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Summary 

The National Research Council recommended the use of the ceiling principle in forensic applications of DNA 
testing on the grounds that the ceiling principle was believed to be "conservative," giving estimates greater than 
or equal to the actual genotype frequencies in the appropriate reference population. We show here that the 
ceiling principle can fail to be conservative in a population with two subpopulations and two loci, each with 
two alleles at Hardy-Weinberg equilibrium, if there is some linkage disequilibrium between loci. We also show 
that the ceiling principle can fail in a population with two subpopulations and a single locus with two alleles 
if Hardy-Weinberg equilibrium does not hold. We give explicit analytical formulas to describe when the ceiling 
principle fails. By showing that the ceiling principle is not always mathematically reliable, this analysis gives 
users of the ceiling principle the responsibility of demonstrating that it is conservative for the particular data 
with which it is used. Our reanalysis of VNTR data bases of the FBI provides compelling evidence of two-locus 
associations within three major ethnic groups (Caucasian, black, and Hispanic) in the United States, even though 
the loci tested are located on different chromosomes. Before the ceiling principle is implemented, more research 
should be done to determine whether it may be violated in practice. 

Introduction 

Forensic scientists analyze portions of DNA to deter­
mine whether a body fluid or hair sample left at a crime 
scene matches that of a suspect (Ballantyne et al. 1989; 
Office of Technology Assessment 1990; National Re­
search Council Committee on DNA Technology in 
Forensic Science [hereafter NRC] 1992). Ideally, three 
to five loci from each of the two DNA samples are 
tested. If the two samples appear to differ, the suspect is 
excluded. If the two samples appear to match at the loci 
tested, it becomes necessary to estimate the frequency 
of the genotype they represent. If that genotype is com­
mon, a match need not indicate strongly that the sus-
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pect is the source of the specimen found at the crime 
scene, while if the genotype is rare, a match provides 
strong e-vidence that the suspect is the source of the 
specimen. 

It is generally accepted that the estimated genotype 
frequency should be conservative, that is, greater than 
or equal to the actual frequency in the appropriate refer­
ence population. A method of estimating genotype fre­
quencies called "the ceiling principle" has recently been 
strongly recommended on the grounds that it is be­
lieved to be conservative (NRC 1992). While the ceiling 
principle does give an upper bound if the product rule 
applies within and across loci in all genetically differen­
tiated subpopulations, a recent counterexample shows 
that the ceiling principle need not always be conserva­
tive (Cohen 1992). However, the counterexample is 
highly artificial. 

Here we show that the ceiling principle can fail under 
simple and natural conditions, in populations with two 
subpopulations and two alleles per locus. Since the ceil­
ing principle is conservative when the product rule is 
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valid (Cohen 1992), there are only two possible sources 
of failure for the ceiling principle: linkage disequilib­
rium between loci and Hardy-Weinberg disequilibrium 
within a locus. In the theoretical portion of this work, 
we give explicit analytical formulas that show when the 
ceiling principle fails in a population with two loci in 
linkage disequilibrium, if each locus has two alleles in 
Hardy-Weinberg equilibrium. We also give explicit for­
mulas that show when the ceiling principle fails in a 
population with a single locus with two alleles in 
Hardy-Weinberg disequilibrium. 

In the empirical portion of this work, we reexamine a 
statistical analysis of data bases of the Federal Bureau 
of Investigation (FBI) that contain VNTR DNA pro­
files (Weir 1992). The data provide compelling evidence 
of two-locus associations within three major ethnic 
groups (Caucasian, black, and Hispanic) in the United 
States, though the loci tested are located on different 
chromosomes. The publicly available data do not suf­
fice to determine whether the ceiling principle would in 
fact be violated, but our secondary data analysis shows 
that it could potentially be violated. We reach a similar 
conclusion from the evidence of Hardy-Weinberg dis­
equilibrium in data bases of VNTR DNA profiles, in­
cluding the FBI's. This empirical evidence suggests that, 
before the ceiling principle is implemented, more re­
search should be done to determine (a) the extent and 
nature of the deviations from Hardy-Weinberg equilib­
rium and linkage equilibrium and (b) whether the devia­
tions would cause the ceiling principle to be noncon­
servative in practice. 

Methods of Estimating Genotype Frequencies 

Three methods of estimating a genotype frequency 
have been widely considered in forensic applications of 
DNA testing. In historical order, they are the product 
rule, the counting method, and the ceiling principle 
(NRC 1992). (A fourth method, based on the Laplacian 
law of succession, proposed by Morton [1992, his 
equation 2], shares with the ceiling principle the draw­
back that the estimated genotype frequencies may sum 
to a number greater than 1.) All methods rely on the 
existence of a data base of DNA patterns obtained 
from an appropriate reference population. 

The product rule multiplies the frequency of each 
allele at each of the loci being tested, to arrive at the 
frequency for the entire pattern Ueffreys et al. 1985). 
The product rule assumes statistical independence be­
tween aileles, both within loci (Hardy-Weinberg equi­
librium) and between loci (linkage equilibrium). Con-
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trary to this assumption, statistical dependence among 
different alleles may arise from many sources, including 
the existence of subpopulations with differing allele 
frequencies, and may cause the product rule not to be 
conservative (Cohen 1990). 

