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Two random versions of the arithmetic-geometric mean of Gauss, Lagrange and Legendre are defined. 
Almost sure convergence and nondegeneracy are proved. These random arithmetic-geometric means in 
turn define two random versions of "IT. Based on numerical simulations, inequalities and equalities are 
conjectured. A special case is proved. Further proofs are invited. 
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1. Introduction 

Let a= a(O) and b = b(O) be two distinct positive real numbers, and suppose 
a(O) > b(O). Let n run through the nonnegative integers. Define 

a(n + 1) = ![a(n) + b(n)], b(n + 1) = [a(n)b(n)r 12• (1.1) 

It was known in the eighteenth century that limntoo a(n) and limntoo b(n) both exist 
and that the limits are equal. This common limit M(a(O), b(O)) is called the 
arithmetic-geometric mean (AGM) of a(O) and b(O). 

The AGM is useful in computing elliptic integrals, 'IT, and many other mathematical 
quantities. See Cox (1984, 1985), Arazy et al. (1985), and Borwein and Borwein 
(1987) for recent reviews. Specifically, the AGM makes it possible to compute elliptic 
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integrals rapidly (e.g., Cox 1984, 1985; Borwein and Borwein 1987) via the classic 
formula, for 0 <a, b < oo, 

(1.2) 

The AGM can also be used to compute 1T to very high accuracy, using the formula 
(Salamin 1976, p. 567; Cox 1985, p. 148) 

[M(2112, 1)]2 
1T=2 'oc n'J( )' (1.3) 1-L...n=l2 n 

where f(n) = [a(n)f- [b(n)] 2
• (Cox (personal communication, 9 January 1987) 

pointed out that he (1985) mistakenly gave the exponent of 2 in the summation as 
n + 1, but it should be n.) 

We consider two random versions of the iteration ( 1.1 ). Let U be a random 
variable uniformly distributed on the interval [0, 1]. Let U(n), n = 0, 1, ... , be an 
infinite sequence of independently and identically distributed (i.i.d.) copies of U. 
Define the sequences {A(n)} and {B(n)} of random variables by A(O) = a(O), 
B(O) = b(O) almost surely (a.s.) and 

A(n + 1) = U(n)A(n)+[1- U(n)]B(n), 
(1.4) 

B(n + 1) = A(n)U(n) B(n)I-U(n). 

In (1.4), an independent random value U(n) is chosen at each step. The vector 
(A( n ), B(n)) is a bivariate Markov process with discrete parameter. Define the 
sequences {C(n)} and {D(n)} of random variables by C(O) = a(O), D(O) = b(O) a.s. 
and 

C(n+1)= UC(n)+[1- U]D(n), D(n + 1) = C(n)uD(n) 1-u. (1.5) 

In (1.5), a single value of U is used for every step of the iteration. From a knowledge 
of (C(O), D(O)) and (C(l), D(l)), U can be determined exactly and hence the 
future of (1.5) can be predicted, though this is not true from a knowledge of only 
(C(n), D(n)) for any single value of n. 

By analogy with similar models in statistical mechanics, ( 1.4) may be called the 
annealed AGM process and (1.5) may be called the quenched AGM process. Since 
both processes reduce to (1.1) when all the random parameters U, U(O), U(1), ... 
are replaced by their common expectations!, (1.1) may be thought of as a mean 
field theory for both the quenched and the annealed AGM processes. 

Let X(a, b) denote the common limit of A(n) and B(n) in (1.4), and Y(a, b) 
likewise for (1.5). (See Proposition 2.1 below.) It is natural to define annealed and 
quenched random variables analogous to 1T by 

[X(21/2, l)f 
1TA = 

2 1-I::'=I 2nF(n)' 
(1.6) 
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where F(n) = [A(n)] 2 -[B(n)]2
, and 

[ Y(2112, 1)]2 

7To=
2 1-I:;'=12nG(n)' 

where G(n) = [C(n)f- [D(n)]2. 
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(1.7) 

We will find numerically, and in some cases prove mathematically, that there are 
inequalities between the mean annealed or quenched AGM and the original AGM, 
as well as inequalities in the opposite direction between the mean 7TA or mean 7TQ 
and 7T. If methods could be developed to prove such particular inequalities, they 
might be a step towards dealing with the large number of other functionals of the 
AGM that have been studied in the classical deterministic situation. More generally, 
nonlinear iterations with random parameters, such as (1.4) and (1.5), seem likely 
to play an important role in an eventual marriage of nonlinear dynamical systems 
and stochastic processes. It seems worthwhile to consider some examples that move 
toward such a marriage. 

