J. Phys. A: Math. Gen. 27 (1994) 6383-6393. Printed in the UK

Competitive ternary interactions and relative entropy of
solutions

Yoshiaki Itoht and Joel E Coheni

{ The Institute of Statistical Mathematics and the Graduate University for Advanced Studies,
. 4-6-7 Minami-Azabu Minato-ku, Tekyo 106, Japan
1 Rockefeller University, 1230 York Avenue, Box 20. New York, NY 10021-6399, USA

Received 28 February 1994, in finzl form 8 August 1964

Abstract. For conservative linear systems (finite-ciate Markov processes in discrete or
continuous time), the relative entropy of two distinct 1rzjectories is a monotonically decreasing
function of time. These results naturally raise the guestion whether distinet trajectories of
nonlinear conservative sysiems also display monotonically decreasing relative entropy. For
binary interacting Lotka-Volterra systems with zat-symmetry, the relative entropy oscillates
under the motion. The main new result of this paper is that, for temary interacting Lotka~Volterra
systerns with anti-symmetry, the relative entropy of two distinct trajectories is a monotonically
decreasing function of time near equilibrium. Far from equilibdum, distinct trajectories of
temary Lotka-Volierra systems with anti-symmety need not have monotonically decreasing
relative entropy.

1. Introduction

Classical Lotka—Volterra equations (Lotka 1925, Volterra 1931) model pairwise interactions
of individuals and, by extension, pairwise interactions of species. For example, let p;(1) be
the fraction of individuals who belong to species i at time 7. Kimura (1958) and Mather
(1969) studied the model

d m
a-t-p,-(t) = p,-(t)Za,-jpj(t) for 1>1 where a;+a; =0
j=1

m
pi(to) >0 PIOES! for i,j=1,2,...,m.
fe=z]

These are quadratic differential equations because products of p;(z) appear on the
right. Quadratic differential equations have been analysed using non-associative algebras
by Markus (1960), McKean (1966), and Kaplan and Yorke (1979). By an analogy with the
kinetic theory of gases, Itoh (1971, 1973, 1975, 1979, 1981) derived these Lotka—Volterra
equations from a model of random collisions of particles of different species and used
non-associative algebra to analyse the equations. Under the assumption of anti-symmetry
a;j = —aj;, a well known important characteristic of these equations is that there exists a
potential function that is conserved under the motion of the system (Kerner 1957, 1959, Goel
et al 1971). It follows that if the initial condition of the system differs from equilibrium,
then the system never approaches equilibrium.
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Binary interactions may not be sufficient to model all situations of biologiczl interest. At
high population densities, three, four or more individuals may interact as for the Boltzmann
equation for higher densities (Cohen 1973, Sengers 1973). As Mather (1969) stated, a plant
may feel the effects of competition from a number of other individuals growing at various
distances from it and interacting with one another in their effects on it. Models with ternary
interactions have been investigated at least since Hutchinson (1947); Goel er al (1971,
PP 266-9) review many other generalizations. Itoh (1975. 1981) analysed a differemial
equations model with ternary interactions using non-associative algebra. He proved that a
certain Lyapunov function (given explicitly in theorem 1 below) increases until the system
attains equilibrium. For the corresponding model with only binary interactions, the same
Lyapunov function js invariant with respect to time. Thus the 1erm that represents ternary
interactions makes a qualitative difference to the model’s behaviour and justifies, from the
mathematical point of view, the study of models with ternary and higher-order interactions.
A simulation study of competing species in which individuals are located on a regular
lattice (Tainaka 1988, Tainaka and Tioh 1991) shows a stability that could be explained by
the mathematical results on ternary and higher-order interaciions.

From the empirical point of view, if an increase in the density of manyv interacting
species were observed to lead 1o an increase in the stability of the size of the interacting
populations, the difference between models with binary interactions and the models with
ternary interactions might provide one explanation. Of course. one would have to investigate
and exclude zlternative explanations, such as a possible loss of the exact anti-symmetry
condition as a result of increased population density.

