Infinite variance of U.S. COVID-19 cases & deaths, & Taylor's law of heavy-tailed data

Joel E. Cohen, cohen@rockefeller.edu Rockefeller University & Columbia University ICTP Workshop on Quantitative Human Ecology, Trieste 2022-07-28

Ashokan Reservoir, Ulster County, NY, JEC 20151015

Plan

Fluctuation scaling, variance function variance = f(mean)Taylor's law: variance $=a(mean)^{b}$ log(variance) = log a + b log(mean)Heavy tails & regular variation $Pr(X > x) = L(x)x^{-\alpha}, 0 < \alpha < 2$ COVID-19 in US Taylor's law, infinite variance

Plan

 \rightarrow Fluctuation scaling, variance function variance = f(mean)Taylor's law: variance $=a(mean)^{b}$ log(variance) = log a + b log(mean)Heavy tails & regular variation $\Pr(X > x) = L(x)x^{-\alpha}, 0 < \alpha < 2$ COVID-19 in US Taylor's law, infinite variance

Variance function

Population: Given a non-empty family of random variables $\{X(s)\}_{s \in S}$, if each X(s) has finite mean E(X(s)) & finite variance Var(X(s)), the population variance function f says: $Var(X(s)) = f(E[X(s)]), \forall s \in S$. Sample: Sample of size n > 1 is a set $\{X_1(s), \dots, X_n(s)\}$ of n iid copies of X(s), with sample mean $\overline{X}_n(s) \coloneqq (X_1(s) + \dots + X_n(s))/n$, sample variance $s_n^2(s)$. The sample variance function f_n says: $s_n^2(s) \approx f_n(\overline{X}_n(s))$.

Plan

Fluctuation scaling, variance function variance = f(mean) \rightarrow Taylor's law: variance = a(mean)^b $\log(variance) = \log a + b \log(mean)$ Heavy tails & regular variation $Pr(X > x) = L(x)x^{-\alpha}, \alpha \in (0,2)$ COVID-19 in US Taylor's law, infinite variance **Lionel Roy Taylor** 2/3/2024 (1924 - 2007)

Taylor's law(s)

Population TL holds if each nonnegative random variable $X(s), \forall s \in S$, has finite, positive mean & variance & $\exists a > 0, b$ such that $Var(X(s)) = a\{E(X(s))\}^b.$ Sample TL holds if samples with mean $\overline{X}_n(s)$, variance $s_n^2(s)$ obey, $\forall s \in S$, for some a > 0, b, $\log s_n^2(s) \approx \log a + b \log \overline{X}_n(s)$ or $\frac{s_n^2(s)}{\{\bar{X}_n(s)\}^b} \approx a > 0.$ For sample TL, there is no requirement that mean or variance exist or are finite. 2/3/2024 Joel E. Cohen 6

TL data structure: multiple samples										
each with multiple observations										
	Sample number \rightarrow	s=1	<i>s</i> =2	s=3	s=					
	Population size or	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i>					
	density in units (quadrats, plots, transects, counties, states,	<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃						
		<i>x</i> ₃₁	<i>x</i> ₃₂	<i>x</i> ₃₃						
			<i>x</i> ₄₂	<i>x</i> ₄₃						
	years, days)		<i>x</i> ₅₂							
	Mean (weighted)	m ₁	m ₂	m ₃	m					
	Variance (weighted)	V ₁	V ₂	V ₃	V					

Tornado USA has more tornadoes than any other Country. (Lloyd's)

Category F5 tornado viewed from the southeast as it approached Elie, Manitoba on Friday, June 22nd, 2007. Justin Hobson 2/3/2024 Joel E. Cohen Creative Commons Attribution-Share Alike 3.0 Unported, 2.5 Generic, 2.0 Generic and 1.0 Generic license. GNU Free Documentation License, Version 1.2 or any later version