2. Preliminary results 

Proposition 2.1. For every sample path, limnroo A(n), limnrro B(n), limnroc C(n), and 

limnroc D(n) exist. Moreover, 

lirnA(n)=limB(n) a.s., 
njoo njoo 

(2.1) 

limC(n)=limD(n) a.s. 
njoo njoo 

(2.2) 

Proof. For any u E [0, 1], v = 1- u, a> 0, and b > 0, log(ua + vb) ~ u log a+ v log b, 

with strict inequality unless a= b or u = 0 or u = 1, because log is strictly concave. 
Taking exp of both sides of this inequality gives ua+vb~aubv, so max(a,b)~ 
ua+vb~aubv~min(a,b). Thus A(n) and C(n) are monotone nonincreasing 
sequences bounded below by b(O), so their limits exist. B(n) and D(n) are monotone 
nondecreasing sequences bounded above by a(O), so their limits exist. Now if 
a1 = ua + vb and b1 = aubv, then (a1- b1)/ (a-b),;;;. u. Since U(n) <to, say, infinitely 
often in almost every (a.e.) sample path of the annealed process, (2.1) holds a.s. 
Since U < 1 a.s. in the quenched process, (2.2) holds a.s. 0 

A slight extension of this proposition is proved by Nussbaum (1990, his Corollary 
2.2, p. 451). 

Let the random variable X= X(a(O), b(O)) be the a.s. common value of the limits 
limntooA(n)=limntooB(n), and let Y= Y(a(O), b(O)) be the a.s. common value of 
the limits limnroo C(n) = limntoo D(n). X and Yare, respectively, the annealed and 
the quenched AGMs of a(O) and b(O). 
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Proposition 2.2. The distributions of X and Yare nondegenerate. 

Proof. Since A(l);a.X;a.B(l) and C(l);a. Y;a.D(l), it suffices to show that 
P[B(l) > a(l)] > 0 and P[A(l) < a(l)] > 0 because P[B(1) > a(l)] = P[ C(l) > 
a(l)] and P[A(l)<a(l)]=P[C(l)<a(l)]. It is elementary to see that 

B(l)>a(l) ifandonlyif U(O)>log[~(1+~~~DJ/log~~~; (2.3) 

and since a(O) > b(O), the quantity on the right is greater than 0 and less than 1. 
Hence the events in (2.3) occur with positive probability. Similarly, 

A(l)<a(l) ifandonlyif U(0)<1 

and the probability of the events in (2.4) is 1. 0 

Proposition 2.3. 

E[A(n + 1) \A(n) = a(n), B(n) = b(n)] = a(n + 1) 

and 

E[B(n + 1) \A(n) = a(n), B(n) = b(n)] 

a(n)-b(n) >b(n+ 1). 
log a(n) -log b(n) 

(2.4) 

(2.5) 

(2.6) 

Proof. (2.5) is obvious from (1.1) and (1.4). Because the exponential [a(n)/ b(n)]u 
is stricfly convex in u and 

E[B(n + 1) \A(n) = a(n), B(n) = b(n)] = b(n) f [a(n)/ b(n)t du (2.7) 

the inequality in (2.6) follows. 0 

3. Conjectures and numerical results 

By a leap of faith, Proposition 2.3 suggests: 

Conjecture 3.1. 

E[X(a(O), b(O))] > M(a(O), b(O)) and E[ Y(a(O), b(O))] > M(a(O), b(O)). 

To investigate Conjecture 3.1 numerically, we chose the same case of (1.1) that 
Gauss studied numerically in 1799 (see e.g. Cox, 1985), namely, a(O) = 2112 and 
b(O) = 1. We continued the iteration (1.1) until \a(n)- b(n)i < 5, and the iteration 
in each sample path of(1.4) or (1.5) until\A(n)-B(n)\<5 or \C(n)-D(n)\<5, 

where 5 = 10-12
• For (1.1), we obtained M(2112

, 1) shown in Table 1, which agrees, 
to the number of figures obtained, with the result given by Cox (1985). We computed 
106 simulations or sample paths of (1.4), cumulating over sample paths the sums 
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Table 1 

The arithmetic-geometric mean and simulations of the annealed arithmetic-geometric mean process and 
the quenched arithmetic-geometric mean process, for a(O) = 2112 and b(O) = 1. Because 106 independent 
simulations were performed for each of the latter two processes, the standard deviation of the sample 
mean is 10-3 times the sample standard deviation given below 

Iteration 

Classical ( 1.1) 
Annealed (1.4) 
Quenched (1.5) 

Arithmetic-geometric means 

Sample mean Sample s.d. 

