
Contemporary Mathematics 
Volume 149, 1993 

Majorization, Monotonicity of Relative Entropy, 
and Stochastic Matrices 

JOEL E. COHEN, YVES DERRIENNIC AND GH. ZBAGANU 

ABS1RACT. Schur showed thatx =Ay implies:Ei g(xi) ~ :E, g(y;) for any 
positive probability r.-vectors x andy, any doubly stochastic n x n matrix 
A, and any convex function g:(0,1) 4 9t. We establish a quantitative 
improvement of Schur's theorem: under the same hypotheses, 

:Eg(xi) ~ (i(A):'Eg(y;)+a(A)ng(lln)~:Eg(y;), 
; ; ; 

where 

(i(A) = (1/2) maxj,t :E/",. 1 I a,i- a,. I and a(A) = 1 - (i(A ). 

This improvement follows from a recent quantitative sharpening of 
the monotonicity theorem of relative entropy. We also establish a 
converse of the monotonicity theorem of relative entropy (sometimes 
called the Data Processing Lemma). Specifically, for any positive 
probability n-vectors x and y and any positive probability m-vectors 
u and v, if H9(u,v) ~ H9(x,y) for every relative cj>-entropy H9, then 
there exists a row-allowable column-stochastic m x n matrix A such 
that u = Ax and v = Ay. 

1. Introduction 

Let m and n be finite positive integers. Let P. be the set of positive probability 

column-vectorswithnelements,i.e.,P. = {x e 9t•: x, >0 'Vi, :E, xi= 1}. Annxnmatrix 

is doubly stochastic if its elements are nonnegative real numbers, every row has sum 1 
and every column has sum 1. As usual, a real-valued function h on some convex subset 
D of a vector space over the reals is called convex if, for all p e [0, 1] and all s, t e D, 
h(ps + [1- p]t) S ph(s)+(1- p)h(t). Recall that a convex function on a convex open 
subsetUof9t• is continuous on U(e.g.,Robertsand Varberg 1973,p. 93). A fundamental 
inequality of the theory ofmajorization (e.g., Marshall and Olkin 1979, p. 108) states: 
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TIIEOREM 1.1. Letx, yeP •. The inequality L; g(x;) :S L; g(y;) holdsforall convex 

functions g :(0, 1) --+ 9t if and only if there exists a doubly stochastic n x n matrix A such 
that x =Ay. 

Marshall and Olkin (1979) attribute the equivalent of this result to Hardy, 
Littlewood and P61ya (1929) and Karamata (1932), and the sufficiency portion (i.e., 
x =Ay implies L; g(x;) :S L; g(y;)) to Schur (1923). See also Hardy, Littlewood and 

P61ya (1952, ,3.17) and Alberti and Uhlmann (1982). Csiszar and KOmer (1981, p. 58, 
Exercise 14) use the monotonicity of relative entropy (which they call the Data Processing 
Lemma (their Lemma 3.11, p. 55)) to establish the sufficiency part of Theorem 1.1 
(Schur's theorem) in the special case where g(s) =slogs. 

The fJISt purpose of this note is to sharpen the inequality L; g(x;) :S L; g(y;) in 

Schur's theorem (see Theorem 2.1). The improvement follows from a recent quantitative 
sharpening of the monotonicity theorem of relative entropy (see Theorem 1.4). An open 
question is whether, conversely, Schur's theorem (in either its original form or as 
sharpened in Theorem 2.1) implies the monotonicity of relative entropy (in its original 
form or as sharpened in Theorem 1.4). 

The second purpose of this note is to establish (in Theorem 4.1) a converse of the 
monotonicity theorem of relative entropy. We shall prove elsewhere that this converse 
holds in a sharpened, quantitative form. 

To state results, some definitions are required. A real-valued function h on some 
convex cone D of a vector space over the rea1s is called homogeneous (meaning 
homogeneous of degree one) if, for all x e D and all nonnegative A., h(A.t) = Ah(x). 

