
Local and Regional Regulation of Species
Area Relations: A Patch-Occupancy Model 

Hal Caswell and Joel E. Cohen 

Local species diversity (i.e., diversity in a small homoge
neous patch of habitat) may be determined by local pro
cesses such as competition, predation, mutualism, and 
disturbance, or by regional processes such as speciation 
and biogeographical dispersal (Ricklefs 1987). Most re
cent ecological theory has focused on the local processes 
that determine membership in a community, rather than 
the regionlil processes that determine the species pool 
from which members may be drawn. One approach to 
distinguishing local from regional control of diversity is 
to examine a number of communities and plot local diver
sity as a function of the regional species pool (Terborgh 
and Faaborg 1980; Cornell 1985a, 1985b; Ricklefs 
1987). In saturated communities local diversity should be 
independent of regional diversity. A direct relation be
tween local and regional diversity, however, is interpreted 
as evidence that "in these cases, local communities are not 
saturated, diversity is not prescribed by local conditions, 
and the number of species found within small areas is sen
sitive to such regional processes as geographic dispersal 
... " (Ricklefs 1987, 168). The results of such tests have 
been mixed. Local diversity of cynipine wasps on oak 
trees (Cornell1985a, 1985b) and songbirds on Caribbean 
islands (Ricklefs 1987) is more or less linearly correlated 
with regional diversity, thus providing no evidence of sat
uration of local communities. In another study of island 
birds in the Caribbean, however, Terborgh and Faaborg 
(1980) found that local diversity was independent of re
gional diversity above some minimum number of species. 

In this chapter we construct a model that includes both 
local processes and a regional species pool, and which 
makes predictions about local diversity. We find that 
local-regional diversity regressions must be interpreted 
with care, because the interaction of disturbance, coloni
zation, and competition in locally saturated communities 
can produce patterns that completely obscure the effects 
of saturation. 

Any model intended to study local and regional regula
tion of species diversity must contain at least two spatial 
scales. Most of the classic theories of diversity, however, 
are based on species-interaction models (the Lotka
Volterra equations and their relatives) which include only 
a single scale. They focus on local processes to the exclu
sion of regional effects. 

This chapter is Woods Hole Oceanographic Institution Contribu
tion 7641. 

Patch-occupancy models, which include two spatial 
scales, are a next step in complexity and realism. They 
picture the world as a set of patches in which local species 
interactions take place. The state of a patch is defined by 
species presence or absence. If the collection of patches is 
well mixed, so that each patch interacts equally with all 
others, the system can be described by a set of differential 
or difference equations in the proportions of patches in 
each state. This assumption of mixing limits the scales to 
two: the local scale within a single patch and the regional 
scale of the entire set of patches. Patch-occupancy models 
were introduced by Cohen (1970) and Levins (1970), and 
have since been applied to a variety of ecological interac
tions (Slatkin 1974; Hastings 1977, 1978; Caswell1978; 
Crowley 1979; Hanski 1983; Caswell and Cohen 1991a, 
1991b). 

Caswell and Cohen (1991b) used patch-occupancy 
models to examine coexistence and diversity in competi
tive and predator-prey interactions. In those models, co
existence is determined by the interplay of the rate of ap
proach to local equilibrium (competitive exclusion) and 
the rates of disturbance and dispersal. Disturbance can 
maintain nonequilibrium coexistence and increase both 
alpha and beta diversity (Caswell and Cohen 1991b). 

It is difficult to analyze patch-occupancy models with 
large numbers of species because the number of possible 
patch states increases exponentially with the number of 
species. Thus patch-occupancy models have been used 
primarily to describe two- and three-species interactions. 
Conclusions about species diversity rest on the usual eco
logical inference that diversity is determined by the out
come of such interactions. In this chapter, we develop a 
patch-occupancy model for large numbers of species, and 
examine the relation between local diversity and the re
gional species pool. 

THE MODEL FRAMEWORK 

We approximate the world by an effectively infinite set of 
effectively identical patches. This boring landscape is 
home to S,o, species. Each patch is independently subject 
to disturbance, with probability p, at each time step. A 
disturbance eliminates all species from a patch. The prob
ability that species i will colonize a suitable patch is a 
species-specific constant C;. By ass_uming that the C; are 
constant, we ignore both neighborhood effects (which 
would make colonization probability depend on the prox-
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imity of occupied patches; see Caswell and Etter 1993) 
and frequency effects (which would make- colonization 
probability depend on the abundance of the species). 
Which patches are available for colonization, and what 
happens to the species once they have arrived, depend on 
the hypotheses made about local interaction. 