1.198 140 235 0 
1.201 188 679 0.119 505 917 
1.201 166 777 0.121 533 413 

1r and its random analogs 

Sample mean Sample s.d. 

3.141 592 654 0 
3.096 424 677 0.612 860 519 
3.097 495 552 0.623 383 374 

of X and X 2
, and independently 106 sample paths of (1.5), cumulating over sample 

paths the sums of Y and Y 2
• From these sums we computed X and Y, the sample 

means, as the best estimates of E(X) and E( Y), the sample standard deviations 
s.d.(X) and s.d.( Y), and the standard deviations of the sample means s.d.(X) and 
s.d.( Y). Since the sample size was 106

, the latter are simply s.d.(X) = 10-3 s.d.(X) 
and s.d.( Y) = 10-3 s.d.( Y). A listing of the APL functions used to carry out these 
and the following computations is available on request. 

Table 1 shows that X is larger than M (2 112
, 1) by more than 25 standard deviations 

of X, and the same is true for Y. Relying on the central limit theorem, we conclude 
that this difference would have happened by chance alone with a probability that 
is essentially 0 if E(X) or E( Y) were equal to M(2112

, 1). We prove in Theorem 
4.2 that Conjecture 3.1 is true for a range of values of (a(O), b(O)), and in particular 
that E[X(2 112

, 1)] > M(2112
, 1). 

An unexpected finding in Table 1 is that X- Y is small compared to the estimated 
standard deviation of this difference, s.d.(X- Y) = {[s.d.(X) )2 + [s.d.( Y)f} 112

• This 
suggests: 

Conjecture 3.2. E[X(a(O), b(O))] = E[ Y(a(O), b(O))]. 

Unfortunately, this suggestion is false in general, as we shall prove in Theorem 4.3. 
Table 1 gives the value of 'IT computed using (1.3), which is accurate to the number 

of places given, and the sample means iTA and iTQ and sample standard deviations 
s.d.( 'IT A) and s.d.( 'TTQ). These quantities were calculated from the same 106 simulated 
sample paths used to evaluate X and Y. The standard deviations of the sample 
means are 10-3 times the sample standard deviations. The results in Table 1 and 
leaps of faith give: 

Table 1 suggests that E[ 'IT A]= E[ 'TT0 ], but the analogy of Theorem 4.3 makes us 
doubt the equality. We propose the equality as a question for resolution, not as a 
firm expectation. 
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4. An inequality proved 

The primary aim of this section is to prove part of Conjecture 3.1, namely, 
E[X(a, b)]> M(a, b) for 1 <a/ b < 2.68. This range of values for a and b includes 
the values a= 2112

, b = 1, used in the numerical example. We will also show that 
Conjecture 3.2 is false. 

For fixed a> b > 0, let 0 ~ u ~ 1 and define 

A(u) = ua + (1- u)b, 

F(u) = M(A(u), B(u)). 

Lemma 4.1. For 1 ~ aj b ~ 2.68, F(u) is convex in u on [0, 1]. 

Proof. Let subscripts denote partial derivatives. Then 

F'(u) = M 1(A(u), B(u))A'(u)+ MiA(u), B(u))B'(u), 

F"(u) = M 1(A(u), B(u))A"(u)+ M 2(A(u), B(u))B"(u) 

+ M 11 (A(u), B(u))[A'(u)]2 + M 22(A(u), B(u))[B'(u)]2 

+2M12(A(u), B(u))A'(u)B'(u). 

Using (1.2), the first derivatives of M(a, b) are 

Ml(a, b) =~[t"
12 

[a 2 cos2 t+ b 2 sin2 tr 112 dt ]-
2 

f"
12 acos2 tdt 

x 0 [a2 cos2 t+b2 sin2 t]312
' 

J
1T/2 

x 
0 

-[ a-:2:-c-o-s2=--t +-b-=-2 -si-n-=-2 -t ]731.,.,.2 • 

b sin2 t dt 

Note that 

aM1(a, b)+ bMia, b)= M(a, b). 