Child Heller

8

published by the Free Software Foundation

TL for tornadoes: size of outbreaks by calendar year

Year→	1954	1955		2014
Number of F1+	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i>
tornadoes per	<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	
outbreak (≥6	<i>x</i> ₃₁	<i>x</i> ₃₂	<i>x</i> ₃₃	
tornadoes with ≤6		<i>x</i> ₄₂	<i>x</i> ₄₃	
hour gap)		<i>x</i> ₅₂		
Mean (weighted)	m ₁	m ₂	m ₃	m
Variance (weighted)	V ₁	V ₂	V ₃	V

Outbreaks (≥6 tornadoes) cause most damage. Outbreak is defined as ≥ 6 tornadoes starting ≤6 hours apart. 1972–2010: 79% of tornado fatalities & most economic losses occurred in outbreaks. No trends in numbers of reliably reported tornadoes or outbreaks in last half century. Mean & variance of the number of tornadoes per outbreak, & insured losses, increased significantly in last half century.

F1+ tornadoes per outbreak in USA: variance~(mean)^{4.3}

Tippett & Cohen, Nature Communications 2016

Michael Tippett

Higher percentiles increased faster. "quantile regression"

Tippett, Lepore, & Cohen, Science 2016

Plan

Fluctuation scaling, variance function variance = f(mean)Taylor's law: variance $=a(mean)^{b}$ $\log(variance) = \log a + b \log(mean)$ \rightarrow Heavy tails & regular variation $\Pr(X > x) = L(x)x^{-\alpha}, 0 < \alpha < 2$ COVID-19 in US Taylor's law, infinite variance

probability density Lognormal distribution function of lognormal(1,1) A positive-valued random variable $Y(\mu, \sigma^2)$ with real parameters $\mu, \sigma^2 \ge 0$ is 5 15 25 35 45 55 lognormal if $\log Y(\mu, \sigma^2)$ is normal(mean μ , variance σ^2). $E\left(Y(\mu,\sigma^2)\right) = \exp\left(\mu + \frac{\sigma^2}{2}\right),$ $\operatorname{Var}\left(Y(\mu,\sigma^2)\right) = \left[\exp(\sigma^2) - 1\right]\exp(2\mu + \sigma^2).$ If σ^2 is constant & only μ changes, then $Var(Y(\mu)) = c\{E(Y(\mu))\}^2$: TL with exponent 2.

Lévy distribution $S_{1/2}$ If X is normal $\mathcal{N}(0,1)$, then $1/X^2$ has Lévy distribution (1924) $S_{1/2}$ [Helmert 1875, Lüroth 1876] with infinite mean & variance.

Lévy distribution has heavier right tail than lognormal distribution.

Lévy cumulative averages grow like $n \times L$ évy. Lognormal averages converge.

Lévy cumulative averages grow like $n \times L$ évy. Lognormal averages converge.

Lévy law (stable $\alpha = 1/2$) obeys TL with increasing sample sizes.

One sample each of size n=10, j=1:9 30 Theoretical (not fitted) line of slope b=3For stable law of index $\alpha \in (0,1)$, 20 slope is $b = \frac{2-\alpha}{1-\alpha}$. og₁₀ variance ×5 Brown, Cohen, de la Peña Sample mean & J. Appl. Prob. 2017 sample variance 10 diverge to ∞ as $n \to \infty$, but Taylor's law holds! 6 8

Heterogeneous dependent data Cohen, Davis, Samorodnitsky, Proc. Roy. Soc. A 2020

Log central moments

21

Many roads lead to TL.

Many models yield TL exactly or asymptotically.

- Power-law form & parameter values of TL do not determine underlying
 - mechanisms.

Interpreting the parameters of TL in terms of a specific mechanism requires testing the assumptions against detailed data.

Plan

Fluctuation scaling, variance function variance = f(mean)Taylor's law: variance $=a(mean)^{b}$ log(variance) = log a + b log(mean)Heavy tails & regular variation $Pr(X > x) = L(x)x^{-\alpha}, 0 < \alpha < 2$ \rightarrow COVID-19 in US Taylor's law, infinite variance

COVID-19 cases & deaths

New York Times historical data base has final counts of COVID-19 cumulative cases & cumulative deaths at end of each day, 2020-01-21 to 2021-06-19 by "state" & "county" for days & counties with >0 cases or >0 deaths.