The counting method (Lander 1989) estimates the 
genotype frequency as the ratio of the number of 
matching patterns divided by the total number of pat­
terns in the data base. This method assumes that 
matching patterns from different people have not been 
expunged from the data base, an assumption that may 
not be satisfied by the FBI data base (Sullivan et al. 
1992). 

The NRC (1992) endorses a method of calculation 
cailed the "ceiling principle." It states (pp. 3-10-3-11 ): 
"(1) For each ailele at each locus, determine a ceiling 
frequency that is an upper bound for the ailele fre­
quency that is independent of the ethnic background of 
a subject; and (2) To calculate a genotype frequency, 
apply the multiplication rule, using the ceiling frequen­
cies for the ailele frequencies." To estimate allele fre­
quencies (p. 3-11 ), "The [NRC] committee strongly rec­
ommends the foilowing approach: Random samples of 
100 persons should be drawn from each of 15-20 popu­
lations, each representing a group relatively homoge­
neous genetically; the largest frequency in any of these 
populations or 5%, whichever is larger should be taken 
as the ceiling frequency." Estimates given by this 
method are "believed to be conservative, given the avail­
able data, even if there are correlations among aileles 
because of population substructure" (p. 3-11). Further 
(NRC 1992, p. 3-13), "the calculation is fair to sus­
pects, because the estimated probabilities are likely to 
be conservative in their incriminating power." 

Pending the completion of the proposed studies of 
15-20 populations, the NRC committee proposed an 
interim form of the ceiling principle (pp. 3-20-3-22), 
"provided that population studies have been carried 
out in at least three major 'races' ... and that statisti­
cal evaluation of Hardy-Weinberg equilibrium and link­
age disequilibrium has been carried out . . . and no 
significant deviations were seen." For the interim ceil­
ing principle, the NRC committee (1992, p. 3-21) rec­
ommended that "the calculation should be carried out 
as follows. For each allele, a modified ceiling frequency 
should be determined by (1) calculating the 95% upper 
confidence limit for the ailele frequency in each of the 
existing population samples and (2) using the largest of 
these values or 10%, whichever is larger .... A 10% 
lower bound is recommended while awaiting the re­
sults . of the population studies of ethnic groups, 
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whereas a 5% lower bound will likely be appropriate 
afterwards .... Once the ceiling for each allele is de­
termined, the multiplication rule should be applied. 
The race of the suspect should be ignored in perform­
ing these calculations." 

The laudable aim of the ceiling principle, in both its 
ultimate and its interim forms, is to provide a practical 
procedure that is assured of estimating genotype fre­
quencies that are at least as large as the unknown real 
genotype frequencies. To assess whether the ceiling 
principle meets that aim, we shall follow a common 
procedure in mathematical analyses of complex prob­
lems, by stripping away inessential variations of the 
method in order to concentrate more clearly on its es­
sential core. First, we shall ignore the proposed ultimate 
5% lower bound and the interim 10% lower bound; 
equivalently, we shall show (by numerical example) that 
the ceiling principle can fail to be conservative even 
when all allele frequencies are .1 or larger. Second, as is 
common in population genetics (e.g., see Morton 
1992), we shall assume such large data bases that sam­
pling variability in the estimates of allele frequencies 
can be ignored; equivalently, we assume that the upper 
95% confidence intervals differ negligibly from the ac­
tual frequencies. Third, instead of requiring 15-20 pop­
ulations, as in the final form, or at least three major 
races, as in the interim form, we shall examine the oper­
ation of the ceiling principle with just two subpopula­
tions. This approach to examining the conservativeness 
of the ceiling principle under simplified conditions par­
allels testing the thrust of a rocket motor strapped to a 
launching pad or test bed before it is used under more 
realistic conditions. Just as rocket technicians are inter­
ested in diagnosing the conditions under which the en­
gine may be expected to fail, our analysis aims to deter­
mine when, under these simplified conditions, the 
ceiling principle will not achieve its aim of giving conser­
vative estimates. This analysis leaves open the perfor­
mance of the ceiling principle under more complex 
conditions but cautions against assuming that the prin­
ciple achieves its aims. 

Model with Linkage Disequilibrium 

A previous example in which the ceiling principle 
gives nonconservative estimates considers an unrealistic 
theoretical population consisting of three subpopula­
tions in which individuals are tested at three loci, each 
having three alleles, with perfect linkage between loci 
(Cohen 1992). 

Here we show that the ceiling principle can be vio-
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lated irt a simple model with only two subpopulations, 
two loci with two alleles each, and less than perfect 
correlation between loci. We give exact conditions for 
the ceiling principle to give a nonconservative estimate 
for each genotype. 