Therefore, differentiating with respect to a and b, respectively, gives: 

aM11 (a, b)+ M 1(a, b)+ bM1ia, b)= M 1(a, b), 

aMda, b)+M2 (a, b)+bM22(a, b)=Mia, b). 

This implies that 

aM11 (a, b)+ bM12(a, b)= 0, 

aMda, b)+bM2ia, b)=O. 
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This, together with A"( u) = 0 yields 

F"(u) = M 2(A(u), B(u))B"(u)+ M 12(A(u), B(u)) 

x {- [A'(u)]2 B(u) + 2A'(u )B'( u)- [B'(u )]2 A(u)} 
A(u) B(u) 

where 

A'(u)=a-b, B'(u) = (log~) B(u), B"(u) = (tog~r B(u). 

Therefore 

F"(u) = B(u) {(tog~) 
2 

M 2(A(u), B(u)) 

- Mn(A(u), B(u)) [ca-b)- A(u) log ~]2} 
A(u) b · 

To simplify notation, write for fixed u: 

2 

( ) - cos t 
gt-, 2 2 2. 

A·(u) cos t+ B (u) sin t 

Also, let 

2 dt 
,u(dt) = 2 2 , • 2 1/2· 7r[A (u) cos t+ B-(u) sm t] 

Then 

f
-rr/2 

M2(A(u), B(u)) = [M(A(u), B(u))]2 B(u) 
0 

f d,u 

and 

f -rr/2 f -rr/2 
M 12(A(u), B(u)) = 2[M(A(u), B(u))]3 A(u)B(u) 

0 

f d,u 
0 

g d,u 

f
-rr/2 

-3[M(A(u), B(u))]2A(u)B(u) 
0 

fg d,u. 

Therefore 

F"(u)[B(u)M(A(u), B(u))]-2 

=(tog ~r tTr/
2 

1 d,u 

+[ca-b)-A(u)log~r 

{ f
-rr/2 f-rr/2 f-rr/2 } 

x 3 
0 

fgd,u-2M(A(u),B(u)) 
0 

fd,u 
0 

gd,u . 
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Using B 2(u)f(t)+A2(u)g(t)= 1, this becomes 

F"(u)[B(u)M(A(u), B(u))]-2 

( )

2 f-rr/2 
= log~ 

0 
f dJL 

= t""
12 

f dJL {(log ~r + [:~u~- (log ~rr1 
+ B

2
(u) [:~u~ -log ~T{ 2M(A(u), B(u)) (fo""

12 

f djL r-3 L""
12 

f
2 

djL}. 

Note that 

F"(l);;;;. 0 for all choices of 0 < b <a, 

a a 
F"(O);;;.O ifandonlyif z;-1.;;;3Iogz;, 

Therefore 

F"(u)[B(u)M(A(u), B(u))]-2 

f
-rr/2 {( a) 2 [a b a] 2

} 
;;;;. 

0 
fdJL Iogb -2 A(u) -1ogb . 

This is nonnegative for all 0.;;; u .;;; 1 if and only if 

2 112 [~-1-log~J .;;Jog~ and 2 112 [log~-1+~] .;;Jog~, 
which is equivalent to 

a 1+2112 a b 2112 -1 a 
--1.;;;--Iog- and 1--;;:.--Iog-
b 2112 b a 2112 b · 

This is true if 1.;;; a/b.;;; 2.68. In particular, it is true if a= 2112, b = 1. So, 1.;;; a/b.;;; 
2.68 implies that F is strictly convex on [0, 1]. 0 
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Theorem 4.2. If 1:;:;; a/ b:;:;; 2.68, then E[X(a, b)]> M(a, b). 

Proof. If 1:;:;; a/ b:;:;; 2.68, then, by the convexity ofF proved in Lemma 4.1, 

f F(u) du > F(!). 

Now let a= a(O), b = b(O). Since 

A(n) a 
B(n) :;:;;b for all n a.s., 

we can apply inequality (4.1) at each stage, so 

E{M[A(n + 1), B(n + 1)] jA(n), B(n)} 

> M[!(A(n)+ B(n)), [A(n)B(n)] 112 ] = M[A(n), B(n)]. 

Therefore 

EM[A(n + 1), B(n + 1)] > EM[A(n), B(n)]. 

Since M[A(n), B(n)]~X(a, b) and M[A(n), B(n)]=s;;a, it follows that 

EX(a, b)= lim EM[A(n), B(n)] > M(a, b). 0 
n-oo 

Next, we show that Conjecture 3.2 is false, at least if a/ b is small. 
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(4.1) 

Theorem4.3. Forb= 1, a= 1 + t, where t > 0 is small, E[X(a, b)]< EA(2) < ED(2) < 
EY[(a, b)]. 