For conservative linear systems (finite-state Markov processes in discrete or continuous
time), it has been known for a Jong time (Moran 1961, Morimoto 1963, Csiszér 1963)
that the relative entropy of two distinet trajectories is a monotonically decreasing function
of time. Cohen er al (1993a,b) give the following improvement. Let p and r be two
m-element probability vectors with positive elements. The relative entropy H(p,r) of p
and r is defined by H(p,r) = 3, pilog(p;/ri). If A is an n x m matrix with elements
aij > O such that 3 ;a;; = 1,j = 1,...,m, then H(Ap, Ar) < &(A)H(p,r), where
&(A) = (3)max;x Y i, laij — axl < 1. An analogous result for Markov processes in
continuous time bounds dlog H (p(1), r (1))/dt below zero.

These results naturally raise the question whether distinct trajectories of nonlinear
conservative systems also display monotonically decreasing relative entropy. For binary
Lotka-Volterra systems with anti-symmetry, the answer is no, because the relative entropy
oscillates under the motion (Kerner 1957, 1959, Goel et al 1971). The main new result
of this paper (theorem 2) is that, for rernary Lotka-Volierra systems with anti-symmetry,
the answer is yes near equilibrium. Far from equilibrium, distinct trajectories of ternary
Lotka-Volterra systems with anti-symmetry need not have monotonically decreasing relative
entropy.

2. Random collision model for competitive interaction and non-associative algebra
A™ for a Lotka-Volterra equation

We consider the following random collision model.

" (i) There are m species labelled 1, 2,..., m whose numbers of particles are, at time ¢,
ny (1), na(z), ..., nm(z), respectively, with ni(t) + na(t) + -« + n,(t) = n, where n is
constant. S

(ii) Each particle collides with another particle on average dr times per time length dr.
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(i1} Each particle is in a chaotic bath of particles. Each colliding pair is equally likely to
be chosen.

(ivyFori,j=1,2,...,m, by a collision, a particle of species i and a particle of species j
become two particles of species i with probability % + a;;, and two particles of species

j with probabilily -;' - aij, where ajj = —aj; and —-;- < aij < %

When n is sufficiently large, we can derive equations in the following way.

Each of ((n;(1)/n)dr)n; (1) pariicles of species i collides with a particle of species j and
remains in species i with probability %+a,»j. Each of ((n;(1)/n)di)n;(z) particles of species
J collides with a particle of species i and changes 10 species i with probability % +a;;. So
we have

-

n; (1) dt i n;(r)dr
n(t+dt)_n(:)(1—d)—'- . {Z(§+aij)zz,-]+{2(§+a,,)’l } i(1) 0

dni(ty = n; (¢t + dt) — n; ().

Put n;(0)/n= j;i(z), then we have

d m ”m
E;Pi(t) = Pi(')(z (3 + aij)Pj(f)) + (Z 3+ Hij)Pj(l)>Pi(l) - pi(1)

j=1 j=l
=2p,—(1)(Za,-jpj(1)> for i=1,2,...,m. )
j=1

We define the following non-associative algebra A™ 10 extend our discussion to ternary
and higher-order interactions.

Definition. The non-associative algebra A™ is defined as follows:

m
a) A" = {Z;,-E,-]x,- €R,i= l.2....,m]

i=17

is an m-dimensional linear space over a field R (which here is always the real numbers)
which is generated by linearly independent elements E;,i =1,2,...,m.
(II) The prodiicts of the basis elements are defined as

EioEj = (3 +ay)Ei + (3 + a;) Ej

where

N e
.

<a; €

[ ]

_ ajj = —aji and -

(1II) The product x oy of two elements

X = ZX,'E,', y= Zijj €A™

i=] j=1
is defined as
m
Zx.Ei ° Z)’;Ej Z xiyj(Ei o Ej).
i=1 i.j=1

A"™ has the following properties.
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Properry 1. We see {rom the above definition that
E,‘OEJ=EJOE,- EiOEi=E,'.