DEFINITION 1.2. Let Ill be a real-valued function on (0, oo) x (0, oo) that is 
homogeneous and jointly convex in its arguments and satisfies lll(1, 1) = 0. For any two 
positive n-vectors x = (x;) andy = (y;), whether or not x andy are probability vectors, 

define the relative Ill-entropy n.cx,y) by n.(x,y) = L;Q(X;, Y;). 

This generalization of relative entropy has been widely studied under various names 
and notations (e.g., Liese and Vajda 1987). Any real-valued function g that is convex 
on (-1,oo) with g(O) = 0 can be used to define Ill that satisfies Definition 1.2 by putting 
Q(x,y) =xg((y/x)-1). Thus, as examples, 

g(t)=lt I~H.(x,y)= ~ lx;-Y; I, 
I 

~ (X;-Y;)~ 
g(t)=t ~H.(x,y)= L , 

i X; 

X; 
g(t) = -log(1 + t) ~ n.(x, y) = LX; log-, 

; Y; 

Y· 
g(t) = (1 + t)log(1 +t) ~ H•(x,y) = L Y; log...!, 

i X; 

Y· 
g(t) = t log(l +t) ~ n.(x, y) = L(Y;-X;)Iog...!. 

; X; 
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Except possibly for constants, the first expression on the right is the 11 nonn, the second 
is the Pearson X2-statistic for goodness offlt, the third is the Kullback-Leibler divergence 
or relative entropy of information theory (Csiszar and K~rner 1981) or the G2 likelihood 
ratio statistic in the theory of contingency tables, the fourth is the same with the roles of 
x and y exchanged, and the last (which is the sum of the preceding two) is the entropy 
production of statistical physics or the symmetric divergence ofinfonnation theory. Thus 
significantly diverse measures are subsumed under the generalization of c>-entropy. 

As usual, the 1P-norms are defined for a vector x and for 1 ~ p < oo by 

U xU P = (L 1 X; r>"P. A column-stochastic matrix is an m x n matrix with each element a 

nonnegative real number and with all column sums 1. 

DEFINITION 1.3. For any column-stochastic m x n matrix A, Dobrushin's (1956) 
coefficient of ergodicity is 

"' a( A) = ~in .I. min( aii• ail) . 
J,i •=I 

The complement 1 - a(A) will be written 

- 1 "' 
a(A) = 1 - a(A) = -2 ~ax .I. I a;i- ail I 

J,k • =I 

and satisfies (Dobrushin 1956, pp. 69-70) 

- j IIA(x-y) lh . . } 
a(A) = su1 II x _ y II, : x andy are posttlve n-vectors, x :F. y, II x lh = II y 111 • 

A matrix is row-allowable if each row contains at least one positive element. Every 
qoubly stochastic matrix is clearly stochastic and row-allowable. A column-stochastic 
m x n matrix is called a scrambling matrix (Hajnal 1958, p. 235) if any submatrix 
consisting of two columns has a row both elements of which are positive; i.e., A = (a;) 
is scrambling if, for all j and k such that 1 ~ j < k ~ n, there exists an i such that 1 ~ i ~ 
m and a;pil > 0. A column-stochastic, row-allowable matrix A is scrambling if and only 
ifa(A) > 0. 

TIIEOREM 1.4. Let A be a column-stochastic, row-allowable m x n matrix and let 
x, yeP_. Then 

n.(Ax, Ay) ~ ~A)H.(x, y). 

The significant feature of this theorem, due to Cohen, Iwasa, Rautu, Ruskai, Seneta 
and Zbaganu (in press), is that the coefficient ~A) is valid regardless of which c>-entropy 
is chosen and for all x, y e P •• ~A)< 1 if and only if A is a scrambling matrix. 

W. Doeblin developed an early quantitative measure of the contractive action of a 
stochastic matrix. See Seneta (1973) for a historical perspective. 