Consider a population with two subpopulations, la­
beled "1" and "2." Let P represent the fraction of the 
population consisting of subpopulation 1, and let Q 
represent the fraction consisting of subpopulation 2; 
hence, P + Q = 1. Suppose locus 1 has two alleles, A 
and B, and locus 2 has two alleles, X andY. In subpop­
ulation 1, let a1 be the frequency of allele A and b1 be 
the frequency of allele B; similarly, let x1 be the fre­
quency of allele X and y1 the frequency of allele Y. 
Define a2 , b2 , x 2 , and y2 similarly for subpopulation 2. 
Fori= 1, 2, a;+ h; = 1, and X;+ Y; = 1. 

If there were linkage equilibrium between the two 
loci, the conditional probability P(A I X) of a haplotype 
exhibiting the A allele given that it displayed the X allele 
would simply be the frequency of A in that population, 
i.e., a;. However, since we are not assuming linkage 
equilibrium, let P(A I X);= r; in subpopulation i = 1, 2, 
and similarly let P(A I Y); = 5;, where 0 ~ r;, 5; ~ 1. 
(Thus when, for example, r; > a;, alleles A and X are 
positively associated in subpopulation i, while when the 
reverse inequality holds, A and X are negatively asso­
ciated in subpopulation i.) Then 

P(AX); = P(AIX);P(X); = r;x; 

P(AY); = P(AIY);P(Y); = 5;Y; 

P(BX); = P(B I X);P(X); = (1 - r;)X; 

P(BY); = P(B I Y);P(Y); = (1 - 5;)Y; 

(1) 

are the haplotype frequencies for subpopulation i. Be­
cause P(AX); + P(AY); = P(A); =a;, we know that r;X; 
+ 5;Y; = r;X; + 5;(1 -X;)= a; and similarly that (1 - r;)X; 
+ (1 - 5;)(1- X;)= b;. For each subpopulation there are 
three independent variables-r;, 5;, and X;. The three 
other variables-a;, h;, and y;-are determined from a; 

= r;X; + 5;(1 - X;), h; = 1 - a;, andY;= 1 - X;. 
Our parameters are easily related to two measures, D; 

and Z;, of linkage disequilibrium, described by Crow 
and Kimura (1970, p. 197): D; = P(AX);P(BY); 
- P(AY);P(BX); = X;Y;(r; - 5;), and Z; = P(AX); 
P(BY);/[P(A Y);P(BX);] = [r;(1 - 5;)]/[5;(1 - r;)]. 

To calculate the frequency of each genotype, we as­
sume Hardy-Weinberg equilibrium within each subpop­
ulation and multiply haplotype frequencies, multiplying 
by two for each heterozygous locus. The frequencies 
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Table I 

Exact Formulas for Genotype Frequencies and Estimated Frequencies Given by the 
Ceiling Principle in the Model of Two Loci with Hardy-Weinberg Equilibrium 
and Linkage Disequilibrium, Assuming x 1 ;;. x1 

CEILING ESTIMATE 

Case 1 Case 2 
GENOTYPE ACTUAL FREQUENCY a1 > a2 a2 > a1 

AAXX ...... Prfxf + Qrixi afxf aixf 
AAXY 1Pr1 s1x1 y1 + 2Qr2S2X2)'2 2afxtY2 2aix1 y2 

AAYY Psbf + Qshi afyi a hoi 
ABXX 2Pr1(1 - r1)xf + 1Qr2(1 - r2)xi 2a1b2 xf 2a2b.xf 
ABXY 2Pr1(1 - s1)x1 y1 + 2P(l - r1)s1 x1 y1 4atbzXtY2 4azbtXtY2 

+ 1Qr2(1 - s2)x2y2 + 2Q(l - r2 )s2x2 y2 

ABYY ....... 2Ps1(1 - S1)y} + 1Qs2(1 - sl)Yi 2athzyi 1azhtYi 
BBXX ....... P(l - r1)

2x} + Q(l - rzfxi hixf bfxf 
BBXY ....... 2P(l - r1)(1 - s1)x1y1 + 2Q(l- r2)(1- s2)XzYz 1bix,yz 1bfxtYl 
BBYY ....... P(l - s,jlyf + Q(l - SzfYi 

for the entire population are listed in the second col­
umn of table 1. 

To calculate the frequencies given by the ceiling prin­
ciple (apart from the recommended lower bounds of 
5% or 10%), we multiply the higher frequency for each 
allele from the two subpopulations, with a factor of 
two for single heterozygotes and a factor of four for 
do4ble heterozygotes. Without loss of generality, we 
label the two subpopulations so that x1 ;;;. x2 , and (since 
X;+ Y; = 1) we have y2 ;;;. y1• For ease in calculation, we 
consider two cases. In case 1, a1 > a2 and thus b2 > b1 • 

In case 2, a2 > a1 and b1 > b2 • The ceiling frequencies 
for each genotype for each case are listed in columns 3 
and 4 of table 1. 

