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Abstract. For consen·ati'e linear s;·stems (~r.ite·state :-.!ari:ov processes in discrete or 
continuous time), the relative entropy of two dinin;t tr::jectories is a monotonically decreasing 
function of time. These results naturally raise t~e question whether distinct trajectories of 
nonlinear consen·athe s;·stems also display mo:;otonically decreasing relative entropy. For 
bin:l.l)' interacting Lotka-Volterra systems with :l.1ti·s;mmetry, the relative entropy oscillates 
under the motion. The m:lln new result of this paper is that. for ternJI)' interacting Loti:a-Volterra 
systems with :.nti·symmetry. the rel:nive entropy cf two distinct trajectories is a monotonically 
decreasing function of time near equilibrium. Far from equilibrium, distinct trajectories of 
ternJI)' L01k:l-Volterra symms "·ith o.nti·symme:.:· need not have monotonically decreasing 
relative entropy. 

1. Introduction 

Classical Lotka-Volterra equations (Lotka 1925, Volterra 193 I) model pairwise interactions 
of individuals and, by extension, pairwise interactions of species. For example, let p;(t) be 
the fraction of individuals who belong to species i at time t. Kimura (1958) and Mather 
( 1969) studied tJ:le model 

for r ~ to where aii + aii = 0 

m 

p;(to) > 0 L p;(to) = 1 for i, j = 1, 2, ... , m. 
ial 

These are quadratic differential equations because products of p;(t) appear on the 
right Quadratic differential equations have been analysed using non-associative algebras 
by Markus (1960}, McKean (1966), and Kaplan and Yorke (1979). By an analogy with the 
kinetic theory of gases, Itch (1971, 1973, 1975, 1979, 1981) derived these Lotka-Volterra 
equations from a model of random collisions of particles of different species and used 
non-associative algebra to analyse the equations. Under the assumption of anti-symmetry 
a;i = -ail. a well known important characteristic of these equations is that there exists a 
potential function that is conserved under the motion of the system (Kerner 1957, 1959, Goel 
et al 1971). It follows that if the initial condition of the system differs from equilibrium, 
then the system never approaches equilibrium. 
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Binary interactions may not be sufficient to model all situations of biological interest. At 
hifh popul:Jtion densities, three, four or more individuals may interact as for the Boltzmann 
equation for higher densities (Cohen 1973, Sengers 197 3),. As Mather ( 1969) stated, a plant 
may feel the effects of competition from a number of other indiYiduals growing at Yarious 
distances from it and interacting with one :mother in their effects on it. :'-1odels with ternary 
interactions haYe been investigated at least since Hutchinson (194 7); Goel er a/ ( 1971, 
i-'i' 266-9) re,·iew m:my other generalizations. Itoh ( 1975. 198 I) analysed a differential 
equations model with ternary interactions using non-associ:ni' e algebra. He pro,·ed that a 
certain Lyapunov function (giYen explicitly in theorem I below) increases until the system 
attains equilibrium. For the correspondi.ng model with only binary interactions, the same 
Lyapunov function is invariant with respect to time. Thus the term that represents ternary 
interactions makes a qualitatiYe difference to the model's behaYiour and justifies, from the 
mathematical point of ,·iew, the study of models with ternary and higher-order interactions . 
. -\ simulation study of competing species in which indi,·iduals are located on a regular 
lattice (Tainaka 1988, Tainaka and Itoh 1991) shows a stability th:H could be explained by 
the mathematical results on ternary and higher-order interactior:s. 

From the empirical point of view, if an increase in the density of many interacting 
species were obserYed to lead to an increase in the stability of the size of the interacting 
populations, the difference between models with binary interactions and the models with 
ternary interactions might pro\"ide one explanation. Of course. one would haYe to inYestigate 
:md exclude alternatiYe explanations, such as a possible loss of the exact anti-symmetry 
condition as a result of increased population density. 

For conser\"ative linear systems (finite-state Markov processes in discrete or continuous 
time), it has been known for a long time (Moran 1961, :'-1orimoto 1963, Csiszar 1963) 
that the relative entropy of two distinct trajectories is a monotonically decreasing function 
of time. Cohen er a/ (1993a, b) giYe the following improYement. Let p and r be two 
m-element probability vectors with positiYe elements. The relati,·e entropy H (p, r) of p 
and r is defined by H(p, r) = L; p; log(p;/r;). If A is an n x m matrix with elements 
a;i ~ 0 such that L; a;i = I. j = 1, ... , m, then H (Ap, Ar) ~ a(A)H (p, r), where 
&(A) = (!)maxj.k L~=l ja;i - a,-d ~ 1. An analogous result for Markov processes in ! · 
continuous time bounds d Jog H(p(r), r(r))jdt below zero. 