We want to describe the patterns of diversity resulting 
from this simple model. To do so, we focus not on a single 
index but on the species-area curve. This curve gives not 
only the expected species richness in a single patch (the 
most local kind of diversity admitted in the model) but 
also the expected richness in two, three, ... randomly se
lected patches. The slope of the species-area curve is one 
measure of beta diversity. Species-area curves are fre
quently reported, and there is a large literature on the 
functions suitable to describe them (McGuinness 1984a). 

We will present two models, which differ in their as
sumptions about local processes. The first contains no 
competition of any kind. Communities in this model are 
never saturated, and there is no local limitation on either 
coexistence or diversity. The number of species in a patch 
depends only on the history of colonization since the most 
recent disturbance. At the other extreme, we model strong 
local saturation by supposing that there is one species that 
eventually excludes all the others from any patch that it 
colonizes. 

Based on our experience with patch-occupancy models 
for several species (Caswell and Cohen 1991a, 1991b), 
we expect the time scales of disturbance and competition 
to play important roles in these models. If disturbance is 
frequent and competitive exclusion is slow, we expect the 
model with strong local saturation to behave like the non
competitive model, because only rarely will a patch be un
disturbed long enough for exclusion to occur. On the 
other hand, if disturbance is rare or exclusion is rapid, 
we expect local diversity to reflect competition, and local 
communities to be saturated with species. 

NoNCOMPETITIVE CoMMUNITIEs 

A Single Patch 

We begin with a single patch, without competition. Let 
c; be the probability of species i arriving, per unit time, 
independently of all other species. Let p denote the proba
bility of disturbance and t the time since the last distur
bance (t = 0 means the patch is currently disturbed). We 
assume p > 0. Then the probability of finding species i in 
the patch is 

(9.1) P[sp. i present nowlt] = 1 - (1 - c;)' 

LetS denote the number of species in the patch. Since spe
cies colonize independently, 

stor 

(9.2) E[Sit] = LJ1 - (1 - c;)'] 
i=l 

and thus 

(9.3) E[S] = L E[Sit]P(t) 
t~O 

= L E[Sit]p(1 - p)' 
t~O 

To proceed, we ignore variation in the colonization rate, 
setting c; = c for all i. Then, combining equations 9.2 and 
9.3, we get 

(9.4) E[S] = S,o, [1- p +: _ pc] 
Thus, in this simple single-patch model, local diversity is 
directly proportional to the size of the regional species 
pool. 

Species-Area Relationships 

We turn now from single patches to collections of patches. 
We want to derive a species-area relation. Our approach 
is to calculate the expected species richness of a set of k 
patches, conditional on its disturbance history, and then 
take an expectation of this quantity over the probability 
distribution of disturbance histories. 

Consider a random sample of k patches. We want to 
calculate the "age" distribution of this set of patches, 
where age is measured since the most recent disturbance. 
Let D(tt>t2, ... , tk) denote the event that patch j was last 
disturbed at time -t, for j = 1, ... , k. Because patches 
are disturbed indepe~dently with a common disturbance 
probability p, we know that 

k 

(9.5) P[D(tJ, ... ' tk)] = IT p(1 - p)'i. 
;~t 

Consider species i. The conditional probability that 
species i is present in at least one of the k patches is 

P[sp. i present in some patchiD(tt> ... , tk)] = 

1 - P[sp. i absent from every patchiD(tt> ... , tk)] = 
k 

1 - IJ(l - c)'i = 1 - (1 - c;)T 
;~t 

where T = t1 + · · · + tk. 
From this we can calculate the conditional expectation 

of the species richness in the collection of k patches 
stot 

(9.6) E[S(k)ID(t1 ••• , tk)] = :l,[l - (1 - cJI] 
i=1 

so that the species-area relationship is given by 

E[S(k)] = f · · · f E[S(k)I.Q{tt> ... , tk)] 
't~o 'k.~o 

k 

(9.7) X IJp(1 - p)'; 
;~t 

,to ... ,to% [ 1 - (1 - cJY] pk(1 - p)T 

This expression can be simplified, because we can col
lect all those terms in which t1 + · · · + tk = T, with T :2: 

t; :2: 0, j = 1, ... , k, and write 

(9.8) E[S(k)] = ~ H(T,k)% [ 1 - (1 - c;)T] · 
X pk(1 - p)T 

where 

(9.9) 

t 1 + ... +t1 = T 
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(9.10) = (T + k- 1) 
k- 1 