Thus the algebra is commutative. -
Hereafter we write the ith component of x € A™ as x‘.

Properry 2. For x,y € A™, we have

Sicor= 3 n = (30 ) ().

j=] i=] j

Using the non-associative algebra A™, equation (2) is expressed by

d
EP(I) =p@)op(t) - p@). (3)

The system with ternary interactions is represented by

d
Ep(’) =k (p(t) c p() = p(1)) + ka((p(t) o p(1)) o p(1) — p(1)) for p@1)e A™.
4)

Using property 2, it is obvious that Y ,((p(t) o p(1)) s p(1))i = ¥ ;(p(1) e p(1))i =
S .(p(1))i = 1, hence the binary system and the ternary system are conservative, i.e.
Y, dpi(1)/dr = 0. At first glance, definition (3) of the system with ternary interactions
appears to have a sirange asymmetry in it. Why does the right-hand side not contain an
additional term ki(p(1) o (p(1) o p(1)) — p(1))? The answer is that, because the algebra
A™ is commutative, the term that is apparently missing would be exactly equivalent to the
existing term with leading coefficient ka.

We assume

(PI(YO),PI(X'O)‘---.Pm(to))EBm={p '=1,p,'>0 for i=1,2,.-..,m}.

i=]

Theorem l. (Itoh 1981). Let there exist a unique g € B™ which satisfies gcg - g =0.
Then

Z gi log pi (t) = 2k, Z gi (Z ai; pj (1)) v 5)

l=l i=] Jj=1

if (p1(%0), p2(20), ..., pm(t0)) € B™.

Remark. It is easy to prove that if there exists a unique ¢ € B™ suchthatgog—-¢g =0,
then m # 2. Also, if m = 3, then A must have the form

0 a -b
A=]| -a 0 c
b. —¢ 0

where a, b, and ¢ are all positive or all negative. In this case, g; = ¢/S, qz =b/S,q3 =
a/S, where S=a+b+ec.

R B

4
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3. Relative entropy near the equilibrium

Theorem 2. For g as defined in theorem 1, let p(r) € B and r(1) € B, 1 = 19, be two
distinct solutions of the ternary system (4), p(to) Z r(fo). Let p =g + 8, r =qg+¢. If
max; [8;/g;| and max; |¢;/g;| are sufficiently small, then

dH (p(1), r1)) ’
i 2A2§:q,(2a,,<p, )) <0. (©)

Proof. We have

Pi
H(p.r)= i +6:)log —
(p.r) =D (i +8&)log -

= Z(qi log pi + & log pi — g; logr; — & log ;) ©)
d
SHpN == Z(q, log pi — gilogr;) + — Z(a log pi — 8i logri). (8)
Put
(pop-—p) (rcr—r);
Q'i:_;’—g——'e—’:Zaiij 7"=“———“'=Zafffi'
pi 7 i ;
We have from (5)

d

< Zi:(q,- log pi — gilogr;) = ka1y = 2k Z(q. - givd). ©)
Since

d

56=k1(p°p—p)+k:((pcp)op—p) (10)
we have

d
7 Y (Silog p; — & logr;) = Z ((kx(P °op—p)+ki((pep)op— p)i(logp; —logr;)

ki(pop—pli+hk({pop)ep—p

:'}5.'
. pi
a.kl("Of—f)i+k2((rcr)or—r),
] ri
=hilthl . 1)
where L
o ror-—r )
I’EZ((”P‘P)"(‘%Pi—logrf)+af(p P 2t n )'); a2
i

8;

((pop)op—=ph _ ((ror)or—r).-)
pi ] )