DEFINITION 1.5. If A is a column-stochastic, row-allowable m x n matrix, Doeblin 's 
(1937) coefficient of ergodicity ~is 

"' ~A)= I. min{aii:j=1, ... ,n}. 
i=l 

Define B(A) = 1- ~A). 
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It is known that 8(A) :5; a(A) with equality if n = 2. Thus ~A) ~ Ci(A) (with equality 

if n = 2). Therefore the inequalities in Theorem 1.4 and Theorem 2.1 hold under the 
same hypotheses with a replaced by o and a replaced by "8. 

2. Quantitative majorization in discrete processes 

THEOREM 2.1. Let h : 9t--+ 9t be a convex function, A a doubly stochastic n x n 

matrix, x e P~ (i.e., xis a strictly positive probability vector), and w =Ax. Then 

7 h ( w) :5; Ci(A) 7 h (x) + a( A )nh (.;) :5; 7 h (x;) . 

Proof. Define the function c> : 9t x 9t --+ 9t by the requirements that c> be 
homogeneous and that 

'Vs. 

Then c> is jointly convex in both arguments and c>(l, I) = 0. Therefore c> satisfies the 
hypotheses of Theorem 1.4. 

The doubly stochastic matrix A is necessarily column-stochastic and row-allowable 
and therefore satisfies the hypotheses of Theorem 1.4. Choosey to be the n-vector with 
each element 1/n. Then Ay = y. Let a = Ci(A ), a = 1 - ii. Theorem 1.4 implies 

H•(y, w) S iiH.(y, x). 

But 

H•(y, x) = :E<>(.!.. x;) = :Ec>(.!. • .!. nx;) =.!. :Ec>(l, (nx;-1)+ 1) 
; n ; nn n; 

and similarly 

Therefore 

.!. Lh(w.) - h(.!.) S ..;;(.!. Lh(x.)) - iih(.!.) 
n ; 1 n '\n ; 1 n 

or 

Because h is convex, 

hence 

0 
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COROLLARY 2.2. Under the hypotheses of Theorem 2.1, if in addition h(lln) ~ 0, 
then 

I. h(w;) ~a I. h(x;). 
i i 

EXAMPLE 2.3. Forse [0, oo), if h(s) =slogs (with 0 log 0 = 0, X e P., w =Ax 

and A any doubly stochastic n x n matrix, 

I. w; log w; ~Ci(A) LX; logx;-a.(A)logn ~Ci.(A) LX;logx;. 
; ; i 

EXAMPLE 2.4. If the hypotheses of Theorem 2.1 are weakened only by permitting 
h to be non-convex, then the conclusion no longer follows. Here is an example of a 

doubly stochastic A, x and w =Ax such that I.h(x;);;:: I.h(w;) > Ci(A)I.h(x;). For small 

e > 0, let xT = (1- e, e) and let 

(
1/4 314) 

A= 3/4 1/4 . 

Then w=Ax=(114+£12,3/4-£12l and Ci{A)=l/2. Define h(t)=Oforte (0,1/8), 
h(t) = 3/8 fort e [118, 7/8], h(t) = 1 fort e (7/8, 1). Then I. h(x;) = 1, I. h(w;) = 3/4, as 

claimed. 

3. Quantitative majorization in continuous processes 

Analogous results hold for continuous-time processes. For background, see Alberti 
and Uhlmann (1982, pp. 30-31). Assume now that all matrices are n x nand real. A 
matrix in which all off-diagonal elements are nonnegative and the sum of every column 
is zero is called an intensity matrix; such matrices have zero or negative elements on the 
main diagonal. If B is an intensity matrix, it is well known that for all nonnegative real 
t, e'l' is column-stochastic. A matrix in which all off-diagonal elements are nonnegative 
and the sum of every column and row is zero is called a double intensity matrix; in this 
case, for all nonnegative real t, e'l' is doubly stochastic. 