Thus 
oo stot 

(9.11) E[S(k)] = L,pk(1 - p)TL [1 - (1 - c,)T] 
T=O i=l 

(
T + k- 1) 

X k- 1 

If, as before, we simplify this by assuming that c; = c for 
all i, we obtain 

(9.12) E[S(k)] = pkStot L (1 - p)T[1 - (1 - c)T] 
T=O 

(
T + k- 1) 

X k- 1 

Now for some combinatorial sleight-of-hand. We note 
that 

(9.13) 

and that these are the figurate numbers (Riordan 1958, 
25). For any r < 1, these numbers satisfy 

(9.14) I (k + T - 1) rT _ 1 
T=o T - (1 - r)k 

(Riordan 1958, 10). Substituting this into equation 9.12 
and simplifying, we obtain a final simplified expression 
for the species-area curve as a function of colonization, 
disturbance, and the species pool: 

(9.15) - [ pk ] E[S(k)] - S,o, 1 - ( )k p + c- pc 

Results for Noncompetitive Communities 

Species-Area Relationships. The species-area curves pro
duced by equation 9.15 look surprisingly realistic (fig. 
9.1). They are nearly linear on a log-log scale for small k, 
eventually reaching an asymptote at S,o, as k --7 =. Log
log species-area curves, of course, are a familiar sight in 
ecology, and have been interpreted in terms of competitive 
equilibrium, island biogeography theory, and the canoni
cal lognormal distribution of species abundances (May 
1975a; McGuinness 1984a). In particular, the canonical 
lognormal predicts a slope of 0.25, while reasonable but 
noncanonical lognormal distributions yield slopes be
tween about 0.15 and 0.4 (May 1975a). 

In our model, the slope and intercept of the species
area curve are largely determined by the ratio of the dis
turbance rate p and the colonization rate c. Figure 9 .2A 
shows the intercept (i.e., E[S(1)]) as a function of pic. 
There is a sharp threshold in the neighborhood of pic = 
1; when pic;,:> 1, an individual patch tends to contain only 
a fraction of the species pool (E[S(1)] ~ S,

0
,). When pic~ 

1, each patch is expected to contain most of the available 
species and E[S(1)] = S,o,· This threshold can be shown 
analytically by rewriting equation 9.15 as 

102~ 

1 o·t .______.__,__._...._.. ......... ...___,__,L......L........_..L.J.J.-':---'--'L......I..-'-'-~. 
100 101 102 103 

k 

Figure 9.1 Species-area curves for the noncompetitive model. c = 
.001 and S,o, = 100 throughout. Solid line, p = .001; dashed line, 
p = .01; dotted line, p = .1. 

(9.16) - ( 1-p ) E[S(1)] - S,o, pic+ 1 - p 

from which it follows that 

pic i- 1 - p ==} E[S(1)] ~ S,at 
pic~ 1 - p ==} E[S(1)] =Stat 

Let z denote the slope of the log-log species-area curve, 
evaluated at k = 1. By differentiating equation 9.15, we 
obtain 

(9.17) 
d log E[S(1)] 

z= - d log k 

- log ( p ) p - - p + c - pc c(1 - p) 

Figure 9.2B shows that this is also determined primar
ily by the ratio pic. When pic ~ 1, the slope approaches 
0, and species number accumulates only slowly with in
creasing area. The "canonical" value of z = 0.25 corre
sponds to pic= 0.1; i.e., to a time scale for disturbance 
an order of magnitude larger than that for colonization. 

Local versus Regional Regulation of Diversity. Consider 
now the slope b of the regression of local diversity on re
gional diversity. This regression has been used as a test for 
the importance of local processes (Ricklefs 1987). If we 
measure local diversity by E[S(1)] and regional diversity 
by the species pool stat> this slope is 

(9.18) b = iJE[S(1)] 
as tot 

Because this model contains no within-patch limitations 
on coexistence, it comes as no surprise that equation 9.16 
shows that local diversity is directly and linearly propor-
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as showing lack of saturation have slopes1 ranging from 
b = 0.14 to b = 0.49. In our model, these slopes corre
spond to pic= 0.5. 