These results naturally raise the question whether distinct trajectories of nonlinear 
conservative systems also display monotonically decreasing relative entropy. For binary 
Lotka-Volterra systems with anti-symmetry, the answer is no, because the relative entropy 
oscillates under the motion (Kerner 1957, 1959, Goel eta/ 1971). The main new result 
of this paper (theorem 2) is that, for rern.ary Lotka-Volterra systems with anti-symmetry, 
the answer is yes near equilibrium. Far from equilibrium, distinct trajectories of ternary 
Lotka-Volterra systems with anti-symmetry need not have monotonically decreasing relative 
entropy. · 

.2. Random collision model for competitive interaction and non-assodath·e algebra 
Am for a Lotka-Volterra equation 

We consider the following random collision model. 

· (i) There are m species labelled. 1, 2, ... , m whose numbers of particles are, at time t, 
n1(1), n2(t), ... , nm(t), respectively, with n 1(t) + n2(r) + ... + nm(t) = n, where n is 
constant. 

(ii) Each particle collides with another particle on average dt times per time length dt. 

..,:;" 
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(iii) Each particle is in a chaotic bath of particles. Each colliding pair is equally likely to 
be chosen. 

(iv) Fori, j = l, 2, ... , m, by a collision, a particle of species i and a particle of species j 
become two particles of species i with probability * + a;j, and two particles of species 
j with probability ! - a;j. where aij = -aji and _:-~ ~ aij ~ ~-

When n is sufficiently large, we can deriYe equations in the following way. 
Each of ((nj(t)/n)dt)n;(t) particles of species i collides with a particle of species j and 

remains in species i with probability~ +aij· Each of ((n;(t)/n)dt)n;(t) particles of species 
j collides with a particle of species i and changes to species i with probability ! + aij. So 
we have 

1

·'· n;(t)dt{~(l ) } {~( 1 )11;(t)dt} 
11;(t + dt) = 11;(1)(1- dt) + --- L 2 + aij llj + L 2 +a;; --- n;(t) 

II j=l j=l 11 (1) 

d11;(t) = 11;(1 + dt)- 11;(1). 

Put 11;(1)/n = p;(t), then we have 

d (m ) ('" ) dt p;(t) = p;(t) ~ (! + aij)PJ(t) + ~ (~ + a;J)P;(t) p;(t)- p;(t) 
;=I ;=I 

for i = 1, 2, ... , m. (2) 

We define the following non-associative algebra Am to extend our discussion to ternary 
and higher-order interactions. 

Definition. The non-associative algebra A'" is defined as follows: 

(I) Am = { ~:; E;lx; e R, i = 1, 2, ... , m} 

is an m-dimensional linear space over a field R (which here is always the real numbers) 
which is generated by linearly independent elements £ 1, i = 1, 2, ... , m. 
(II) The products of the basis elements are defined as 

£ 1 o £1 = (! + a11)E1 + (! + a1;)EJ 

where 

and 

(Ill) The product x o y of two elements 

m m 

X= Ex;E;, y = LYJEj e Am 
i=l J=l 

is defined as 
m m m 

Ex;E; o LYJEJ = L X;)'j(E; o £1). 
l=l J=l i.}=l 

Am has the following properties. 

--
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Property /. \Ve see from the abo\'e definition that 

E; o Ej = Ej o E; 

Thus the algebra is commut:llive. 

E; o £; = E;. 

Hereafter we write the ith component of x E Am as x1. 

Property 2. For x. y E Am, we have 

~(x o y); = itl X;)}= ( ~x;) (~)}). 
Using the non-associative algebra Am, equation (2) is expressed by 

d 
- p(r) = p(r) o p(r)- p(r). 
dr 

The system with ternary interactions is represented by 

d 
dr p(r) = k1 (p(t)::: p(t)- p(t)) + k2((p(1) o p(r)) o p(r)- p(r)) 

(3) 

for p(r) E Am. 