For x(O) e P dt y(O) e Pd, and t;;:: 0, define x(t) = e''x(O) and y(t) = e''y(O). The 
following is an immediate result of combining Theorems 4.1 and 7.1 and Corollary 7.3 
of Cohen, Iwasa, Rautu, Ruskai, Seneta and Zbaganu (in press). 

then 

TIIEOREM 3.1. If B is an intensity matrix, ro;;:: max; lbiil, and 

a.= a.(ro-1B +I), 

d 
dllog{H.(x(t), y(t))} ~ -roa. ~ -~, 

where 

Because ro-1B +I is column-stochastic, a. is meaningful; moreover, a. is positive, 
as previously noted, if ro-1B +I is scrambling. 
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TIIEOREM 3.2. Let h : 9{ --+ 9{ be a convexfunction, B a double intensity n x n matrix, 

x(O) e P., x(t) = e 8'x(O), 1 ;;::: 0. Then 

!lo{~h(x;(l))- nh(~)] ~ --<00 ~ -J3, 
where ro, a and J3 are defined in Theorem 3 .1. 

Proof. Choose y(O) to be the n-vector with each element 1/n. Then 
y(t) = e8'y(O) = y(O). Defin~ ~as in the proof of Theorem 2.1, so that, as in that proof, 

H•(y(t), x(l)) = ~[ ~ h(X;(I)) - nh( ~ )] . 
Taking the logarithm, .then the derivative, of both sides of this equation and applying 
Theorem 3.1 gives the desired result. 0 

An obvious corollary is 
d 
dt ~ h(x;(t)) ~ 0, 

which is well-known. Alberti and Uhlmann (1982, p. 30) state the result and cite earlier 
sources. 

4. A converse for the monotonicity or relative entropy 

The nonquantitative monotonicity theorem of relative entropy states that if A is a 
column-stochastic, row-allowable m x n matrix and x andy are positive n-vectors, then 
H•(Ax,Ay) ~ H.(x, y) (e.g., Moran 1961, Csiszar 1963 [p. 90, his Theorem 1], 

Morimoto 1963). In this theorem, x andy need not be normalized to be probability 
n-vectors, whereas in the quantitative monotonicity theorem (Theorem 1.4 ), it is assumed 
thatx andy are probability vectors. We now establish a converse of the nonquantitative 
monotonicity theorem of relative entropy with the additional hypothesis thatx andy are 
probability vectors. This converse is the analogue, for the monotonicity of relative 
entropy, of the Hardy-Littlewood-P6lya-Karamata converse of Schur's theorem for 
majorization. 

TIIEOREM 4.1. Let u, v e P ,.,x, yeP. befued. If H•(u, v) ~H.(x,y)for every 

relative ~-entropy H• that satisfies Definition 1.2, then there exists a row-allowable 

column-stochastic matrix A such that u =Ax and v = Ay. 
The proof ofTheorem 4.1 depends on Theorem 4.2,a fundamentalresultofChoquet 

theory due to Cartier, Fell and Meyer (1964). For other statements of Choquet theory 
and Theorem 4.2, see e.g. Winkler (1985) and Bratteli and Robinson (1987, ,4.2.1). Let 
X be a compact metric space. LetS be a convex cone of measurable functions f:X --+ 9{ 

such that the closureS of S (in the uniform topology) is closed under the max operation, 
i.e.,iff, g e S, then max({, g) e S. LetB(X) be thefamilyofBorel sets of X. A transition 
measure T:X x B(X) --+ 9{, written as T(x, dy) = T.(dy ), is defined to be a dilation if 

f(x) ~ T,.(f) = J. f(y)T,(dy) '<If e S. 
1 ex 
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TIIEOREM 4.2. Under the conditions on X and S just stated, if J.l and v are two 
positive measures on (X, B(X)) such that 

J.l(/) ~ v(f) VIe S, 

where e.g. Jl(/) = fxl(x)Jl(dx), then there exists a dilation T such that v = J.lT, i.e. ,for 

every bounded measurable/. v(f) = Jl(Tf), i.e., 

v(/) = Ll(x)v(dx) = Jl(Tf) = LT,.(f)Jl(dx) = LLI(y)T,.(dy)Jl(dx). 