CoMPETITIVELY SATURATED CoMMUNITIES 

We turn now to a model with strong local competitive 
saturation, with the hope of distinguishing it from the 
noncompetitive model. Suppose that local niche space be
comes saturated as one species (call it species 1) excludes 
all other species. In addition to the terms defined in the 
previous section, we define v as the rate of competitive 
exclusion, by species 1, of all other species present in a 
patch. We begin with the basic relationship 

- -
(9.19) E[S(k)] = L ... L E[S(k)ID(tp ... 'tk)] 

<t=O tk=O 

X P[D(tp ... , tk)] 

Po-6 10·3 

p/c 

106 109 The conditional expectation E[S(k)ID], where D abbrevi
ates D(t~> ... , tk), is 

0.9 

0.8 

0.7 

- 0.6 .u 
t;l 

8 o.s 
} 0.4 en 

0.3 

0.2 

0.1 

0 
10-6 10·3 100 103 106 109 

p/c 

Figure 9:2 Top: The intercept, defined operationally as E[S(1)], of 
the spec1es-area curve for the noncompetitive model as a function 
of the ratio pic, for p,c E [10- 6,1]. Bottom: The slope of the log
log species-area curve for the noncompetitive model, evaluated at 
k = 1. The slope is shown as a function of the ratio pic, for 
p,c E [10- 6,1]. S,o, = 100 in both graphs. 

tiona! to the regional species pool S,
0
,. Thus data showing 

that local diversity is proportional to regional diversity 
(Cornell 1985a, 1985b, Ricklefs 1987) are indeed com
patible with an unsaturated community. 

Because the slope b is given by the right-hand side of 
equation 9.16 when S,o, = 1, figure 9.2A can be interpre
ted as a plot of b, by rescaling the ordinate from zero to 
one. The empirical regressions interpreted in the literature 

Stot 

(9.20) E[S(k)JD] = L, P[sp. i present in ~ 1 patchJD] 
i=l 
Stot 

(9.21) = L, (1 - P[sp. i absent from all 
i=l 

k patchesJD]) 

The conditional probability that species 1 is absent from 
all k patches is 

(9.22) P[sp. 1 absentJD] = (1 - c1)T 

where T = L/; .as before. For the other species, 

(9.23) P[sp. i, i ~ 2, absentJD] = 
k 

TI P[sp. i absent from patch jJD] 
i=l 

The probabilities P[sp. i absent from patch jJD] for i ~ 2 
depend on whether species i has colonized, whether spe
cies 1 has also colonized, and if so, whether competitive 
exclusion has occurred. 

Consider patch j, j = 1, ... , k. Three mutually exclu
sive and collectively exhaustive events may be identified: 
(1) species 1 has not colonized, (2) species 1 colonized at 
some time -T and competitive exclusion has occurred, 
and (3) species 1 colonized at some time-T, but competi
tive exclusion has not yet occurred. The probabilities of 
these three events are, respectively, 

P[event1] = (1- c1)'; 

t;-1 

(9.24) P[event2] = L, c
1
(1- c

1
)';-T- 1 [1- (1- v)7] 

1'=0 
t;-1 

P[event3] = L, c
1
(1- c

1
)';-7- 1(1- v)T 

T=O 

The conditional probabilities of absence of species i, i ~ 
2, are 

1. Cynipid gall wasps (rare), b = 0.14; cynipid gall wasps (com
mon), b = 0.35; cynipid gall wasps (total), b = 0.49 (Cornell 
1985b); Caribbean island birds, b = 0.22 {Ricklefs 1987) 
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(9.25) 
P[sp. i absentlevent 1, D] = (1 - c;)'; 
P[sp. i absentlevent 2, D] = 1 
P[sp. i absentlevent 3, D] = (1 - c;)'i 

To make the notation easier, define 

(9.26) A(i,j) = P[sp. i absent from patch jiD] 

Then we combine equations 9.24 and 9.25 to obtain, for 
i 2: 2, 

lj-l 

(9.27) A(i,j) = (1 - c1)';(1 - c;)'i + I c
1
(1 - c

1
)';-T-t 

T=O 

X [(1 - v)'(1 - cy; + 1 - (1 - v)T] 

which, after some tedious algebra, simplifies to 

(9.28)A(i,j) = 1 + [(1 - C;)'; - 1] 

X [
c1(1 - v)';- v(1 - c1)';] 

i 2: 2 
c1 - v 

In the case where c1 = v, the result is 

A(i,j) = 1 + (1 - c1 )'; 

(9.29) { 
t.c 1 } 

X (1 - c;)'; + 
1 
~ c

1 

[(1 - c;)'i - 1] - 1 

i 2: 2 

The probability of absence for species 1 is given by equa
tion 9.22: 

(9.30) 

