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Abstract 

A three-parameter model of a random directed graph (digraph) is specified by the 
probability of 'up arrows' from vertex i to vertex j where i <j, the probability of 
'down arrows' from i to j where i > j, and the probability of bidirectional arrows 
between i and j. In this model, a phase transition-the abrupt appearance of a giant 
strongly connected component-takes place as the parameters cross a critical 
surface. The critical surface is determined explicitly. Before the giant component 
appears, almost surely all non-trivial components are small cycles. The asymptotic 
probability that the digraph contains no cycles of length 3 or more is computed 
explicitly. This model and its analysis are motivated by the theory of food webs in 
ecology. 
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1. Introduction 

Erdos and Renyi (1960) observed that the structure of a random graph changes 
discontinuously as a function of c, the average degree of a vertex. When c < 1, a 
typical random graph consists of a large number of small components. When c > 1, 
the probability that a graph has a giant component that contains a positive fraction 
of all the vertices tends to 1 as n- oo. Abrupt transitions in structure have since 
been discovered in other randomized models of discrete objects like random cubes 
(Ajtai et al. (1982)), random hypergraphs (Schmidt-Pruzan and Shamir (1985)) and 
random digraphs (Karp (1990), Luczak (1990)). In percolation theory (Grimmett 
(1989), Kesten (1982)), this kind of behavior is called a phase transition, because of 
connections with physics. 

In this paper, we find the critical surface on which the phase transition takes place 
in a three-parameter model of a random digraph. Few multiparameter models have 
been considered previously. Our motivation for defining and analyzing the three
parameter model of a directed graph which follows is the theory of food webs in 
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ecology (Cohen et al. (1990)). In defining the critical surface, a crucial role is played 
by a function x: [1, oo)~ (0, 1] defined as the smallest root of the equation 

(1) x(c) exp ( -x(c)) = c exp (-c). 

This function unexpectedly links our result with the first paper on phase transitions 
in graph theory (Erdos and Renyi (1960)) where the same function is important. 

2. Main result 

Dn(r, s, t) denotes a digraph on the set of vertices [n] = {1, 2, · · ·, n} in which 
independently for each pair of vertices i, j with i > j, the arrow (i, j) from i to j 
occurs (and the reverse arrow does not occur) with probability r/n; the arrow (j, i) 
from j to i occurs (and the reverse arrow does not occur) with probability s/n; both 
arrows, (i, j) and (j, i) occur simultaneously with probability t/n; and finally neither 
(i, j) nor (j, i) occurs with probability 1- (r + s + t)/n. Throughout we assume that 
r, s, t are non-negative real numbers which do not depend on n. We say that 
Dn(r, s, t) has a property almost surely if the probability that Dn(r, s, t) has this 
property tends to 1 as n ~ oo. 

Our goal is to find those triples (r, s, t) for which almost surely all components of 
Dn(r, s, t) are either trivial (i.e. consist of one vertex) or very small cycles, as well as 
the triples (r, s, t) such that Dn(r, s, t) almost surely contains a large component of 
.order n. Here and below 'component' means a strongly connected component and a 
'non-trivial' component is a component with at least two vertices. 

Our main result is the following. 

Theorem. Let w(n)~oo and x:[1, oo)~(O, 1] be the function defined by (1). 
(i) If 

(2) r + t < 1 and s + t < 1 

or 

(3) r + t E: 1 but s + t < x(r + t) 
or 

(4) s + t E: 1 but r + t < x(s + t), 
then almost surely all components of Dn(r, s, t) are of size less than w(n) log n, 

P0 =lim Pr {Dn(r, s, t) contains no cycles of length at least 3} > 0 
n-+oo 

and when (r + t)(s + t) > 0 then also P0 < 1. Moreover almost surely all cycles of 
length at least 3 are shorter than w(n) and no two such cycles share a vertex. In 
particular, if t = 0, all non-trivial components are cycles of length at most w(n). 

(ii) If 

(5) r + t E: 1 and s + t > x(r + t) 
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or 

(6) s + t 5;:; 1 and r + t > x(s + t) 

then there exists a positive constant a= a(r, s, t), which does not depend on n, such 
that almost surely Dn(r, s, t) contains a large component on at least an vertices. 
Moreover, almost surely this component contains a cycle of length at least 3, i.e. 
P0 =0. 