(4) 

Using property 2, it is obvious that L;((p(r) o p(t)) o p(r)); = L;(p(t) o p(r)); = 
L;(p(r)); = 1, hence the binary system and the ternary system are conservative, i.e. 
L; dp;(r)jdt = 0. At first glance, definition (3) of the system with ternary interactions 
appears to have a strange asymmetry in it. Why does the right-hand side not contain an 
additional term k:(p(r) o (p(r) o p(r)) - p(t))? The answer is that, because the algebra 
Am is commutative, the term that is apparently missing would be exactly equivalent to the 
existing term with leading coefficient k2• 

We assume 

(pJ(to). P2(to) • ••• 'Pm(to)) e sm ={PIt p; = 1, p; > 0 
•=I 

for i = 1, 2, ... , m} . 

Theorem 1. (1toh 1981). Let there exist a unique q e sm which satisfies q c q- q = 0. 
Then 

(5) 

if (pt(to), P2(to), • •• , Pm(to)) e sm. 

Remark. It is easy to prove that if there exists a unique q e sm such that q c q - q = 0, 
then m :;1: 2. Also, if m = 3, then A must have the form 

( 

0 a 
A= -a 0 

b. -c 

where a, b, and care all positive or all negative. In this case, q1 = cjS, q2 = bJS, q3 = ·-·-:;-f); 
aJS, where S =a+ b+c. · ·. 

I 
I 
I 
I 
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3. RelatiYe entropy near the equilibrium 

Theorem 2. For q as defined in theorem I, let p(t) E B and r(t) E B, t ~ to, be two 
distinct solutions of the ternary system (4), p(t0 ) :f= r(lo). Let p = q + tS, r = q + t. If 
max; jJ; 1 q;l and max; It; jq;J are sufficiently small, then 

dH(p(t), r(t)) ( )
2 

dt :=::-2k2Lq; La;1(pj-rj) <0. 
I ) 

(6) 

Proof We ha\'e 

" p· H(p,r) = ~(q; + 8;) log___!. 
; r; 

= ''(q·loo p· + 8· loop· - o·loo r·- tS·Ioo r) L_.., I ,:: I I ;:: I ~I ,:: I I : l (7) 

d d d 
- H(p r)-- "(q·loo p·- a·loo r)..!..- "<8·1oo p·- 81oo r·) dt ' - df ~ I <: I , I <: I ' df ~ I :: I I e I • 

(8) 
I I 

Put 

a;= (pop-p); = Laijpj 
p; j 

(r:r-r); " 
Y; = = ~a;jrj. 

r; j 

We have from (5) 

d
d L(q; log p;- q; logr;) = k:lt = '2k: L(q;af- q;y/). 
t i ; 

(9) 

Since 
d 
-8 = kl (p 0 p- p) + k,((p 0 p) 0 p- p) 
dt -

(10) 

we have 

:
1 
~(8; log p;- 8; logr;) = ~ (<k1 (pop- p) + k2((p o p) o p- p));(log p;- logr1) 

I I 

where 

+8; kt (p 0 p- p); + k2((p 0 p) 0 p- p); 
. . Pi 

· -._
81 

kt(r or-r);+ k2((r c r) or- r)1) 

ri 

= kth+k2h 

"( (pop-p), (ror-r)i) h=£- (pop-p)1(logp1-Jogr1)+81 -81 • 
1 Pi r, 

and 

(11) 

(12) 

"~ ((pop)op-p)l ((ror)or-r);) /3:=£- ((pop}op-p);(logp1 -Jogr1)+8, -8, • 
I ~ ~ . 

(13) 

Hence 

(14) 

--
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Since 

and 

we have 

Putting 

Lp,a; = 0 Lq,a; = 0 
i i 

L(E;a; + o;y;) = :L<aij£10j + a;Atj) = 0 
i i.j 

12 - "<p (i· Joo p· + 0 (i• - p·a· Joo r· - o·v·) - ~ I I ;: I l I I I ,:, I 1,1 

i 

= L(p,a; Jog(q; + o;) + o;a;- p;a; log(q; + £;)- o;y;) 
i 

~ I:(p;a;( 0~- t~) +o;a; -o;y;) 
i q, q, 

~ I:<2o;a,.- t;a;- o,.y,.) 
i 

= I:<2o,.a,. + 2q,.a,. - 2q,.a,. - t,.a,. - o,.y,) 
i 

. - ((p 0 p) ::: p- p c p); 
A, - --'-----"--'--~--'-- and 

((r:::r)cr-r:r); 
r;=-----­

r; p; 

we have (Itch 1981, p 56) 