1,436,628 counts by day & county in data downloaded 2021-06-20

On each date, cumulative cases & deaths within each state by county

State number \rightarrow	s=1	s=2	<i>s</i> =3	s=
County 1	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i>
County 2	<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	
County 3	<i>x</i> ₃₁	<i>x</i> ₃₂	<i>x</i> ₃₃	
County 4		<i>x</i> ₄₂	<i>x</i> ₄₃	
		<i>x</i> ₅₂		
Mean = average	m ₁	m ₂	m ₃	m
Variance	V ₁	V ₂	V ₃	V

Taylor's law describes counties' cumulative cases & deaths. From April 2020 onward, TL holds: 1. log variance of counts (over counties) increases linearly with the log mean of counts (over counties) from state to state. 2. Slope *b* ≈ 2. Why?

Survival curve plots probability that counts > x as a function of x.

To cover wide ranges of probability & of counts, we plot log(Pr{X > x}) as a function of log(x).

We also fit lognormal & Weibull distributions by maximum likelihood to counts of all counties.

cases

Survival curve of cumulative COVID-19 cases/county by date

deaths

Survival curve of cumulative COVID-19 deaths/county by date

Lognormal describes >99% of distributions of cases & deaths.

- Many models lead to lognormal & Weibull distributions.
- Lognormal is much closer than Weibull to data's upper tail, but also falls too fast. If count has lognormal distribution, if σ^2 is constant, & if only μ varies from state to state, then Taylor's law holds with slope 2.

Cases Lognormal σ as function of μ for cumulative U.S. COVID-19 cases by state

deaths Lognormal σ as function of μ for cumulative U.S. COVID-19 deaths by state

Lognormal explains TL with slope 2 for lower 99% of counts but not 1% upper tail.

Lognormal μ varies much more widely than lognormal σ², generating predicted means & predicted variances that closely approximate Taylor's law with slope 2.
But the very largest counts of cases & deaths are more extreme than lognormal distribution predicts.

We zoom in to the counties with the highest 1% of counts of cases or deaths.

Survival curve of highest 1% of cumulative COVID-19 cases/county by date

deaths

Survival curve of highest 1% of cumulative COVID-19 deaths/county by date

For counties with highest 1% of cases, Hill estimates of tail index: $1 < \alpha < 2$

For counties with highest 1% of deaths, Hill estimates of tail index: $1 < \alpha < 2$

Empirical survival curves suggest variance is infinite.

The estimated upper tail index is $1 < \alpha < 2$ in all 15 months for cases & all but first month April 2020 for deaths, so variance is infinite, mean is finite.

"Wonder / Fear / Astonishment"

Regularly varying upper tail with index $\alpha \in (1,2)$ explains why TL with b = 2 holds even for largest counts where lognormal distribution fails. Simulations: 100 samples of size 100 4 models in RV(α): $|N(0,1)|^{-\alpha^{-1}}$, $|U|^{-\alpha^{-1}}$, $|U_1U_2|^{-\alpha^{-1}}, |U_1U_2U_3|^{-\alpha^{-1}}$ $\alpha = 1/2, 1, 3/2$, with & without dependence. TL with $b \rightarrow 2$ is confirmed by mathematics.

So what?

If the variances of cases & deaths per county are infinite, facility & resource planning should prepare for unboundedly high counts.

No single county (or state, or other jurisdiction) can prepare for unboundedly high counts.

Cooperative exchanges of support should be planned cooperatively.

My math collaborators & teachers

Mark Brown

Victor de la Peña

Sheung Chi Yam Gennady Samorodnitsky

Thank you! Questions? cohen@rockefeller.edu

20190906 La Fage To Florac Cévennes "Cham des Bondons Chabusse"

2/3/2024