The results of Karp (1990) and Luczak (1990) show that, in a one-parameter 
model of a random digraph, almost surely after the phase transition, the large strongly 
connected component is unique and every other non-trivial component is a cycle of 
length less than w(n ). One may adapt arguments from Luczak (1990) to show that 
these conclusions remain true also in our multiparameter model. However, the 
proof is long and the result is not necessary for our ecological application. So we 
omit these results for brevity. 

The results of our theorem have been extended in two respects (Cohen et al. 
(1990)). First, under the hypotheses of part (i) of the theorem, 

{ 

(( )( )/ ) 
(r + t) exp (s + t)- (s + t) exp (r + t) 

exp r + t s + t 2 , r i= s. 
P0 = r-s 

exp ((r + t)2/2) exp (r + t)(1- r- t), r = s. 

Second, if the parameters fall on the critical surface r + t 5;:; 1 and s + t = x(r + t), or 
s + t 5;:; 1 and r + t = x(s + t), then P0 = 0. 

3. Proof of main result 

Because Theorem 1 is symmetric with respect to r and s, we shall assume from 
here on that r 5;:; s. 

Consider first the following procedure. Choose vertex i, such that i/n = z, and 
join i to vertices j smaller than i independently with probability (r + t)/n (i.e. add 
arrows (i, j) where j < i) and with probability (s + t)/n put in arrows (i, j) from i to 
each larger vertex j > i. Denote the expected number of outneighbours of i that 
result from this procedure by fi(z ). Now join each outneighbour it of i with a vertex 
j i= it independently with probability (r + t)/n if j <it and with probability (s + t)/n 
if j >it. The expected number of outneighbours of all outneighbours of i (i.e. the 
second-generation descendants of i) is denoted by f2(z). Similarly, define fk(z) to 
be the number of vertices in the kth generation of outneighbours of i for 
k = 3, 4, · · · . Each descendant of i chooses its children independently of the 
previous stages of the process, i.e. a vertex may appear in more than one generation 
of descendants. Thus fk(z) is not equal to the expected number of vertices of 
Dn(r, s, t) which are reachable from i in exactly k steps but clearly fk(z) bounds this 
value from above. 
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Unfortunately, as a function with domain {i/n: 1;;;;; i;;;;; n }, f~ is rather incon
venient to study. Thus we shall approximate f'k by some functions fk defined on the 
whole interval [0, 1]. 

For z E [0, 1] set f 1(z) = z(r + t) + (1- z)(s + t) and, when k ~ 1, 

A+I(z) = (r + t)Jz fk(x) dx + (s + t)J
1 

fk(x) dx 
0 z 

= (r- s)fz A(x) dx + (s + t)J
1 

fk(x) dx. 
0 0 

We shall show that for some constant Ck and every natural number n 

(7) 

provided z belongs to the domain of fk. 
Indeed, if k = 1 then 

fl(z) = z(r + t) + (1- z)(s + t)- (r + t)/n 

so (7) holds. Now suppose that (7) is valid for some k ~ 1. Then 

I 
zn -I r + l n S + t I 

lfk+I(z)- fk+J(z)j = ~ --;;- f'k(i/n) + z~l--;;-Jk(i/n)- /k+J(z) 

l
zn-1 r + t n s + t I 

;;;;; ~ -;;-A(i/n)+ z~ 1 -;;-A(i/n)-A+ 1 (z) +Ck(r+t)/n. 

One can easily check that all functions fk are positive, increasing and bounded from 
above in the interval [0, 1]. So, for suitable constants C' = C'(k) and C" = C"(k), we 
have 

and 

I i A(i/n)/n- J
1 

fk(x) dxl < C"/n. 
zn+l z 

Hence 

lfk+I(z)- /k+J(z)J;;;;; (Ck + C' + C")(r + t)/n, 

and, by induction, (7) follows. 
The following result, characterizing the behavior of fk for large k, is proved in the 

Appendix. 

Lemma 1. Let a sequence of functions {[;}~=O• [;: [0, 1]-IR be defined by f0 = 1 
and 

(8) A(x) =(a- b) f fk-I(t) dt + b f fk_ 1(t) dt, 
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where a and b denote some positive real parameters. Let x = x (c) be the smallest 
root of (1). 