For the ceiling principle to be nonconservative, the 
ceiling estimate must be strictly lower than the actual 
frequency. The exact conditions for each genotype may 
be read off from the corresponding line in table 1. 
Thus, for genotype AAXX, the ceiling estimate is non­
conservative if Prixi + Qdx~ > aixi when a1 > a2 

(case 1). As R. C. Lewontin (personal communication) 
pointed out, this is not an onerous requirement. For 
example, if r1 = r2 and x1 = x2 , then since P + Q = 1, 
the ceiling principle will be violated for genotype 
AAXX if r1 > a1 > a2 or, in other words, if the fre­
quency of allele A in subpopulation 1 exceeds its fre­
quency in subpopulation 2 and also, within subpopula­
tion 1, allele A is associated with allele X more than it is 
with allele Y. The other inequalities derived from table 
1 have equally simple interpretations in special cases. 
These interpretations show that the ceiling principle 

bhi bhi 

can easily fail to be conservative for an individual geno­
type. 

Table 1 makes it easy to calculate exactly by how 
much the ceiling principle fails. For example, the ratio 
of the ceiling bound to the actual probability for the 
genotype AAXX in case 1 (a1 > a2) equals (aixi)/ 
(Pri xi + Qd x~). In the special case considered in the 
preceding paragraph, this ratio simplifies to (a1/r1)

2
• As 

might be expected, the ceiling principle would fail most 
(i.e., the ratio would be smallest) when the A allele is 
rare but the conditional frequency r1 of A, given the X 
allele, is large in subpopulation 1. 

Hypothetical Numerical Examples 

To illustrate a theoretical situation where most indi­
viduals have genotypes that are more frequent than the 
ceiling principle would estimate, suppose that 

a1 = x1 = .90, a2 = x2 = .82, r1 = .99, s1 = .09 , 

b1 = y1 = .10, b2 = y2 = .18, r2 = .99, 

52 = .045 = .045555 ... ' 
(2) 

P=Q=l/2. 

Since here a1 > a2 , this example illustrates case 1. No 
allelic frequency in this hypothetical example is less 
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Table 2 

Hypothetical Genotype Frequencies Compared with 
Estimates from the Ceiling Principle in the Model of Two 
Loci with Hardy-Weinberg Equilibrium and Linkage 
Disequilibrium, Assuming Parameter Values Given in (2) 

Genotype Actual Frequency Ceiling Estimate 

AAXX ........ . 72645012 .6561 • 
AAXY ......... .01467576 .26244 
AAYY ......... .00007412 .026244 
ABXX ......... .01467576 .26244 
ABXY ......... .22069648 .104976• 
ABYY ......... .00222776 .0104976 
BBXX ......... .00007412 .026244 
BBXY ......... .00222776 .0104976 
BBYY ......... .01889812 .00104976• 

• Ceiling estimate violation. 

than .1, so no lower bound adjustment would be re­
quired. Then 

P(BYlt = P(BIY)1 P(Y)1 = (1- s1 )y1 = (.91)(.10) = .091 

(3) 

and similarly, P(AXh = .8118, P(AYh = .0082, P(BXh 
= .0082, and P(BYh = .1718. 

Table 2lists the actual, as well as ceiling, frequencies 
for this scenario. The ceiling principle is violated for 
three genotypes-AAXX, ABXY, and BBYY -with a 
combined frequency greater than 96%. Whether the 
ceiling principle would give nonconservative estimates 
so frequently in practice remains to be determined. 

Numerical simulations show that it is very easy to 
find hypothetical examples that violate the ceiling prin­
ciple. We simulated numerically case 1 with P = Q = 1f2 
on a computer, specifically to investigate whether the 
ceiling principle could fail to be conservative for all 
possible genotypes, whether failure for one genotype 
implies failure for another genotype, and whether valid­
ity of the ceiling principle for one genotype implies va­
lidity for another genotype. For each trial, random num­
bers uniformly distributed between 0 and 1 were 
chosen for r1 , r2 , s, s2 , x, and x2 • When x2 > x, the 
two numbers were switched so that x1 > x2 • Then a1 

and a2 were calculated from a;= r;X; + s;(1- X;); when­
ever a2 > a1 , new random numbers were chosen for r;, 
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s;, and X; until a1 > a2 • The remaining variables were 
determined by y1 = 1 - x 1 ; y2 = 1 - x2 ; b1 = 1 - a1 ; and 
b2 = 1 - a2 • Then the actual and the ceiling frequencies 
were calculated for each genotype for each trial. This 
numerical simulation is not intended necessarily to re­
flect the distribution of allelic frequencies and associa­
tions in real populations. 

Based on 10,000 trials, the ceiling principle was 
found to be nonconservative for at least one genotype 
in 0.2633 (±0.0044 SD) of the trials. The ceiling princi­
ple failed to be conservative for each genotype at least 
once. Violation of the ceiling principle for any one ge­
notype did not invariably imply violation for any other 
genotype. Adherence to the ceiling principle for any 
one genotype did not invariably imply adherence for 
any other. 

Model with Hardy-Weinberg Disequilibrium 

The ceiling principle can also be violated in a popula­
tion with two subpopulations and one locus with two 
alleles if Hardy-Weinberg equilibrium does not hold. 
The analysis is essentially identical to the previous analy­
sis after a simple reinterpretation of the symbols. Now 
interpret A and B as the maternally inherited alleles at a 
single locus; interpret X as the paternally inherited A 
allele at the same locus and Y as the paternally inherited 
B allele at the same locus. The symbols previously inter­
preted as haplotypes at two loci are now interpreted as 
genotypes at a single locus; thus AX is now interpreted 
as the AA homozygote at this locus, BY as the BB ho­
mozygote, and both A Y and BX as the heterozygous 
genotypes AB at the given locus. From (1), we immedi­
ately have the genotype frequencies for subpopulation i 

P(AA); = T;X; 

P(AB); = s;y; + (1 - r;)X; (4) 

P(BB); = (1 - S;)Y;. 

