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Comment: Partially Observed Markov Chains 
and Genetic Demography 
Joel E. Cohen · 

1. INTRODUCTION 

Stochastic population models based on branching 
processes have progressed from single-type models 
to multi-type models. Jagers gives a marvellously 
elegant, succinct and insightful synthesis of this 
progress. To stimulate further progress, I wish to 
draw attention to two (of the many) questions that 
remain open. First, how should a population's dy­
namics be described when the population has unob­
served heterogeneity, that is, when it contains more 
types than an observer distinguishes? Second, how 
can one understand the long-run behavior of simple 
nonlinear models that accommodate genetic and 
demographic processes? Specifically, how can one 
determine when the asymptotic or stable composi­
tion of a multi-type population does or does not 
depend on the initial composition of the population? 

2. UNOBSERVED HETEROGENEITY 

To take a simple case, suppose a population con­
tains just two types each with its own distinct life 
law, in Jagers' terminology (demographers may in­
terpret life law to ~ean the net fertility function). 
If the observer does not distinguish the two types, 
but instead counts all individuals as belonging to a 
single type, the total population size is no longer 
Markovian. Future change depends, not only on 
the present total population size, but also on the 
(unobserved) numbers of individuals of each type. 

More generally, suppose a population contains a 
large number of types with distinct life laws, which 
'an observer crudely partitions into a small number 
of 'distinguishable types. For example, a typical 
human being's DNA has three billion or so base 
pairs. Except for identical twins, any two individu­
als are genetically distinct and could have distinct 
life laws. The genetic markers currently available 
to distinguish among genotypes are relatively few. 
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The situation where the life law depends on many 
individual characteristics that are inaccessible to 
the observer is probably the generic situation in 
biological population growth (as opposed to neutron 
cascades, for example, where the homogeneity of 
the reproducing particles is plausible). Hence it 
seems highly desirable to develop theory for this 
situation. 

A partially observed Markov chain or process, 
sometimes also called a hidden Markov chain or a 
lumped Markov chain, is a special case of a random 
system with complete connections (RSCC). There is 
a well-developed theory of RSCCs, which is at last 
available in an up-to-date, detailed exposition in 
English (Iosifescu and Grigorescu, 1990). I believe 
the development and application of the theory of 
RSCCs for population growth with unobserved het­
erogeneity remains for the future. What are the 
analogs of Jagers' theorems in this situation? 

3. GENETIC DEMOGRAPHY 

Two of the main branches of biological popula­
tion modeling are stable population theory (the 
demographic theory of age-structured populations) 
and Mendelian population genetics. In stable popu­
lation theory, as in the models Jagers describes, 
only the female population is modeled. Interactions 
between the sexes are ignored. In the Mendelian 
genetics of diploid organisms, the genetic contribu­
tion of each parent is crucial. 

Even for very large populations, where stochastic 
effects play no role or are ignored, the demographic 
and Mendelian models differ strikingly. Under rea­
sonable assumptions, in stable population theory, 
the age-composition of a population approaches a 
limiting composition that is independent of initial 
(demographic) conditions, whereas the genotypic 
composition of a Mendelian population approaches 
a limiting composition that depends on initial 
(genetic) conditions. How are these two modes of 
behavior reconciled when the two models are com­
bined (e.g., Norton, 1928; Charlesworth, 1980)? 

To be specific (Charlesworth, 1980; Orzack, 
1985), consider a hypothetical population with two 
age groups, young (group 1) and old (group 2), 
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genetically differentiated at a single locus with two 
alleles, B and b. An individual receives one allele 
from each parent, so there are three genotypes BB, 
Bb and bb, and we use the dummy variable g to 
denote any of these. Let L( g) be the so-called Leslie 
matrix of genotype g: 

{3.1) 

where m;(g) is the effective fertility (measured in 
gametes, not in zygotes) of the ith age group and 
l 1(g) is the probability that an individual of age 1 
survives one unit of time to become age 2, for 
genotype g. The vital rates (i.e., the elements of 
L(g)) are assumed to be identical for both sexes of 
genotype g. Fort = 0, 1, 2, ... , let X(g, t) be the 
population vector, that is, the number of individu­
als by age group, of genotype g: 

(3.2) 

Let the total number of gametes produced between 
t and t + 1 be 

G(t + 1) = (L(BB)X(BB, t)) 1 

{3.3) +(L(Bb)X(Bb, t)) 1 

+(L(bb)X(bb, t)) 1 . 

Then the frequencies P(B, t + 1) and P(b, t + 1) of 
alleles Band b, respectively, among these gametes 
are 

P(B, t + 1) 

2(L(BB)X(BB, t)) 1 + (L(Bb)X(Bb, t)) 1 

{3.4) 2G(t + 1) 

P(b,t+ 1) = 1- P(B,t+ 1). 

Assuming that the gametes mate to form zygotes at 
' random, and that there are no stochastic deviations 

from expected values, the numbers of young of 
genotype g at time t + 1 is taken as 

{3.5) 

X 1(BB,t+ 1) 

= P 2 (B, t + 1}G{t + 1), 

X 1(Bb,t+ 1) 

= 2P(B, t + 1)P(b, t + 1}G(t + 1), 

X 1(bb,t+ 1) 

= P 2 (b, t + 1}G{t + 1). 

Age group 2 at t + 1 consists of the survivors of the 
young at time t: 

X 2 (g,t+ 1) = (L(g)X(g,t)) 2 

= l1(g)X1(g, t), 
{3.6) 

for all genotypes g. Thus the population vectors 
X(g, t + 1) are completely specified by the popula­
tion vectors X(g, t) at the preceding time and by 
the Leslie matrices L(g). 