(i) If 

(2') a< 1 and b < 1 

or 

(3') a~1 but b <x(a) 

or 

(4') b~1 but a<x(b) 

then 

3A =A(a, b)< 1, 3N = N(a, b), Vk~N, Vxe[O, 1]:fk(x}~Ak. 

(ii) If 

(5') a~1 and b >x(a) 

or 

(6') b~1 and a >x(b) 

then 

VC>O, 3N = N(a, b, C), Vk~N, Vx e [0, 1] :A(x) ~fk-l(x) >C. 

Now we are ready to prove the first part of the theorem. 

Proof of theorem, Part (i). Let us look first at cycles of length at least 3 contained 
in Dn(r, s, t). Denote by Xk = Xk(n, r, s, t) the number of cycles of length k and let 
Y; = Y;(n, r, s, t) be the number of vertices reachable from v in exactly k steps. 
Then EXk is less than the expected number of vertices contained in cycles of length 
k, which in turn is bounded from above by the number of arrows (i, j), where i 
belongs to the (k- 1}th generation of descendants of j. The probability that such an 
arrow exists is at most max { (r + t}/n, (s + t}/n} ~ (r + t)/n since r ~ s. Thus 

n-1 r + t 
EXk ~ 2: 2: Pr {Y;_1 = /}/-

ve[nJ /=1 n 

~ (r + t) max {EY;_1 : v e [n]} 

~ (r + t} max {fk-1(x) :x e [0, 1]}. 

But when one of the conditions (2}, (3) or (4) is fulfilled, then, due to Lemma 1(i) 
with a= r + t, b = s + t, the last maximum decreases exponentially, i.e. for some 
A< 1, EXk ~ (r + t}Ak- 1

• 

Thus, the probability that there exists a cycle of length larger than w(n }, when 
w(n)- oo, is bounded above by 

n oo 

2: EXk ~ (r + t) 2: 
ki;l;w(n) k=w(n) 
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Moreover, for the expectation of the number X of all cycles which are less than, 
say, log log n in length, we have 

loglogn oo A2( + ) 
(9) EX= L EXk ;a (r + t) L Ak- 1 ;a r t . 

k=3 k=3 1- A 

On the other hand, 

(
n) k-1 (r + t);(s + r)k-i ( (1)) 1 k-1 

EXk = k ~ a7 --;;- --;;- = 1 + 0 ;; k! ~ d;'(r + t);(s + t)k-i 

where cl; denotes the number of ways one can build a directed cycle on the set 
[k] = {1, 2, · · ·, k} with exactly i arrows going from a larger vertex to a smaller one. 
Hence 

loglogn oo 1 k-1 . . 
EX= 2: EXk = (1 + o(1)) 2: - 2: a~(r + t)'(s + t)k-, = (1 + o(1))A. 

k=3 k=3 k! i=1 

From (9) we know that A. exists, i.e. that the above series converges. Clearly when 
(r + t)(s + t) > 0 then also A> 0. Furthermore, one can easily check that for each 
natural number I 

E[X(X- 1) · · ·(X -I+ 1)] = (1 + o(1))(EX)1 = (1 + o(1))A.1 

so the distribution of X tends to the Poisson distribution with mean A, i.e., for each 
natural m 

Am 
lim Pr {X = m} =- exp (-A.). 
n-+oo m! 

Thus P0 = limn-+oo Pr {X= 0} = exp (-A.)> 0 and if (r + t)(s + t) > 0 then P0 < 1. 
Now, to show that all cycles of length between 3 and w(n) of Dn(r, s, t) are almost 

surely vertex disjoint, note that if two such cycles of a directed graph share a vertex 
the graph must contain a subdigraph with less than 2w(n) - 1 vertices and more 
arrows than vertices. The smallest possible such subdigraph which contains two 
cycles has k = 4 vertices. When k denotes the number of vertices and I the number 

of arrows in the subdigraph, there are (~) ways of choosing the vertices, 

(
k(k- 1)) f h . h d b . . f 

1 
ways o c oosmg t e arrows, an the pro abthty that two cycles o 

length less than log log n share a vertex is less than the expected number of 
subdigraphs with more arrows than vertices, which is bounded above by 