Table 3 lists the formulas for the actual genotype 
frequencies and the ceiling estimates for this model. As 
before, the exact conditions for the ceiling principle to 
be nonconservative may be read off from the line corre­
sponding to each genotype in table 3. Thus, for the 
homozygote AA, the ceiling estimate is nonconserva­
tive if Pr1 x1 + Qr2x2 > a1 x1 • As before, this is not an 
onerous requirement. For example, if r1 = r2 and X 1 

= x2 , then, since P + Q = 1, the ceiling principle will be 
violated for genotype AA if r1 > a1 > a2 or, in other 
words, if the ·frequency of allele A in subpopulation 1 
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Table 3 

Exact Formulas for Genotype Frequencies and Estimated Frequencies, Given by the Ceiling 
Principle, in the Model of One Locus in Hardy-Weinberg Disequilibrium, Assuming x 1 ;;. x2 

CEILING ESTIMATE 

GENOTYPE ACTUAL FREQUENCY 

AA ........ . Pr1x 1 + Qr2x2 a1x 1 a1x 1 

AB ........ . 
BB ........ . 

Ps1 )'1 + Qs2 y2 + P(l - r1)x1 + Q(l - r2)x2 

P(l - s1)y. + Q(l - s2lY2 
a1 y1 + b1 x 1 

blyl 
a2 y2 + b1x1 

bly2 

exceeds its frequency in subpopulation 2 and also, 
within subpopulation 1, the maternal allele A is asso­
ciated with the paternal allele A more than the maternal 
allele A is associated with the paternal allele B. The 
other inequalities derived from table 1 have equally sim­
ple interpretations. (In a special case, with different no­
tation and slightly different assumptions, Bruce Weir 
[personal communication] independently showed that 
Hardy-Weinberg disequilibrium could lead to viola­
tions of the ceiling principle for heterozygotes.) 

Using the hypothetical parameter values in (2) in the 
formulas in (4) gives, according to (3), 

P(AA)1 = .891 

P(AB)1 = .018 (5) 

P(BB)1 = .091 

and, similarly, P(AAh = .8118, P(ABh = .0164, and 
P(BBh = .1718. Table 4lists the actual and ceiling fre­
quencies for this hypothetical scenario. Here the ceiling 
principle is nonconservative for both homozygous ge­
notypes, which constitute more than 98% of the popu-

Table 4 

Hypothetical Genotype Frequencies Compared with 
Estimates from the Ceiling Principle in the Model of 
One Locus in Hardy-Weinberg Disequilibrium, 
Assuming Parameter Values Given in (2) 

Genotype 

AA ........ . 

AB .••...•.. 
BB ......... 

Actual Frequency 

.8514 

.0172 

.1314 

• Ceiling estimate violation. 

Ceiling Estimate 

.81" 

.324 

.0324" 

lation. Once again, whether the ceiling principle would 
give nonconservative estimates so frequently in practice 
remains to be determined. 

Evidence of Two-Locus Associations 
within U.S. Ethnic Groups 

The ceiling principle could be nonconservative in 
forensic practice only if there are associations within or 
among loci. We next review briefly some evidence and 
arguments concerning the existence and extent of possi­
ble linkage disequilibrium and Hardy-Weinberg disequi­
librium in the United States. 

Weir (1992) carefully investigated three FBI data 
bases (B5 for blacks, C4 for Caucasians, and H4 for 
Hispanics) for evidence of associations within and 
among loci. The data bases contain VNTR profiles at 
six loci (numbered 1, 2, 4, 10, 14, and 17; see table 5 for 
key to loci). No two loci lie on the same chromosome. 
According to Weir (1992, p. 881), the FBI uses four of 
the six loci in forensic work (loci 1, 2, 4, and 17). 

Using fixed bins, as the FBI does in forensic practice, 
and the bootstrap resampling method to simulate the 
distribution of a likelihood-ratio statistic, Weir (1992, 
p. 884, his table 10) estimated empirical significance 
levels for all possible two-locus associations. "Note 
that the test is not a test for linkage disequilibrium-sig­
nificant results would obtain if any subset of the four 
bins in a two-locus genotype had dependent frequen­
cies" (Weir 1992, p. 883). If there were no two-locus 
associations, the empirical significance levels should be 
uniformly distributed between 0 and 1. The observed 
distribution of empirical significance levels appears to 
differ from the expected uniform distribution. For ex­
ample, among the 144 reported empirical significance 
levels, 15 were equal to .01 (whereas only 1.4 = 144 
X .01 would be expected to be .01 or smaller), and 47 
fell in the range .02-.05 (whereas only 5.8 = 144 X .04 
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would be expected in the range .02-.05). The largest 
reported empirical significance level was .33. 