Lq;A; = 2 Lq;cxJ and 
i i 

Taking into account (p o p) o p - p = (p o p) o p - p o p + p o p - p and 

/2 = L(p;cx; log p; + o;cx;- ~;a; logr1 - o;y;) ~ 0 
I 

we have 

/3 = L((p;AI + p;a;) log Pi+ o;(A; +a;)- (p;AI +p;a;) logrl- O;(rl + y;)) 
I 

:::::: L(p;A; log(ql + c;) + o;A;- p1A1 log(q1 + t;)- o;r;) 
I 

:::::: L (p,.A,.(
81 

- £;) +c;A1- o,.r~) 
; ql q; 

=I: (<ql + c;)A,.(
81

- e~) + c,.A,.- o1r1) 
i . ql q, 

:::::: 2:<2c;AI- e,.A,.- c,.r,.). 
I 

( 15) 

(16) 

. -i' 
··.o:i 
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Since 8; + q; = p; .:md L; p;A; = 0, 

L<28,.A,.- <,.A,.- 8, r,) = L<28,.A + 2q,.A,.- 2q,.A,.- <;A;- 8,.r,.) 

Since 

we ha\'e 

171 

= 2..::<-<;A;- 8,r,.- 2q,.A,.) 
i 

= L OijPiPj/h(E; + 2a,.£,. + Ek + 'J.aki£1:) 
i.j.k=l 

6389 

( 17) 

(18) 

LEpAp = L <,ariPiPk + 2 L E'pOpjOpkfJjPk + L£~a;jPiPi + 2 L£~a;1 ap;p;pj. 
p p.j.k p.j.k i.j.p i.j.p 

Since 

we have 

Hence 

'L-a:1£j = Laii'"i and 
j j 

L E'pOpjfJjPk =- L PiYi 
p.j.k 

~L E;OpJOpkPiPk = Ltpa; 
p.j.k p 

· .,;.LE'pO;jap;P;Pi =- L p;a;y;. 
i.j.p i 

LEpAp =- L PiYJ + 2 LEper;- 2 L p;a;y; 
p j p i 

L8PrP =- l:r1ai + 2 L8py;- 2 l:r;a;y1 • 
p J • p 

(19) 

(20) 

(21) 

The middle summations on the right-hand side of (20) and (21) will be neglected because 
these terms are negligible near equilibrium. 

Since 

L(r;a; + p;y;) = L(a;jTiPi + a;ip;rj) = 0 
i i,j 

LP;Cl;Jii ~ Lq;a;y; and 
i i 

we have 

h ~ -4 Lq;at+4 Lq;a;)l;._ (22) 
i i ~-
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Thus we h;n·e 

d
d LP;log~; =k21t+ktl2+k213;:_2k2Lq;(a;-y;)2 . (23) 
I i I; i 

0 

Example J. We consider the model which satisfies (i) and (i\') of section 2, and the 
following (ii') and (iii'). 

(ii') Each particle participates in triple collision on a\'erage dt times per time length dt. A 
triple collision is expressed as in figure 1, in which particle X collides with particle Y, 
and Y collides with particle Z. 

(iii') Each colliding triple is equally likely to be chosen. 

X y 

\ I / 
f1Vi1 I 
~ I 

I \ / 
\ / 

/ /f',l"7'\ • f.J..J . 
I 1----:: 

I \ 
\ 

; 

Figure 1. Two successive bin:lr)' collisions m:~ke 

a tem:lr)' collision in "'hich p:111icle X collides with 
p:llticle Y. :md Y collides with p:!nicle Z. 

Figure 2. Th.ree successive binary collisions make 
:1 tern:u-y collision in which p:ll'ticle X collides with 
p:111icle Y. Y collides with p:ll'ticle Z. :.nd particle Z 
collides with p~'1icle X. 

From the abo\'e setting, we have the following equation with p(t) = l:;';.1 p;(t)E; e 
Am: 

d 
dr p(r) = ! p(r) o p(r) + ~ p(r) o (p(r) o p(r))- p(t) 

Each of n dt particles participates in a ternary collision in time interval dt. Each ~n dt 
particles of them takes the part of X in figure 1. Each of the remaining ~n dt particles takes 
the part of Y or Z in figure 1. So the above equation is reasonable. · 

In the case of low density, we need not consider the effect of triple collisions. So k2 is 
very small. In the case of higher density k2 is not so small. 