! EZ(((p o p)o p— pli(log p; —logri) +&;
(13)
Hence

d
EH =k111 +k112+k2[3. (14)
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Since
> pei=0 > g =0
and
Z(Eia’i +38ivi) = Z(aijflaj +aijé,&;) =0
i i
we have
L= Z(p,-oz,— log pi + 8ia; — piajlogr; — &;vi)
= Z(Pzai log(g; + &) + ;i — pixilog(gi + &) ~ 8ivi)
&; Ej
= Z (Pi%’(’i - —) + 8 — 5i)’i)
i g9i G
X 2(25,'0’5 - £ — &¥)
-
=80 + 2gi0; ~ 2907 — &0 — &)
= Z(2p,~a,- - 3‘]idi — gy — &) =0. (15)
Putting
A‘_=((POP)C:—PCP)1' and ]_,i=((rcr)crr—r:r),-
i i

we have (Ttoh 1981, p 56)
DlaiAi=2) g} ad  Yali=23 gl
i i S i

Taking into account (pop)op—p=(pop)op—pop+pop— pand
L= Z(p,-a,- log pi + 8;; — piailogry — &%) =0
i

we have

L= ((piAi+ pie)1og pi + &i(A; + i) — (pi A + picti) logri — &i (T + %))
i

& Z(PiAi log(gi + &) + &; Ai — pi A;log(qi + &) — &)
i

& &
& Z (PiAi('qf - q—:) + 8 A - &Ti)

i ql'
~ Z(Z&;A, —giAi = &TY). (16)
: ]

Y TR

B ‘«}:‘fl
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Since & + g = pi and Y ; piA; =0,
Z(?& A — £ A 51‘)_2(25 A+2giAi — 20iA; — &1 A — 8;T)

= Z(-&Ai —&Ti = 2g:4))

==Y (G4 +ET) -4 qaf. (17)
i i
Sim.:c
: m
(pOp P C.ﬁ (Zauplpj ) <ZPAEL)
= Z a;j pi pi PilEi + 2ai B + Er = 2ai Ey) (18)
i.joa=1
we have
ZS,,AP - Z €,4,iPj Pk + 2 z €08, Pj Dk + Z&G:JP:PJ + Zzgﬁauaprp:pj
p.Jk p.jk ij.p ij.p
(19)
Since
Zaijfj = Za,-jrj and Za,-jéj = Zaupj
J j j J
we have
praijij = —ZPJ‘/;'
PJ‘
. Pk
' ”“Z €p8ijApi PiPj = — Z piQiYi .
T i
Hence

_ .EepA,,=—ijy;+2z:epag—22p,-a,~y; (20)
Za Tp = Zr,a, +2Zs,,yp —2Zr,a,y, @1

The middle summations on the right-hand side of (20) and (21) will be neglected because
these terms are negligible near equilibrium.
Since

Z(’xax + piyi) = Z(aurxpj + al}plrJ) =

Zp,oz,y: ~ Zq,a.yz and Y nevi ™Y gy
i i

we have
Ih=-4 z :Qiaiz+4 E qiiVi . (22)
i i " -
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Thus we have
d ;
<) rilog —”— = koly + Ky Iy + kaly = =2k, 'Zq,-(ai -¥)?. (23)

0

Example 1. We consider the model which satisfies (i) and (iv) of section 2, and the

following (ii’) and (iii’).

(ii") Each particle participates in triple collision on average dr times per time length dr. A
triple collision is expressed as in figure 1, in which particle X collides with particle Y,

and Y collides with particle Z.
(1i1") Each colliding triple is equally likely to be chosen.

Figure 1. Two successive binary collisions make Figure 2. Three successive binary collisions make

a temary collision in which panicle X collides with  a ternary collision in which particle X collides with

particle Y, and Y collides with paricle Z. panticle Y, Y collides with particle Z, and panicle Z
collides with panicle X.

... From the above setting, we have the following equation with p(r) = Y [, pi(1)E; €
A" -

d
570 =3PW 0 p() +3p@) o (p@) 0 p@) = p®)

Each of ndt particles participates in a ternary collision in time mtcrval dr. Each 3n dr
particles of them takes the part of X in figure 1. Each of the remaining 3n dr particles takes
the part of Y or Z in figure 1. So the above equation is reasonable. -

In the case of low density, we need not consider the effect of tnplc collisions. So kz is
very small. In the case of higher dcnsny ky is not so smalil.

