)] overlapped their
suggested range.
VMA asserts that the variance in population density is a power-

law function of the average body mass. VMA leads to testable
predictions. For example, if self-thinning (14) of a stand increases
average above-ground biomass per tree, VMA suggests that self-
thinning should also reduce the spatial variance in density. In
addition, if poor or harsh conditions limit average tree above-
ground biomass compared with good growing conditions, then
VMA predicts, all else being equal, that population density should
also be more variable under poor or harsh conditions.
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Fig. 5. Density–mass power-law allometry held in Black Rock Forest. (A–D) The mean of oak density in Black Rock Forest decreased as a power function with
increasing mean above-ground biomass of oak trees with dbh ≥ 2.54 cm, as predicted, in (A and B) plots and (C and D) subplots, in (A and C) 2007 (before
girdling) and (B and D) 2010 (after girdling). The solid line is the least-squares power-law regression line. Markers represent treatments as in Fig. 1. (A) n = 12
plots in 2007: mean oak density = 148,420.536 (78,082.585, 218,758.487) × (mean above-ground biomass)−0.959 (−1.033, −0.887). R2 = 0.988, adjusted R2 = 0.986,
RMSE = 12.390. (B) n = 9 plots in 2010: mean oak density = 739,140.606 (−715,789.482, 2,194,070.693) × (mean above-ground biomass)−1.207 (−1.509, −0.904). R2 =
0.939, adj. R2 = 0.930, RMSE = 33.605. (C) n = 108 subplots in 2007: oak density by subplot = 84,915.578 (45,058.589, 124,772.566) × (mean above-ground
biomass)−0.880 (−0.954, −0.805). R2 = 0.781, adj. R2 = 0.779, RMSE = 67.441. (D) n = 81 subplots in 2010: oak density by subplot = 162,404.739 (58,526.777,
266,282.700) × (mean above-ground biomass)−0.987 (−1.090, −0.885). R2 = 0.780, adj. R2 = 0.777, RMSE = 74.136.
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Fig. 6. Variance–mass power-law allometry held in Black Rock Forest. The variance of oak population density in Black Rock Forest decreased as a power
function with increasing mean above-ground biomass of oak trees with dbh ≥ 2.54 cm, as predicted. The solid line is the least-squares power-law regression
line. Markers represent treatments as in Fig. 1. (A) n = 12 plots in 2007: variance of oak population density = 1.835 × 109 (−1.350 × 1010, 1.717 × 1010) × (mean
above-ground biomass)−1.768 (−3.106, −0.430). R2 = 0.588, adj. R2 = 0.547, RMSE = 11,361.646. (B) n = 9 plots in 2010: variance of oak population density = 3.039 ×
1010 (−3.728 × 1010, 4.336 × 1010) × (mean above-ground biomass)−1.835 (−3.927, 0.256). R2 = 0.561, adj. R2 = 0.498, RMSE = 12,159.980.
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TL takes multiple forms, depending on how space and time
enter the calculation of the mean and variance. In a temporal
form of TL, multiple spatially distinct populations are censused
at multiple points in time, and the mean and the variance over
time of each population are calculated. The logarithm of the
variance is plotted as a function of the logarithm of the mean,
with one point per spatially distinct population. One spatial form
of TL considers the same underlying data but reverses the roles
of space and time: For each census, the mean and the variance
over distinct populations are computed, and then the log vari-
ance is plotted as a function of the log mean, with one point per
census. Here we used a second spatial form of TL, in which
population densities were recorded in a single census in subplots
that were subdivisions of plots. The variance and mean of pop-
ulation density were calculated for the subplots within a plot.
Then the log variance was plotted as a function of the log mean
with one point per plot.
Additional data and analyses are required to test whether

VMA is observed in other spatial and temporal forms corre-
sponding to other spatial and temporal forms of TL. The exis-
tence, form, and parameters of VMA can be tested further using
other datasets, especially those on tropical forests, and using
other theoretical models, such as models of dynamic size spectra
for fisheries (28, 29). A better understanding of how population
dynamics and ecological mechanisms determine the parameters
and forms of TL, DMA, and VMA requires further research.
Although the data here pertain to trees of a single genus, the

components of the theory, TL and DMA, apply interspecifically
(2, 11), and therefore VMA is predicted to apply interspecifically
also. In marine and freshwater food webs where body sizes and
species abundances have been reported (12, 19), and in the
zoological portion of terrestrial food webs, smaller-bodied, more
numerous species are generally consumed by larger-bodied, less
numerous species. If VMA applied to such webs, population den-
sities of smaller-bodied species should be expected to be more
variable spatially or temporally than population densities of larger-
bodied species. If VMA can be confirmed empirically for such
webs, it could have theoretical and empirical consequences for
their stability and management (27).