We finally get our species-area relationship 
oo oo Stat k 

(9.31) .E[S(k)] = I ... I [s,o,- In A(i,j)] 
t1=0 tk=O i=l i=l 

X P[D(t1, ••• , tk)], 

where P[D(t1, ••• , tk)] = pk(1 - p)T. 

l 
fll 

Results for Competitively Saturated Communities 
Equation 9.31 reveals little about the form or behavior of 
the species-area relationship. To study it numerically, we 
used a Monte Carlo approach. For each value of k, distur
bance histories were sampled by drawing k independent 
random variables from a geometric distribution with pa
rameter p. The conditional expectation of S(k), given this 
disturbance history, was calculated and the unconditional 
expectation obtained by averaging over a large number of 
disturbance histories. 

Species-Area Relationships. The species-area relationship 
in this model is similar to that in the noncompetitive 
model (fig. 9.3). The curves are nearly linear on a log-log 
plot for small sample sizes, and asymptotic at S,o, as sam
ple size increases. The parameters c, v, and p interact to 
determine the location of the curve. As might be expected, 
increasing v reduces diversity, regardless of the values of 
the other parameters. When disturbance is low ( p = 0.01) 
increases in c increase diversity when v = 0.011 and de
crease diversity when v = 0.11. This reflects the tact that 
cis the rate of colonization for the superior competitor as 
well as for all other species. When competitive exclusion 
is slow, the increase in colonization by competitively infe
rior species makes up for the increase in colonization by 
the competitive dominant. But when exclusion is fast, the 
primary effect of increased c is more rapid colonization 
by the superior competitor, with a consequent reduction 
in diversity. At a higher disturbance probability (p = 0.1), 
diversity increases with increasing c, regardless of the 
value of v. 

Disturbance has a marked effect on diversity for any 
value of k (fig. 9.4). Diversity is maximized at an interme
diate frequency of disturbance, and increases with the col
onization rate c and decreases with the competitive exclu
sion rate v. As v increases, the frequency of disturbance 

Figure 9.3 Species-area curves for the model 
with local competitive saturation. Parameter 
values (c,v) are: solid line= (.01, .011); dashed 
line= (.01, .11); dotted line= (.1, .011); dash
dot line= (.1, .11). s'"' = 100 throughout. 
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Figure 9.4 Effects of disturbance probability on species richness 
(E[S(k)]} for k = 1 (upper) and k = 10 (lower). Parameter values 
(p,c) are: solid line = (.01, .011); dashed line = (.01, .11); dotted 
line= (.1, .011); dash-dot line= (.1, .11). S,o, = 100 throughout. 

needed to maximize diversity increases. These results are 
similar to those of the dynamic patch-occupancy models 
in Caswell and Cohen (1991a, 1991b). 

Local versus Regional Regulation of Diversity. In the ab
sence of disturbance, competitive saturation in this model 
limits local diversity to E[S(1)] = 1, independent of S,

0
,. 

Thus the slope b of the regression of local diversity on 
the regional species pool should equal zero. Disturbance 
perturbs this situation, perhaps sufficiently to obscure the 

action of competition. We can investigate this by examin
ing how b varies with p, c, and v . 

Equation 9.31 can be simplified to give an analytical 
expression for E[S(1)]. Let p = 1 - p, C.= 1 - c, and ii = 
1 - v. Then some tedious algebra yields 

(9.32)E[S(1)] = 1-~ + p(S,o, - 1) 
1- pc c- v 

X (-c- _ c __ v_ + __ v_) 
1 - po 1 - pcii 1 - pc 1 - pc2 

Figure 9.5 plots local diversity (E[S(1}]} as a function of 
both disturbance probability p and the regional species 
pool S,

0
,. Four combinations of the colonization probabil

ity c and the exclusion probability v are shown; in every 
case local diversity depends on the regional species pool 
(i.e., b > 0) except at the lowest disturbance rates. At 
some intermediate disturbance rate, there is a relation be
tween local and regional diversity every bit as strong (i.e., 
with a value of b as large) as that produced by the non
competitive model (equation 9.16). 

The slope b of the relation between E[S(1)] and S,0 , can 
be obtained directly from equation 9.32; this slope is 
shown as a function of disturbance probability in figure 
9.6. At sufficiently small values of p, b ~ 0 as local diver
sity is limited by competition. As p approaches 1, b ~ 
0 as all species are eliminated by disturbance. At some 
intermediate frequency of disturbance, b is maximized. 