L n L max !____!.' ~ ;a L nk2k(k-t)k2 !____!. 
21oglogn ( ) k(k-1) (k(k _ 1))[ { + + }]/ 21oglogn ( + )k+l 

k=4 k l=k+t I n n k=4 n 
;a n-12(21og log n)2(2log log n )3 max {1, (r + t)21og logn+l} = o(1), 

for each triple (r, s, t). 
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Finally, to complete the proof of (i), note that t < 1, so almost surely each 
component of the graph induced by all 'double' arrows of Dn(r, s, t) contains fewer 
than log n/(t- 1-log t) vertices (see Erdos and Renyi (1960)). Moreover, we have 
just proved that Dn(r, s, t) almost surely contains less than w(n) cycles longer than 2 
so the largest component of Dn(r, s, t) is almost surely smaller than w(n) log n/ 
(t- 1 -log t). 

Remark. In fact, fort> 0 the structure of Dn(r, s, t) could be characterized more 
precisely. The argument from our proof, applied a bit more carefully, shows that 
almost surely all cycles of length at least 3 are contained in components of size less 
than w(n ), and, consequently, all other components are 'trees' of size less than 
log n/(t- 1 -log t) in which each pair of vertices i, j is either non-adjacent or 
connected by a pair of arrows (i, j) and (j, i). 

To show the second part of the theorem we shall find a sequence of functions 
ACz) which satisfy recursive relation (8) and which bound from below the expected 
number of descendants in the kth generation of a vertex i = zn of Dn(r, s, t); then 
we use Lemma 1(ii). To do so, we shall simply omit vertices that have been chosen 
in any earlier generation when picking the vertices which are to be the children or 
outneighbours of each new generation. However, carrying out this idea requires 
some technical arguments. We first state a further consequence of Lemma 1(ii) and 
show how it implies the second part of the theorem. 

Lemma 2. Let r, s, t be such that one of conditions (5) and (6) holds. Then there 
exists a positive constant a'= a'(r, s, t), which does not depend on n, such that 
almost surely Dn(r, s, t) contains a vertex v and sets s-, s+ such that 

(i) s- n s+ = 0, and 
(ii) IS-I= IS+ I= la'nJ, and 

(iii) for every w-E s-[w+ E S+]Dn(r, s, t) contains a directed path from w- to v 
[from v to w+]. 

A proof of Lemma 2 comes later. 

Proof of theorem, Part (ii). Let r, s, t be such that one of conditions (5) and (6) 
holds. In fact, since we assume that r~s, we consider only (5). Moreover, x(1) = 1, 
so r + t > 1. Choose r', s', t' in such a way that r' ;a r, s' ;as, t' ;at, r' + t' < r + t, 
s' + t' < s + t, but the assumption (5) is fulfilled also for r', s', t'. Then one can 
construct Dn(r, s, t) to be a supergraph of Dn(r', s', t') by examining all pairs of 
vertices i, j, i > j, for which neither arrow (i, j) nor (j, i) exists in Dn (r', s ', t') and 
adding arrows (i, j) or (j, i) or both of them or neither of them with probabilities 
(r- r')/n, (s- s')/n, (t- t')/n, and 1- (r + s + t- r'- s'- t')/n, respectively. 

Lemma 2 implies the existence of a'= a'(r', s', t') > 0 such that almost surely 
Dn(r', s', t') contains two disjoint subsets s-, s+, of size la'nJ and from some 
vertex v there exist paths to all vertices of s+ and vis reachable from each vertex of 
s-. Moreover, almost surely the sum of the in degree and the outdegree of each 
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vertex of Dn(r', s', t') is less than logn, since 

n-
1 (n) (' + s + t); n-

1 (e(r + s + t)); 
n L . ~n L . ~o. 

i=logn l n i=logn l 

Now construct Dn(r, s, t) from Dn(r', s', t'). Then for each vertex w+ E s+, the 
probability that the arrow (w+, w-) will be contained in Dn(r, s, t) for some w-e s
is at least 

( {
r + ( S + (})IS+j-logn 

1- 1- min ---;;-,---;;- > 1- exp ( -a'(s + t)) + o(1) 

> 0·9- 0·9 exp (- a'(x + t)). 