The model specified by (3.1)-(3.6), together with 
initial conditions X(g, 0), g = BB, Bb, bb, includes 
as special cases both the classical model of popula­
tion genetics for one locus with two alleles in a 
large, randomly mating population with no migra­
tion, mutation or drift, and the classical model of 
stable population theory for a genetically undiffer­
entiated, large, closed, age-structured population. 

To reduce this model to the population genetics 
model, let X1(g, 0) > 0, X2(g, 0) = l 1(g) = 0, for 
all g. Then the population contains young indi­
viduals only, and the so-called fitness of genotype 
g is given by m 1(g). Let all genotypes have pos­
itive fitness equal to some constant m, so that 
m 1(BB) = m 1(Bb) = m 1(bb) = m > 0. Then, from 
t = 1 onward, the population is in Hardy-Weinberg 
equilibrium. The gene frequencies P(B, t) and 
P( b, t) are constant, 

2X1(BB,O) + X 1(Bb,O) 
{3.7) P(B, t) = 2X{O) ' 

t = 1,2, ... ' 

where X(t) = 'Lg[X1(g, t) + X2(g, t)] is the total 
population size (in this case, young individuals only) 
at time t, and the. proportions of all young that are 
of each genotype are constant as the absolute num­
bers and total population size change exponen­
tially: 

X 1(BB, t) = P 2 (B, 1)mtx(o), 

X 1(Bb, t) = 2P(B, 1)P{ b, 1)mtX(O), 
(3.B) X1( bb, t) = P2 { b, 1)mtX(O), 

X(t) = mtX(O), t = 1,2, .... 

The key point is that the proportions of the popu­
lation belonging to each genotype stabilize from 
t = 1 onward at an equilibrium that depends on the 
initial genetic composition of the population 
through (3.7). 

To reduce the model (3.1)-(3.6) to the classi­
cal model of stable population theory with two 
age classes, take L(Bb) = L(bb) = 0 or X(Bb) = 
X( bb) = 0 or both, thereby eliminating genetic het­
erogeneity from t = 1 onward, and take m 1(BB) > 
0, m 2 (BB) > 0, l1(BB) > 0, X 1(BB, 0) > 0, X 2(BB, 
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0) > 0. Then P(B, t) = 1 for t = 1, 2, ... and the 
theory of stable populations (the Perron-Frobenius 
theory of primitive_ matrices in demographic dis­
guise) guarantees that 

(3.9) 

X;(BB, t) 
lim = Y;. 
t--->oo X(t) 

X(t) 
lim --t- =constant, 
t--->oo p 

i = 1,2, 

where p > 0 is the eigenvalue of L(BB) of maximal 
modulus, and y is the corresponding eigenvector, 
with positive elements y1 and y 2 normalized so 
that y1 + y 2 = 1. Asymptotically the absolute 
numbers of young and old and the total population 
size change exponentially, all at the same rate. 

Here the key point is that the equilibria! frac­
tions y1 and y 2 of young and old depend only on 
L(BB) and are independent of the initial demo­
graphic composition of the population (provided the 
initial population is not zero). 

What happens when all the parameters of the 
full model are nonzero? It appears that nobody 
knows. In numerical simulations that allowed the 
Leslie matrices L(g, t) to vary randomly in time, 
Orzack (1985, page 559) assumed that the model 

Comment 
Peter Donnelly 

What a pleasure it is to see outlined one of 
the principal goals in applied probability, the elu­
cidation of the structure common to a range of 
models that enjoy certain basic properties, followed 
by an exhilarating tour through that structure 
in the case in which the basic property is that of 
branching. 

, The application of these models in the context of 
genetics serves several purposes. On one level, it 
broadens our understanding of evolution, in this 
case through the illumination of a collection of 
conditions that are consistent with the molecular 
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"represents an ergodic process, [so that] numerical 
analysis consisted of examining the long-run be­
havior of a single sample path of the process." 
However, it is clear from the genetic submodel 
that, even with constant Leslie matrices, the model 
may not be ergodic in Orzack's sense, in that the 
long-run behavior may depend on initial condi­
tions. My own numerical calculations of the full 
model with time-invariant parameters show that 
sometimes the asymptotic composition of the popu­
lation depends on the initial conditions, and some­
times is independent of initial conditions. Still other 
forms of behavior are not yet excluded. Specifying 
the regions of the parameter space that give the 
various forms of behavior seems to be a challenging 
task. 

Small-population versions of this model would 
describe the production and the pairing of gametes 
and the survival of young as stochastic processes. 
Similar questions arise, in addition to the problem 
of characterizing the probabilities of extinction. 
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clock hypothesis. More generally, the contrast be­
tween the structure of the branching process mod­
els and that of more traditional population genetics 
models highlights the features of the latter which 
are fundamental consequences of the correlations 
in offspring numbers that arise through constraints 
on total population sizes. 

THE STRUCTURE OF GENETICS MODELS 

In the neutral case, the structure of population 
genetics models is now well understood. In a popu­
lation of fixed size N, which evolves in nonoverlap­
ping generations, we could describe a specific model 
for the way in which the population reproduces by 
randomly labeling the individuals in a particular 
generation and specifying the joint distribution of 
the random variables v1, v2 , ••• , vN, where P; is the 
number of offspring born to the ith individual. The 
random variables { v;} will be exchangeable, and 