When b is maximized, the community appears as un
saturated as it can be, given its values of c and v. How 
much disturbance is required to produce this result? The 
disturbance frequency Pmax that maximizes b depends on 
c and v. To study this dependence we define a new rate, p, 
for the combined processes of colonization and competi
tive exclusion. A patch reaches equilibrium after species 1 
has colonized and excluded all other species. The ex
pected time required for these two processes is 1/c + 1/v. 
The rate for the combined process is the inverse of this 
time scale: 

(9.33) (1 1)-l 
p = - +-

c v 

We used a Monte Carlo procedure to evaluate the rela
tionship between Pmax and p. We generated 500 random 
combinations of c and v, each log-uniformly distributed 
over the interval [10- 6,1], and calculated the resulting 
Pmax• 

To a good approximation, Pmax = 2p (i.e., the median 
value of Pma/P was 1.867, and in 78% of the cases, 1.2 < 
Pm./P < 10). Thus the community appears most unsatu
rated when the rate of disturbance is of the same order of 
magnitude as the rate of transition from an empty patch 
to competitive equilibrium. This is quite a low distur
bance rate (measured, as it must be, relative to the other 
time scales in the system). For example, if Pmax = 2p, in 
fully one-third of all cases, colonization and exclusion will 
proceed to equilibrium before the first disturbance occurs. 

The slopes at the critical disturbance probability Pmax 
in figure 9.6 all fall within the range of values accepted as 
evidence for nonsaturation by Cornell (1985b) and 
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Figure 9.5 Plots of local species diversity (E[S(1)]) as a function of the disturbance probability p and the regional species poolS'"' for four 
combinations of the colonization rate c and the competitive exclusion rate v. (A) (c,v) = (.01, .011); (B) (c,v) = (.01, .11); (C) (c,v) = 
(.1, .011); (D) (c,v) = (.1, .11); log= log10• 

Ricklefs (1987). In fact, the slope at Pmax in our 500 
Monte Carlo samples is bounded below by 0.17, implying 
that, at Pmax' practically any combination of c and v will 
produce a slope indicative of a noncompetitive com
munity. 

An alternative is to ask how large p must be, relative 
to p, to yield a slope large enough that it would be ac
cepted as evidence of regional rather than local control 
(say, b = 0.1). In our Monte Carlo calculations, the ratio 
pip producing a slope of b = 0.1 ranged from 0.1 to 0.4. 
The corresponding probabilities of reaching equilibrium 
before the first disturbance are 0.91 and 0.71. 

In summary, even though this model includes a strong 
form of competitive saturation, even low rates of distur
bance can completely obscure the role played by competi
tive saturation. 

Our conclusions here are based on expected species 
richness. Patterns in the variance of species richness, or in 
the similarity among patches, may help to distinguish the 
effects of competition and disturbance. We have made 
some progress in this direction and will report the results 
elsewhere. 
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Figure 9.6 The slope of the line relating local diversity (E[S(1)]) to 
the regional species pool S,

0
,, as a function of the disturbance proba

bility p. For (a), (c,v) = (.01, .011); (b), (c,v) = (.01, .11); (c), (c,v) = 
(.1, .011); (d), (c,v) = (.1, .11). 

CONCLUSIONS 

1. A simple path-occupancy model produces quite 
realistic-looking log-log species-area curves at small sam
ple sizes, eventually becoming asymptotic to the regional 

species pool as the sample becomes large enough to in
clude all the species. 

2. In communities without competition, the slope of 
the species-area curve is an increasing function of the ratio 
of the disturbance rate to the colonization rate. The inter
cept, which measures diversity in a single patch, is a de
creasing function of this same ratio. 

3. In the absence of competition, local diversity is di
rectly proportional to that of the regional species pool. 

4. When competitive saturation is added to the model, 
the relation between local and regional diversity depends 
on the disturbance rate. Local diversity is independent of 
the regional species pool, provided that the disturbance 
rate is sufficiently low, but the effects of even strong com
petitive saturation can be obscured by extremely low rates 
of disturbance. Rates of disturbance one-half to one-tenth 
of the rate of approach to local equilibrium produce com
munities where local diversity is directly proportional to 
that of the regional species pool, with slopes comparable 
to those found in empirical studies interpreted as evidence 
of unsaturation. 

5. Empirical studies relating local and regional diver
sity must be interpreted with caution, because the absence 
of competition has effects that are indistinguishable from 
those of strong competitive saturation in the presence of 
modest levels of disturbance. Future empirical studies of 
local and regional diversity should include quantitative 
measurements of the rates of disturbance, competition, 
and other dynamic processes. 
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