Example 2. In this example, (ii') of the previous example is replaced by the following 
(ii"): 

(ii") Each particle participates in a triple collision on average dt times per time length dt. 
A triple collision consists of three successive binary collisions as in figure 2, that is, 
particle X collides with particle Y, Y collides with particle Z, and finally particle Z 
collides with particle X. 

We consider p e A3 where a12 = a23 = a31 = !• in which case q = (i. !· !). Then 
the law of change is given by (d/dt)p = p o (pop)- p. 
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Since p c (p c p)- p = p c (pop)- C2:7=l p;) 2 p, we have 

d ., ., I ., I ., 

dr P3 = - P:Pi- 2p~pl T P2P3 T 2p:_p3 

"here - p 1 p; corresponds to the eYent that one particle of species I irueracts with two 
panicles of species 2 ::;nd changes to one particle of species 2, -lp? P2 corresponds to the 
c\'ent that two particles of species I interact with one particle of species 2 and change to 
two particles of species 2, P:Pf corresponds to the eYent that one particle of species 3 
inter:Jcts with two panicles of species I and changes to one particle of species I, 2p~ PI 
corresponds to the eYent that two panicles of species 3 interact with one particle of species 
I and change to two particles of species I. 

A triple which consists of one particle of species l, one particle of species 2, and one 
particle of species 3, makes no change for p1 in tOt:JI. Thus we see that 

d ., ') I ') I -"\ ') 

dr P1 =- P1 Pi- 2pj P2 T P:Pi T -'-P~PI 

is reasonable. 

4. Discussion 

For conser\'ati\'e linear systems (finite-state Markov processes in discrete or continuous 
time). the relati\'e entropy of two distinct trajectories is a monotonically decreasing function 
of time. The two distinct trajectories of our nonlinear conservative system also display 
monotonically decreasing relatiYe entropy near equilibrium. 

For Lotka-Volterra systems of binary interactions with anti-symmetry, the relative 
entropy of two distinct trajectories continues to oscillate under the motion. If a Lotka­
Volterra system has ternary interactions with anti-symmetry as well as binary interaction, 
the relative entropy of two distinct trajectories has damped oscillations with time far from 
equilibrium, and is monotonically decreasing near equilibrium as can be observed in the 
numercal study (figure 3). 

To understand the \'alues k1 and k2 of (4), we give a discrete model of the binary 
and the ternary interaction to simplify the discussion. Consider an occupancy problem 
for a system of n particles (Johnson er al 1992, pp 420-2). Suppose there are c places, 
1, 2, ... , c, in which each particle can be. In unit time the n particles are distributed 
on the c places at random. All c" arrangements are assumed to be equally probable. 
Two particles, in a particular place, are considered to be in a binary collision. The 
three particles, in a particular place, are considered to be in a ternary collision given in 
figure 2. The probability Pr(X = x) that there are x particles (x ~ n) in a particular 
place is Pr(X = x) = ,C,~(JfcY(J - 1/c)"-z. The value Pr(X = 3)/Pr(X = 2) 
could represent k2/ k1• Neglecting collisions of order higher than three, we have equation 
{4). When n = c9110 for c = 100000, Pr(X = 3)/Pr(X = 2) is approximately 0.105. 
Pr(X = 4)/Pr(X = 2) is approximately 0.0083. In figure 3, we give a numerical study 
for the case k1 = 20 and k2 = 2.1, neglecting interactions higher than three for the 
two trajectories which start from (0.3, 0.3, 0.4) and (0.35, 0.35, 0.3) for p e A3 where 
a12 = a23 = a31 = !· Our numerical studies sho~ that k2 seems to determine the speed of 
approach to equilibrium almost independently of kt: ~-
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Figure 3. The rel:nive entrOP)' of the two di~tinct tr:~jectC':ie~ !'.:::..< d~::Jj:>ed o~cill:nions wi:h time 
fo.r from equilibrium and is mcmotonic:llly decrea~ing ne::: equi:itrium. The two ::::jectories 
sto.rt from (0.3. 0.3. 0.4) and (0.J.5. 0.35. 0 . .3) for p € A:; "•:h a:: = a:3 = a:;1 = ~·where 
kt = :o :~nd k2 = 2.1. 
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