Proof. Definef(t) = EA(2), g(t) = ED(2). Then it is straightforward to compute that 

2+t t fu=t (l+tu)" 
f(t)=4+21og(l+t)' g(t)= u=O (l+t)"(u-l)du. 

Then f(O) = g(O) = 1, f'(O) = g'(O) =!(for the latter, differentiate under the integral 
and take the limit as dO),f"(O) = g"(O) = --AJ"'(O) =k< g"'(O) =fs. Hence for small 
enough t,f(t) < g(t). 0 

Remark. For b = 1 and a= 2112
, EA(2) = 1.201 137 .... When t = 2112 -1, the above 

formula for f(t) gives 1.201137 ... , an upper bound on the mean annealed AGM 
which is smaller than the sample mean for the quenched AGM given in Table 1. 

The proof of Lemma 4.1 establishes that F"(O);;;;. 0 if and only if aj b -1:;:;; 
3 log( a/b), i.e., if and only if 1:;:;; a/ b:;:;; 6.711 approximately. The proof of Theorem 
4.3 establishes that E[X(a,b)]<E[Y(a,b)] for small values of (a-b)/b. To 
explore outside of this range, we estimated E[X(lO, 1)] and E[ Y(lO, 1)] and the 
corresponding standard deviations by 1000 simulations each with convergence 
criterion 5 = 10-10

• We found M(10, 1) = 4.2504, X(lO, 1) = 4.8162, s.d.(X) = 2.6328, 
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s.d.(X) = 0.0833, Y(lO, 1) = 4.8423, s.d.( Y) = 2.8662, s.d.( Y) = 0.0906. Thus, 
X(lO, 1) is many times s.d.(X) greater than M(lO, 1) and Y(lO, 1) is many times 
s.d.( Y) greater than M(lO, 1), supporting Conjecture 3.1. But, in conformity with 
Theorem 4.3, X(lO, 1) < Y(lO, 1), even though the difference between these two 
quantities is small compared to s.d.(X) and s.d.( Y), in apparent but misleading 
conformity with Conjecture 3.2. 

If Conjecture 3.1 is true, it should be provable by an argument that escapes the 
limitations encountered in the present proof of Lemma 4.1. For example, the 
inequality ( 4.1) might hold even if F is not convex. The following Theorem 4.4 
shows that (4.1) holds for large enough a/ b. Theorem 4.4 does not imply the 
conclusion of Theorem 4.2 when a/ b is large, because A(n)/ B(n) may be of 
moderate size for some values of n. Nevertheless, Theorem 4.4 strongly suggests 
that (4.1), and therefore Theorem 4.2, holds for all a/ b. Since Theorem 4.4 is only 
suggestive, we merely outline its proof. 

Theorem 4.4. For F defined just before Lemma 4.1, 

. J~F(u)du 
hm 1 = oo. 

afb-cxo F(2) 

Outline of proof. 
Step 1. If 

then 

h(a)= 
1 

= 7T f-rr/
2 

d ( ) 
0 (a 2 cos2 t+sin2 t) 112 2M(a, 1) ' 

lim _a_ h(a) = 1. 
a-cxo log a 

Step 2. Taking b = 1 and F as defined before Lemma 4.1, 

. F(u) u 
hm --= -- for 0 < u < 1. 
a-cxo F(~) 1- U 

To check this write 

F(u) auh(a) 

F(~) = h((au + 1- u)/ au) 

and apply the result of Step 1. 
Step 3. 

lim f 1 

F( ~) = oo. 
a-oo 0 F(2) 

The proof follows from Step 2 and Fatou's lemma, since J~ [u/(1- u)] du 

= oo. D 
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In retrospect, it is not too surprising that preliminary numerical evidence would 
appear to support the incorrect Conjecture 3.2. The quenched and annealed pro­
cedures agree up to the first stage, n = 1. But most of the converging has already 
occurred by that stage, since if a/ b = 2112 for example, then EA(l) = EC(l) = 
1.2071 .... The rest of the procedures will only change the expected values in the 
third decimal place. Therefore one should expect EX- EY to be quite small, though 
not necessarily equal to zero. 

Proofs or disproofs of any of the remaining conjectures would be welcome. 
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