Assigning statistical significance to these apparent 
deviations from a uniform distribution is difficult be­
cause the empirical significance levels are not all pair­
wise independent. For example, the test for association 
among all Caucasians at loci 1,2 is not independent of 
the test among Florida Caucasians or the test among 
Texas Caucasians, because both states are included in 
"all" Caucasians. In spite of this dependence, the mar­
ginal distribution of empirical significance levels should 
be uniform if there are no two-locus associations. 

A more sensitive and exact way to investigate possi­
ble two-locus associations consists of combining inde­
pendent tests by using Fisher's (1970, pp. 99-100) 
method. If pi is the significance level of test j, j = 1, ... , 
], and if all J tests are statistically independent, then 

J 
x2 = -2 L log(pi) 

j=l 

has the distribution of X2 with 2] df. 
Since six loci were tested, three independent tests of 

two-locus association can be combined for each differ­
ent combination of ethnic group (e.g., Caucasian) and 
specific state (e.g., Florida). For example, the test for 
association of loci 1 and 2 is practically independent of 
the test for association of loci 4 and 10, and both are 
practically independent of the test for association of 
loci 14 and 17. (There may be a correlation between 
disequilibrium at two distinct pairs of loci due to statis­
tical sampling [Hill and Weir 1988], but "the effect is 
small" [Bruce Weir, personal communication].) In table 
5, the combined test for association in these three pairs 
of loci is denoted by 1,2+4,10+14,17. For this trio of 
pairwise tests, the X2 statistic with 6 df for Caucasians in 
Florida is shown in table 5 as 16.670. According to the 
critical values given at the bottom of table 5, this com­
bined test gives evidence of two-locus association at a 
significance level between .01 and .02. 

Table 5 shows the X2 statistic for all15 possible trios 
of two-locus tests of association. Among Florida Cau­
casians, all 15 statistics are significant at the .05 level, 
while among California Caucasians, none is significant. 
Texas Caucasians are intermediate. Among Florida and 
Texas blacks, all 30 statistics are significant at the .01 
level, and a majority of the Texas black statistics are 
significant at the .001 level. Among California blacks, 
only one statistic is significant at the .05 level. Among 
Florida Hispanics, 11 of 15 statistics are significant at 
the .05level, while among Texas Hispanics, all statistics 
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are significant at the .051evel, including 8 that are signif­
icant at the .01level. In summary, California Caucasians 
and blacks show little suggestion of two-locus associa­
tions, Texas Caucasians show weak or variable evi­
dence of two-locus associations, and the remaining eth­
nic X state groups show consistent and strong evidence 
of two-locus associations. 

Bruce Weir (personal communication) suggested that 
the significant values in his tests for two-locus associa­
tions (Weir 1992, his table 10) may largely reflect signifi­
cant single-locus associations reported in his table 6 
(Weir 1992, p. 880). To exclude any associations due to 

the uncertainty about whether single-band patterns rep­
resent homozygotes or heterozygotes, Weir (1992, pp. 
883-884) tested each ethnic data base (i.e., Caucasian, 
black, and Hispanic, not separated by state) for associa­
tions between loci, by using only double heterozygotes 
for each pair of loci. He found no empirical significance 
level smaller than .05. Weir (personal communication) 
provided us with the 45 empirical significance levels 
based on double heterozygotes only (3 ethnic data 
bases X15 pairwise comparisons for the six loci). We 
carried out an analysis parallel to the analysis used to 

produce table 5. Among the 45 X2 statistics for all possi­
ble trios of two-locus tests of association, only one was 
significant at the .05 level, and none was significant at 
the .02 level. These results confirm Weir's conclusion 
that the data on double heterozygotes only provide no 
evidence of pairwise associations among the loci ana­
lyzed. 

Tests of association between a single-band pattern at 
one locus and a heterozygous genotype at another locus 
have not yet been reported, so it is not yet entirely clear 
whether the two-locus associations in the FBI data 
bases are entirely due to the single-locus Hardy-Wein­
berg disequilibrium or whether they may be partially 
due to linkage disequilibrium between loci. 

The NRC (1992) did not propose that the ceiling 
principle be applied to data on double heterozygotes 
only, though it did endorse the procedure of doubling 
the single-band frequencies (NRC 1992, p. 3-5). (Mor­
ton [1992, p. 2557] appears not to favor such a dou­
bling.) The apparent absence of linkage among double 
heterozygotes does not justify the use of the product 
rule or the ceiling principle with data bases that include 
single-band patterns. Nor (in response to a referee's 
question) does the apparent absence of linkage for dou­
ble heterozygotes necessarily imply the validity of the 
product rule for triple or quadruple heterozygotes, 
since, in theory, the combined alleles at two loci could 
easily affect the conditional probability of alleles at a 
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Table 5 

Tests for Two-Locus Association~ in FBI Data Bases, Combining Triples of Independent Two-Locus Tests 

Loci' 

1,2+4,10+14,17 ..... . 
1,4+2,10+14,17 ..... . 
1,10+2,4+14,17 ······ 
1,14+2,4+10,17 ······ 
1,17+2,4+10,14 ..... . 
1,2+4,14+10,17 ..... . 
1,2+4,17+10,14 ..... . 
1,4+2,14+10,17 ..... . 
1,4+2,17+10,14 ..... . 
1,10+2,14+4,17 ..... . 
1,10+2,17+4,14 ..... . 
1,14+2,10+4,17 ..... . 
1,14+2,17+4,10 ..... . 
1,17+2,10+4,14 ..... . 
1,17+2,14+4,10 ..... . 