Materials and Methods
A rectangular field site on a slope dominated by oaks at Black Rock Forest
was divided into 12 plots, each ∼75 × 75 m, and each plot was subdivided
into 9 subplots, each ∼25 × 25 m (Fig. 7). The subplot in the middle of each
plot was called the central subplot. In 2007 (before an intervention in 2008)
and again in 2010 (after the intervention), the spatial coordinates and
the dbh (in centimeters) of every individual oak tree were measured if
dbh ≥ 2.54 cm. Species-specific biomass formulas (30) were applied to esti-
mate each tree’s above-ground biomass (AGB) (in kilograms) from its dbh.

The areas (hectares) of the 12 plots and 12 central subplots weremeasured.
In the absence of direct measurement of the noncentral subplots, the re-
maining 8 subplots in each plot were assumed to have equal area, which was
calculated as noncentral subplot area= ðplot area− central subplot areaÞ=8.
The areas of the 108 subplots differed slightly from plot to plot because of
differences among the plots in central subplot areas, but there was no
change in areas of plots or subplots from 2007 to 2010. After the noncentral
subplot areas were calculated, the areas of the central subplots of A3 and
B3 were reduced by the surface area occupied by a stream.

In each subplot, oak density was calculated as the ratio of the number of
oak trees over the subplot area. The mean and the variance of oak density
were calculated over the subplots within each plot. For a plot or a subplot, the
mean above-ground biomass of oak trees was calculated as the ratio of the
sum of oak above-ground biomass over the number of oak trees.

Each plot was assigned one of four treatments applied in late June or early
July 2008: control, no intervention (C); all nonoaks were girdled (N); 100%
oaks were girdled (O); and every second oak tree encountered as a forester
walked systematically through the plot was girdled (O50). Each grid row (A, B,
and C) received all four treatments to avoid confounding treatment with
elevation (grid row A was low, grid row B was medium, and grid row C was
high) (Fig. 7).

In 2007, the five oak species in these plots were Quercus rubra L. Red Oak
(59.4%), Quercus prinus L. Chestnut Oak (30.6%), Quercus velutina Lam.
Black Oak (4.6%), Quercus alba L. White Oak (5.2%), and Quercus bicolor
Willd. Swamp White Oak (0.2%). There were 1,319 living oaks in 2007 and
904 in 2010, and in 2007 oaks were 20.5% of all trees in the study site with
dbh≥2:54 cm. In 2010, 7 oaks survived girdling in the plots where all oaks
were girdled (A4, B2, and C1). We excluded these three plots and these 7
surviving oaks from analyses of 2010 data. Hence the number of surviving
oaks in the remaining nine plots in 2010 was 897. Using ANCOVA by species,
we found that exponents in TL and VMA for red oaks did not differ signif-
icantly from the corresponding exponents in TL and VMA for chestnut oaks.
The exponents for red oaks and chestnut oaks in DMA sometimes differed
significantly according to ANCOVA and sometimes did not, depending on
the year and whether plots or subplots were analyzed. The three other
species constituted only 10% of the oaks, too few for meaningful compar-
isons of b. We pooled tree counts for all oak species.

Treatments and soil conditions—whether or not groundwater seeps were
present at the soil surface—had no significant effects on b, the exponent of
TL, in 2007 or 2010. Nine plots had no seep conditions in the soil (surface
groundwater) and three plots (A1, A4, and B1) had seep conditions. Eleva-
tion of the plot grid did not affect b significantly before girdling, but after
girdling, the higher the elevation, the bigger was b. These conclusions are
based on ANCOVAs in which the number of plots being compared was very
limited: three plots per treatment, four plots per elevation level, and three
plots with seeps. We therefore omit the details.

Quadratic least squares were fitted to test for nonlinearity in the pairwise
relationships between log-transformed variables. In both years, no significant
nonlinear term was found for TL, DMA, or VMA.

Statistical calculations were performed using JMP version 9 (31). In cal-
culating means and variances of population density for plots, subplots were
weighted by their areas. In calculating log-linear and nonlinear regressions,
plots were weighted equally and subplots were weighted equally. We fitted
all power laws (TL, DMA, and VMA), using least-squares linear regression of
the log variables (“log-linear regression”) and nonlinear least-squares fitting
of the original variables (“nonlinear regression”). For the nonlinear fitting,
we used the analytic Gauss–Newton method of JMP version 9.

Data analyzed here are presented in Dataset S1 as a tab-delimited txt file.
A blank cell in “Biomass in 2010 (kg)” means that the corresponding tree
was dead in 2010.
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Fig. 7. Layout of 12 study plots in the main project area at Black Rock
Forest. Plots were labeled by grid row (A, B, and C, corresponding to low,
medium, and high elevation), column (1–4), and treatment in 2008: C, con-
trol (no intervention); N, nonoaks girdled; O, 100% oaks girdled; and O50,
50% of oaks girdled. Map by Frances Schuster, 2006.
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