Since these events are independent for different vertices in s+, the number of 
vertices from s+ with outneighbours in s- is bounded from below by a binomially 
distributed random variable with parameters <l a' n J, 0·9 - 0·9 exp (-a' (s + t))), 
which with probability tending to 1 as n ~ oo is larger than an where a = 
0·8a' (1 - exp (-a' (s + t))). Hence almost surely at least l an J vertices of s+ belong 
to the same component of Dn(r, s, t) as the vertex v and lie on cycles of length at 
least 3. 

Proof of Lemma 2. Let us start with some notation. If i e [n] and M!;;;;; [n] then by 
the height of i in M we shall mean the number of vertices of M which are smaller 
than i. The height of i in M is denoted by h(i, M). For a quadruple (i, j, m, M) 
where i, j, me [n], M!;;;;; [n], if. M and j ~ h(i, M) ~j + m ~ IMI, F(i, j, m, M) is a 
set obtained from M by deleting its h(i, M)- j smallest elements and m + j
h(i, M) largest ones. Thus F(i, j, k, M) has exactly IMI- m elements and 
h(i, F(i, j, m, M)) = j. 

Let i be a vertex of Dn(r, s, t), j, me [n], and S!;;;;; [n] be a set of 'spoiled' vertices. 
Then an outneighbour [inneighbour] v of i is defined to be (j, m, S)-proper if it lies 
in F(i,j, m, [n]\S). 

Note that F(i, j, m, [ n ]\S) always exists whenever 

(10) 

(11) 

and 

(12) 

lSI ~0·3m, 

lj- (h(i, [n]\S)- 0·5m)l ~lSI+ 0·1m 

since from (10) and (11) it follows that 

j ~j + 0·4m -lSI~ h(i, [n]\S) ~j + 0·6m +lSI ~j + m. 

In a process, which will be crucial for our considerations, at each step in discrete 
time, we shall choose only neighbours that are proper in the sense above, adding to 
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the set of spoiled vertices all descendants picked up previously. To be precise, let 
E > 0 be a small positive constant such that the condition (5) holds also for some 
r' ~ r, s' ~s, t' ~ t where r' + t' = (1- e)(r + t) and s' + t' = (1- e)(s + t). Once 
and for all, set m = lenj. Now we shall define an (i, j, m, S)-process for each 
lSI~ 0·2m, i E S, 0·3m ~ i ~ n- 0·3m and lj- (i- 0·5m)l ~lSI. In the first step of 
an (i, j, m, S)-process, find all (j, m, S)-proper outneighbours of i. (We assume i is 
connected with all smaller vertices with probability (r + t)/n and with all larger 
vertices with probability (s + t)/n.) Denote the set of all (j, m, S)-proper outneigh
bours by Nt and for each i' E Nt set h(i') = h(i', F(i, j, m, [n ]\S)). Set S = S U Nt. If 
lSI~ 0·3m, then stop. If not, pick any it e Nt and find the set N2 of all 
(h(it), m, S)-proper outneighbours of it, putting, for each i" e N2 , h(i") = 
h(i", F(it, h(it), m, [n]\S)). Set S = S U N2• Then when lSI~ 0·3m, pick another 
vertex from the outneighbours of i, say i2 , find the set N3 of all (h(i"), m, S)-proper 
outneighbours of i2 and set h(i"') = h(i"', F(i2 , h(i2), m, [n]\S)) for all i"' e N3 , and 
set S = S U N3 • Repeat this procedure until either lSI> 0·3m or no unspoiled 
descendants of i remain. A reverse (i, j, m, S)-process is defined in the same way, 
but instead of outneighbours we look for proper inneighbours at every step. 

Let i = zn and let J'k(z) denote the expected number of all descendants of i found 
in the kth generation (not in the kth step!) in the (i, j, m, S)-process. Clearly, J'k(z) 
is smaller than the expected number of vertices reachable from i in k steps in 
Dn(r, s, t). (By contrast with the process in the proof of the first part of the theorem, 
k can never be arbitrarily large.) Moreover, our process is constructed in such a way 
that each descendant l of i chooses its outneighbours from a set that has the same 
number of vertices (namely, n- m- 1), and in this set l has the same height as l 
had in the set l was chosen from by i. Thus, arguing as in the proof of the first part 
of the theorem, one arrives at a recursive formula for Jk(z) = limz.-z limn_oc}'k(zn): 

- r + t fz - s + t f.t -
!k(z)=-(n-m) A-t(x)dx+-(n-m) A-t(x)dx 

n o n z 

~ (r' + t') f lk-t(x) dx + (s' + t') f A-t(x) dx 

= (r'- s') f A-t(x) dx + (s' + t') f fk-t(x) dx. 