Florida 

16.670 
18.502 
18.056 
15.048 
15.413 
16.937 
15.944 
16.145 
16.479 
16.230 
18.943 
15.579 
15.668 
16.937 
14.312 

CAUCASIAN 

Texas 

12.542 
12.154 
12.332 
11.540 
11.540 
12.520 
14.375 
11.557 
12.943 
14.067 
13.758 
13.872 
12.989 
12.018 
11.442 

California 

4.605 
4.605 
4.605 

4.605 
2.939 
4.605 
2.939 

2.939 

4.605 

BLACK 

Florida Texas 

20.464 25.434 
23.026 24.048 
22.661 23.237 
20.464 22.215 
19.889 23.237 
18.918 24.412 
21.275 24.858 
19.442 21.640 
20.829 20.829 
22.661 23.472 
21.115 25.434 
24.048 24.858 
20.464 25.434 
21.115 25.434 
19.078 24.048 

HISPANIC 

California Florida Texas 

5.991 14.450 17.691 
5.991 14.004 17.691 

15.202 13.665 16.184 
9.210 14.375 15.373 
9.210 12.413 17.806 
6.438 15.334 14.683 
4.605 11.349 16.995 
7.824 14.122 14.473 
5.627 14.523 13.086 

12.429 11.046 15.162 
12.065 13.471 15.859 
4.605 11.638 17.570 
5.627 13.297 18.056 
6.438 13.662 17.691 
7.824 12.896 17.481 

Noni.-The original empirical significance levels of tests for individual two-locus associations are given by Weir (1992, p. 884). Under the 
null hypothesis of no two-locus associations, the entries in the table should have the distribution of x2 with 6 df, for which the critical values are 
12.592 for P = .05, 15.033 for P = .02, 16.812 for P = .01, and 22.475 for P = .001. Thus, for Caucasians in Florida, the entry of 16.670 shows 
that the associations of loci 1 and 2, loci 4 and 10, and loci 14 and 17, in combination, would occur by chance alone with a probability between 
.01 and .02. 

• Locus 1 = 0157; locus 2 = 02544; locus 4 = 045139; locus 10 = 010528; locus 14 = 014513; and locus 17 = 017579. 

third or fourth locus; the question must be settled em­
pirically. 

Evidence of Hardy-Weinberg Disequilibrium 
within U.S. Ethnic Groups 

Odelberg et al. (1989) report significant deviations 
from Hardy-Weinberg equilibrium at three of the eight 
VNTR loci examined in samples of 78-151 Utah Cau­
casians. The exact significance values they quote should 
not be taken literally because they appear to make no 
allowance for multiple tests; nevertheless, three signifi­
cant results at the nominal .05 significance level is sub­
stantially larger than the number (8 X .05 = .4) of signifi­
cant tests at the .05 level expected by chance alone, 
assuming Hardy-Weinberg equilibrium. For the three 
loci (D2S44, D14S13, and D1S74) with reportedly sig­
nificant deviations from Hardy-Weinberg equilibrium, 
homozygotes are two to three times more frequent 
than expected from Hardy-Weinberg equilibrium. Dev­
lin et al. (1990), Weir (1992), and Chakraborty et al. 
(1992) also report substantial, and often statistically sig­
nificant, deviations of raw counts of banding pheno­
types from Hardy-Weinberg equilibrium in FBI data. 

It is not possible to estimate the parameters of the 
above model for two subpopulations with Hardy­
Weinberg disequilibrium on the basis of the informa­
tion reported by Odelberg et al. (1989), Devlin et al. 
(1990), Weir (1992), and Chakraborty et al. (1992), so it 
is not clear whether the reported disequilibrium would 
suffice to cause a violation of the ceiling principle. 
Were access to the FBI data unrestricted (Anderson 
1992), the appropriateness of the ceiling principle for 
these data could readily be tested. 

Whether the observed excess of homozygotes and 
observed deficiency of heterozygotes (relative to 
Hardy-Weinberg equilibrium) reflect population sub­
structure or artifacts of biochemical technique is a con­
troverted question. Devlin et al. (1990, p. 1416) argue 
that the apparent excess of homozygotes "is not neces­
sarily real because many heterozygotes with similar al­
lele sizes are misclassified as homozygotes." Cohen et 
al. (1991) raise extensive questions concerning the anal­
ysis and conclusions of Devlin et al. (1990). 