Example 2. In this example, (ii") of the prcvious example is replaced by the following
@i"): ;

(ii") Each particle participates in a triple collision on average dr times per time length dr.
A triple collision consists of three successive binary collisions as in figure 2, that is,
particle X collides with particle Y, Y collides with particle Z, and finally particle Z
collides with particle X.

We consider p € A® where a; = a3 = a3 = 4, in whrch case ¢ = (3.1, 4). Then
the law of change is given by (d/dt)p=po(po p) p.
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Since pe(pop)~p=pelpop)— (Lo, p)2p ., we have

d 2 952 ' 249,2
apl =—P1py— 2piPrT PAPy T P3P
d ol

5 P2 = P2p pi—2pips+ p1p; +2pipa
d

2 2 ' 2 . 2 2
it i 2pip) + pap3 T 2p3ps

where —p p3 correcponds 10 the event that one particle of spccies I interacts with two
parti¢les of species 2 and changes 10 one particle of species 2, —7p,p7 corresponds to the
event that two particles of species 1 interact with one particle of species 2 and change to
two particles of species 2, p:p} corresponds to the event that one particle of species 3
interacts with two particles of species 1 and changes 1o one particle of species 1, 2p?p,
corresponds 10 the event that two particles of species 3 interact with one particle of species
1 and change 1o two particles of species 1.

A triple which consists of one particle of species 1, one particle of species 2, and one
particle of species 3, makes no change for p; in towal. Thus we see that

is reasonzble.

4. Discussion

For conservative linear systems (finite-state Markov processes in discrele or continuous
time). the relative entropy of two distinct trajectories is a monotonically decreasing function
of time. The 1wo distinct trajectories of our nonlinear conservative system also display
monotonically decreasing relative entropy near equilibrium.

For Lotka-Volterra systems of binary interactions with anti-symmetry, the relative
entropy of two distinct trajectories continues to oscillate under the motion. If a Lotka-
Volterra system has ternary interactions with anti-symmetry as well as binary interaction,
the relative entropy of two distinct trajectories has damped oscillations with time far from
equilibrium, and is monotonically decreasing near equilibrium as can be obscrvcd in the
numercal study (figure 3).

To understand the values k) and k; of (4), we give a discrete model of the binary
and the ternary interaction to simplify the discussion. Consider an occupancy problem
for a system of n particles (Johnson er al 1992, pp 420-2). Suppose there are ¢ places,
1,2,...,¢, in which each particle can be. In unit time the n particles are distributed
on the ¢ places at random. All ¢c" arrangements are assumed to be equally probable.
Two particles, in a particular place, are considered to be in a binary collision. The
three particles, in a particular place, are considered to be in a ternary collision given in
figure 2. The probability Pr(X = x) that there are x particles (x < n) in a particular
place is Pr(X = x) = ,C;(1/¢)*(1 — 1/c)y*"*. The value Pr(X = 3)/Pr(X = 2)
could represent ky/ k). Neglecting collisions of order higher than three, we have equation
(4). When n = ¢%" for ¢ = 100000, Pr(X = 3)/Pr(X = 2) is approximately 0.105.
Pr(X = 4)/Pr(X = 2) is approximately 0.0083. In figure 3, we give a numerical study
for the case k; = 20 and k; = 2.1, neglecting interactions higher than three for the
two trajectories which start from (0.3,0.3,0.4) and (0.35,0.35,0.3) for p € A® where
Q3 = ay =azy = 5 Our numerical studies show that kz seems 10 determine the speed of
approach 10 equilibrium almost independently of ky: -
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Figure 3. The relaiive entropy of the two distinct trajecteries s damped oscillations with time
far from equilibrium and is monotonically decreasing nezr egquilibrium. The two irajectories
siant from (0.3, 0.3, 0.4) and (0.35,0.35,0.3) for p € 4% with a2 = az3 = a3y = 1. where
ky=20and ks = 2.1.
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