The same inequality with r' and s' interchanged is valid for /k(z), the asymptotic 
expected number of kth-generation ancestors of i found in a reverse (i, j, m, S)
process. 

Now let r+(i)[T-(i)] be the number of all descendants [ancestors] of i found in a 
[reverse] (i, j, m, S)-process. 

Fact. Let S!;;;[n], ISI~0·2m, i~tS, lj-(h(i,[n]\S)-0·5m)I~ISI+0·1m and 
j ~ n - m -lSI. Then there exist positive constants {J and {J', which do not depend 
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on n, such that the probabilities that r+(i) ~ 0·1m, and r-(i) ~ 0·1m are larger than 
f3 and {3', respectively. Moreover, with positive probability y>O[y'>O], the 
number of descendants [ancestors] of i in the (log log n )2th generation is at least 
log2n while the total number of all descendants [ancestors] up to the (loglogn)2th 
generation is less than n 112

• 

Proof of fact. Due to Lemma 1(ii) we may choose k 0 large enough to have 
fko(z) > 2 for all z E [0, 1 ]. Let G(i) be the (i, j, m, S)-process described in the proof 
of Lemma 2. Let Gko(i) denote the process starting from i in which the /th gener
ation of descendants of i in Gk

0
(i) equals the lk0th generation of descendants in 

G(i) for I= 1, 2, · · · . Since the expected number of offspring in Gko(i) is larger than 
two for every i, a well-known theorem of branching processes (see, for example, 
Harris (1963), Theorem 1.6.1) guarantees that the probability of extinction of the 
line of descent in Gk

0
(i) is strictly smaller than 1, i.e. with positive probability the 

number of descendants in G(i) will grow to exceed 0·1m. Moreover, the expectation 
of the square of the number of offspring in Gk

0
(i) is bounded above by the 

expectation of the square of the number of offspring for the analogous process 
defined for the digraph Dn(O, 0, r + s + t), which can easily be shown to be finite. 
Thus, results from the theory of branching processes (Harris (1963), Theorem 1.8.1) 
assure us that with probability 1- o(1) the number of offspring in the 
l(log log n )2 I k0 j generation of Gko(i) is at least 

lko(z )(log logn)21Jog log logn/log log log n > log2 n, 

where the inequality holds for large enough n. (In this formula, 'log log log n' 
actually stands for anything larger than a constant.) Finally, the expectation of the 
total number of offspring ( outneighbours) of i up to the (log log n )2 generation in 
G(i) equals 

(log log n)2 
L /;(z) ~(log logn)2fko(z)(loglogn)2 < n0·4, 
i=l 

where the inequality on the right holds for large enough n. So, from Markov's 
inequality, the probability that the total number of offspring [outneighbours] of i up 
to (log log n )2 generations is less than n 112 is at least 1 - O(n -o- 1

). Analogous 
arguments apply in the reverse case. 

The strength of the above result is that it allows us to start with any set of spoiled 
vertices, provided it is not too large. 

Now we prove Lemma 2. Set i 1 = LO·SnJ, j 1 = i- LO·SmJ, S = {i1} and perform 
an (i., j 1 , m, S)-process until the total number of descendants of i 1 is larger than n 112 

or you find all descendants in the (log log n )2th generation. If you succeed, i.e. the 
number of descendants in the (log log n fth generation is larger than loi n and the 
total number of descendants is smaller than n 112

, then perform the reverse 
(i., j., m, S)-process but start from the set S which contains all the vertices spoiled 
in the previous step. If you fail in either the forward process or the reverse process, 
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set i2 =min{ie[n]\S:i>0·5m}, h=i2 - L0·5mJ, add to the setS of already 
spoiled vertices the vertex i2 and perform the (i2 , h, m, S)-process until the 
(log log n fth generation or the number of descendants is too large. Continue this 
procedure until you find a 'good' vertex, i.e. a vertex v such that the numbers of 
both descendants and ancestors in the (log log n )2th generation are at least log2 n 
and with less than 2n 112 relatives found so far. 