Chakraborty et al. (1992) propose that the observed 
excess of homozygotes "is caused by the inability to 
detect extremely small-sized alleles (called 'non-detect­
able' alleles). . . . If 'non-detectable' alleles are the pre-
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dominant source of observed heterozygote deficiency, 
then gene-count estimates of all detectable alleles pro­
vide enough cushion to prescribe such upper bounds" 
on the true frequency of each observable genotype, 
provided that the frequency of each single-band pheno­
type is estimated by twice the observed frequency of 
the corresponding allele (see Chakraborty et al. 1992, p. 
53). Devlin and Risch (1992) reach a similar conclusion 
that allowance for null alleles obviates deviations from 
Hardy-Weinberg equilibria, on the basis of a compari­
son of FBI and Lifecodes data bases. 

Unfortunately, Chakraborty et al. (1992) omit an 
easy but crucial empirical test of this elegant and inge­
nious proposal. With the data at their disposal, they 
could compare the observed frequency of every "ho­
mozygous" (i.e., single-banded) and "heterozygous" 
(i.e., double-banded) phenotype with the correspond­
ing estimated upper bound (in their notation) 2{5; and 
2fJdJ; derived from their model. If "non-detectable" al­
leles suffice to explain the observed heterozygote defi­
ciency, then (apart from occasional sampling error due 
to small sample sizes) the observed frequencies should 
be smaller than the corresponding estimated upper 
bounds. The proposed multilocus extension of their 
approach using the product rule (Chakraborty et al. 
1992, p. 54) should be tested similarly by comparing 
observed multilocus phenotype frequencies with their 
estimated upper bounds (which differ from those of the 
ceiling principle). Until such empirical analysis is re­
ported in detail, their proposed analysis remains conjec­
tural. As Chakraborty et al. (1992, p. 55) candidly con­
cede, "It is true that in principle the possibility of 
heterogeneity within a population (population sub­
structuring) cannot be distinguished from the scenario 
presented here." The test just proposed could either 
exclude or be consistent with the scenario presented by 
Chakraborty et al. (1992). 

Apparently independently of Devlin et al. (1990) and 
Chakraborty et al. (1992), Morton (1992) analyzes the 
combination of population substructuring (or en­
dogamy within subpopulations), binning, and nonde­
tectable, or null, alleles. He shows that they all contrib­
ute to an "apparent inbreeding coefficient" that can be 
estimated from the observed frequency distribution of 
genotypes or banding phenotypes. Separating the com­
ponents of the apparent inbreeding coefficient into the 
proportions due to population substructuring, binning, 
and null alleles would appear to require that the distri­
butions of banding phenotypes be measured separately 
for relatively endogamous subpopulations, as called for 
by the NRC (1992, p. 3-20), and that the biochemical 
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technique be refined or replaced so that merged and 
null alleles can be measured or eliminated altogether. 

Discussion 

We have shown that the ceiling principle recom­
mended by the NRC (1992) can fail to be conservative 
in a simplified hypothetical population with two sub­
populations and two alleles per locus. Exact conditions 
for failure of the ceiling principle are given for a single 
locus in Hardy-Weinberg disequilibrium and for a pair 
of loci, each in Hardy-Weinberg equilibrium, with link­
age disequilibrium between them. Hardy-Weinberg dis­
equilibrium and linkage disequilibrium in combination 
could amplify the failures of the ceiling principle. The 
conditions for the ceiling principle to fail need not be 
onerous, and hypothetical numerical examples of fail­
ures are plentiful. 

A necessary condition for failure of the ceiling princi­
ple is the existence of associations within or between 
loci. The NRC report mentions that the interim version 
of the ceiling principle should only be put into effect 
after possible linkage disequilibrium and Hardy-Wein­
berg disequilibrium have been checked. This is an im­
portant requirement. FBI data publicly available with­
out restriction do not presently make it possible to 
estimate whether the associations among loci are suffi­
cient to cause the ceiling principle to fail in practice. 
However, our analysis of Weir's (1992) empirical signifi­
cance levels based on FBI data gives strong evidence of 
two-locus associations for certain ethnic groups in cer­
tain states (table 5). It is not yet clear whether the two­
locus associations are due to deviations from Hardy­
Weinberg equilibrium, when single-banded patterns are 
regarded as homozygotes. Nevertheless, the existence 
of two-locus associations suggests that, in those ethnic 
groups and states, the validity of the ceiling principle 
should be established before it is implemented in either 
its interim or its final form. 

Current FBI VNTR data on double heterozygotes 
only, as analyzed by Weir (1992, and personal commu­
nication), give no evidence for two-locus associations. 
Sample sizes for such VNTR profiles have not been 
made public, so this conclusion could be a result of low 
power, and larger samples could change it. However, at 
the moment, the product rule appears to apply to the 
limited case of double heterozygotes only. 

Our results emphasize the need for empirical study of 
allelic associations within and between loci in defined 
subpopulations, as called for by the NRC (1992, p. 
3-20). Our results also emphasize the need for theoreti-
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cal study of methods of estimating upper bounds on 
genotype frequencies, which are robust to allelic associ­
ations within and across loci. Miron L. Straf's sugges­
tion to use the Bonferroni inequalities (see Cohen 1992, 
p. 1167) deserves further exploration. 
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