We also require a simple lemma. Define 
S = {f : 1:(0, oo) x (0, oo) --+ 9t, I is convex and homogeneous} 

and S0 = {f e S : 1(1, 1) = 0}. S c_ontains all linear functions l(s, t) =as+ bt. 

LEMMA4.3. Let u, v e P,.,x, yeP •. IIH.(u, v) ~H.(x,y)lor every 9 e S0, then 

Hf_u, v) ~Hf_x, y)for every I e S. 

Proof. For any I e S, define lj)(x,y) =l(x,y)-l(x,x) =l(x,y)-xl(1, 1). Then 

lj) e S0 and H•(u, v) =Hf_u, v)-1(1, 1), H.(x, y) = Hf_x, y)-1(1, 1). Hence 

Hf_u,v)~Hf_x,y). 0 

PROOFOFTIIEOREM4.1. lnourcase,X = (0, 1] X (0, 1]. l..etSandS0 betherestrictions 
to X of the convex cones defined just before Lemma 4.3. Both Sand S0 are closed under 
the max operation; in fact, they are even closed. Given fiXed u, v e P,.,x, y e P •• we 

shall suppose that all the points (xi, y) are distinct (If they are not, a slight modification 

of the proof is required, which the reader can supply.) Then define 
... 

J.l = ::E e,.,y. , 
i=l •• 

• 
v = ::E e .... ,., 

j=l J' I 

where £,.
1
,"2 denotes the Dirac needle function, i.e., the point measure concentrated on 

(x1, ~eX. (Thus by definition ~·"2(/) = l(x1,x:J.) Then 

The hypothesis of Theorem 4.1, H•(u, v) ~ H.(x, y) for every relative lj)-entropy H• of 

Definition 1.2,maybeexpressedasJ.1(9) ~ v(lj))foralllj) e So- Byl..emma4.3,itfollows 

that J.l(/) ~ v(f) for all I e S. By Theorem 4.2, there exists a dilation T such that 
v(f) = Jl(Tf), i.e., for every bounded measurable f : X --+ 9t, 

(1) 

Define the set E = 
we get from (1) 

. ... 
::E l(xi, Y) = ::E T,..,y.(/) 

j=l i=l •• 

{(xi, yi): 1 ~ j ~ n }. Whenfis lx.£• the indicator of X- E, 

... 
::E T,. y.(X -E) = 0. 
i=l •' • 

Thus the support of the measures T,..,y. is included in the fmite set E. Define .. 
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a .. = T ({(x., y.)}), 1 S: i S: m, 1 S: j S: n . IJ 111, \1; J J 

Then 

(2) A 

T = L O;;Ex. 1 . • 
•;· "• j = 1 v J' J 

Whenfis the indicator of the set {(xi,y)}, (1) becomes 
... ... 

1 = L T. v({(xi, Y)}) = L a;i . 
j=l •• • i=l 

Since this holds for every j = 1, ... , n, the m x n matrix A with elements aii is 
column-stochastic. 

Since Tis a dilation, we have by definition 

(3) 

From (2) 

(4) 

f(u;, v;) S: T.,v(/) \:1 I e S . . . 

R 

f(u;, v;) S: L a;j(x., y.) \:1 I e S. 
j=l J J 

Inparticular,if/(s,t) =as+ bt,thenf e Sand-/ e Sand(4)becomestheequality 

(5) • R 

au; + bv; = L aii(ax; + by;) . 
j=l 

For a= 1, b = 0, (5) becomes u =Ax. For a= 0, b = 1, (5) becomes v =Ay. In short, if 
H•(u; v) S: H•(x, y) for all c> e S0, then there must exist a column-stochastic matrix A 

such that u =Ax and v = Ay. 
Because u and v are positive, A is necessarily row-allowable. 0 
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