With probability 1- o(1) one finds a good vertex before examining log n vertices. 
Indeed, from the Fact, the probability that a vertex is not good is less than 1 - yy', 
so the probability that we fail log n times is less than (1- yy')1ogn- 0. 

Thus, we have found a good vertex v spoiling less than 2n 112 log n vertices. We 
show that T- ( v) ~ 0·05m and T+ ( v) ~ 0·05m. Indeed, examine first each of log2 n 
descendants of v not examined yet and stop when the total number of descendants 
of v reaches 0·05m. The probability that this does not happen is, due to the Fact, 
less than (1- f3Yog2n- 0. Thus, with probability 1- o(1) we have checked that 
T+( v) > 0·05m, having spoiled so far less than 0·05m + 2n 112 1og n < 0·1m vertices. 
Now examine each of the ancestors of v in the (log log n )2th generation of 
inneighbours of v, until the total number of all ancestors of v is larger than 0·05m. 
The probability that this does not happen, due to the Fact, is less than 
(1- f3'Yog2n-o, since each time we look for the parents of a new ancestor of v the 
total number of spoiled vertices is less than 0·1m + 0·05m < 0· 2m. Hence with 
probability tending to 1 as n- oo we have found a vertex v in Dn(r, s, t) with many 
ancestors and descendants, and the assertion of Lemma 2 holds. 

Appendix 

Proof of Lemma 1. When a = b then A(x) = ak and the assertion holds. 
Moreover, since for a function gk(x) defined by gk(x) = fk(1- x) we have 

gk(x) = (b- a) f gk-1(t) dt +a f gk_1(t) dt, 

we may assume that a >b. 
It is not hard to see that A(x) is a polynomial of degree k. Let 

k 

A(x) = 2: c(k; i)x;. 
i=O 

Then c(O; 0) = 1, c(O; i) = 0 for i E; 1 and when k ~ 1 

c(k; 0) = b ~1 c(k.- 1, i)' 
i=O l + 1 

and when 1 ~ i ~ n 

a-b 
c(k; i) =-.-c(k -1; i -1). 

l 
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Hence 

TOMASZ I:..UCZAK AND JOEL E. COHEN 

. (a- bl . 
c(k;1)= ., c(k-1;0) 

l. 

for k ~ 1, i ~ 1 and 

k-t (a_ b); k (a_ b);-1 
c(k;O)=b~(i+ 1)!c(k-i-1,0)=b~ i! c(k-i;O). 

Thus assume that b < x(a ), i.e. that 

Then, for some E > 0, 

(13) 

00 (a-bl-1 ea-b_1 

b ~ i! = b a - b < 1. 

exp (a- b) -1 
b 1-E =1. 

a-b 

We shall show that c(k; 0) ;a (1- E)k. It is true for c(O; 0). For c(k; 0) we have 

00 (a _ b )i-1 1 exp ( ~ = :) -1 
c(k;O);a(1-E)kb~ i! (1-E);=(1-E)kb a-b =(1-E)k. 

Thus 
k k (a- b) 

max {fx(x):x e [0, 1]} = 2: c(k; i) = 2: . c(k- i; 0) 
i=O i=O 1! 

(
a- b) a =(1-E)kexp -- =-(1-E)k, 
1-E b 

where the last equality follows from (13). Thus the assertion of Lemma 1(i) holds 
for every A such that 1 - E <A < 1. 

Now let a> 1 and b > x(a) so that 

ea-b -1 
b b = 1 +2E>0 

a-

for some E > 0 and choose M large enough that 

M (a_ b);-1 
b 2: .

1 
~1 +E. 

i=l l. 
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Then, for k 5;;; M, 

M (a b);-1 
c(k; 0) 5;;; b L -., c(k- i; 0) 5;;; (1 +e) min {c(k- i; 0): 1 ~ i ~ M}. 

i=l l. 

Thus the sequence c(k; 0) (and therefore fk(x)) increases for k 5;;; M. For each 
k5;;;2M, 

c(k; 0) 5;;; (1 + e)c(k- M; 0) 5;;; (1 + e)lktMJ-1c(k; 0). 

Hence, fork 5;;; 2M, 

min {fk(x) :x e [0, 1]} = c(k; 0) 5;;; (1 + e)lktMJ- 1c(k; 0). 

This proves Lemma 1(ii). 
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