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ABSTRACT 

Based on computer simulations, Kauffman (Physica D, 10, 145-156, 1984) made several 
generalizations about a random Boolean cellular automaton which he invented as a model 
of cellular metabolism. Here we give the first rigorous proofs of two of Kauffman's 
generalizations: a large fraction of vertices stabilize quickly, consequently the length of 
cycles in the automaton's behavior is small compared to that of a random mapping with the 
same number of states; and reversal of the states of a large fraction of the vertices does not 
affect the cycle to which the automaton moves. 

1. INTRODUCTION 

As a model of cellular metabolism, Kauffman [5-7] introduced a random Boolean 
cellular automaton, which will be described formally below. On the basis of 
extensive computer simulations, he made several empirical generalizations about 
the behavior of this model. Here we prove two of Kauffman's generalizations. To 
our knowledge, these are the first rigorous results proved about Kauffman's 
model. 

Let D = D(n) be a directed graph (digraph) on the vertex set [ n] = 

{ 1, 2, ... , n}, each vertex of which has indegree two, and let b = ( b 1 , .•. , b J be 
a vector consisting of n two-argument Boolean functions. Define a function 
cp = cp(D, b) on the space {0, 1r of all 0-1 vectors of length n by putting for 
every X= (x1 , ... , xn) E {0, 1r 
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where Y; = b;(x;, x';) and x;, x'; denote the two inneighbors of X; in D. Sometimes 
we shall write the value of vertex v of cp(x) as cp(x)(v). Now introduce discrete 
"time" t by defining cp1 = cp, cpt+ 1 = cp(cp1). Since the space of all possible states is 
finite, for every initial vector x, the system must end up in a cycle, i.e., there is a 
natural number c such that 

3 T, Vt > T: cPt+c(x) = cP1(x) . 

The smallest possible c and T with this property we denote by c(D, b, x) and 
T(D, b, x). 

In this article we estimate the value of c(D, b, i) where f5 is picked at rand_gm 
from the family of all ( n 21 f 2-indegree regular digraphs D on n vertices, b is 
chosen from all 16n possible vectors b, and an initial state i is picked at random 
from all 2n possibilities x. Thus (D, b, i) with superior tildes denotes a random 
Boolean cellular automaton, while (D, b, x) without tildes denotes a particular 
one of these. 

Kauffman [5-7] performed numerical simulations of this model. He summar­
ized his results as follows [7, pp. 151-152]: 

"1) Simulation results with n ranging up to 8,000 reveal that median state cycle 
lengths increase roughly as n112

• Thus, an automaton with 10,000 binary variables 
and 210

'
000 = 103000 states, typically settles down and cycles among a mere 100 

states. That is, dynamical behavior is localized to attractors occupying a small 
subvolume e.g. 10-2998 of the state space. 

"2) The number of distinct state cycles also increases approximately as n 112
• 

Hence an automaton with 10,000 binary variables would typically have on the 
order of 100 state cycle attractors, each lying in its distinct basin of attraction. 

"3) A large fraction of the binary variables, 60%-80% typically fall to fixed 
active (1) or inactive (0) values and maintain the same values on all state cycles. 
Consequently, states on any state cycle are similar to one another and states on 
different state cycles are less, but again fairly similar to one another. Typical 
mean Hamming distances between members of distinct state cycles is about 
1-10%. 

"4) Each state cycle is typically stable to 80-95% of the possible minimal 
perturbations, reversing the value of any single variable at a time. 

"5) After some such minimal perturbations, the automaton undergoes a 
transition from one state cycle to another. Typically, any state cycle can 'reach' 
only a few neighboring state cycles by such minimum perturbations. A 'reachabili­
ty' matrix showing which cycles have access to which cycles therefore typically 
exhibits few transitions from each cycle, to a restricted number of neighboring 
state cycles. In addition, the 'reachability' matrix typically exhibits ergodic subsets 
of state cycles which can be reached by cycles outside the subset, but, once the 
automaton is within the ergodic subset of cycles, it is trapped and flows prob­
abilistically among them, as driven by random minimal perturbations." 
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This behavior differs substantially from the behavior of a system of 2n states in 
which each state chooses the next one at random [1, paragraph XIV.5]. It is well 
known that for such a system the expected length of a cycle is of the order 2n 12

, 

far longer than the cycle length in Kauffman's simulations. Moreover, if each 
state is represented as a binary n-vector, then a change in a single element (bit) of 
the state vector is likely to move the system into the domain of attraction of a 
different cycle, again differing from Kauffman's simulations. 

Although we are not able to give a full analysis of the behavior of CD, b), as 
described in Kauffman's 1)-5), we shall give rigorous mathematical arguments 
that explain phenomena 3) and 4 ). We shall deduce then (in the Corollary stated 
at the end of this introduction) that log c(D, b, i) is of order less than n, i.e., the 
length of cycles of Kauffman's model is much smaller than the length of cycles in 
a system in which consecutive states are chosen at random. 

To state our results precisely, we introduce some notation and definitions. We 
say that vertex v of the system ( D, b) stabilizes in time l if v does not change its 
value after l steps independently of the value of the initial vector, i.e., either 

Vx, Vt > 1: <Mx)(v) = 1 

or 

Vx, Vt > 1: <Mx)(v) = 0. 

Moreover, we say that vertex i is weak if the value of the initial state in this vertex 
does not affect the asymptotic behavior of the system, i.e., if for an initial state 
X= (x1, ... , Xn) by Xi We denote (Xp ... , 1- X;, ... , Xn) then 

Clearly, from the definition of a weak vertex, it follows that one can switch the 
value of such a vertex at any time without changing the cycle that the system will 
finally enter. 

Our main results, which follow, hold for every initial state x, not merely for 
almost all initial states. In this sense, our results are stronger than the simulation 
results of Kauffman [5-7]. 

Theorem 1. Let w(n)~ oo arbitrarily slowly. Then as n~ oo, the probability tends 
to 1 that at least n( 1 - w( n) I (log n)) vertices of ( D, b) stabilize after time less than 
(log n) /3. 

Theorem 2._ f::-et w(n) ~ oo arbitrarily slowly. Then as n ~ oo, the probability tends 
to 1 that (D, b) contains at least n(l-w(n)/(loglogn)) weak vertices. 

From Theorem 1 one can get an upper bound for c(D, b, i). 

Corollary. Let w(n)~oo arbitrarily slowly. Then as n~oo, the probability tends 
to 1 that for all initial states x, we have 
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- - (nw(n)) 
c(D, b, x) ::5 exp log n . 

We defer the proof of the corollary until after the proof of Theorem 1. 
Interesting modifications of Kauffman's model, such as K-argument Boolean 

functions of K inneighbors (K ""'2), and an annealed version in which the Boolean 
functions are randomly chosen at each time step, rather than once and for all, 
have been proposed and insightfully analyzed by, e.g., Derrida and Pomeau [3] 
and Derrida and Weisbuch [4]. See Derrida [2] for a review. 

2. PROOF OF THEOREM 1 

For vertex v of a digraph D, let N~(v) = {v} and let N;-+ 1(v) denote the set of all 
inneighbors of N; (v). Furthermore, set 

i 

S;-(v) = U Nj(v). 
j=O 

Then, for every vertex v, IS~(v)l = 1, IS~(v)l = 3 and 

i 

IS; (v)l ::5 L 2j ::5 zi+l- 1. 
j=O 

The following fact is crucial for our argument. 

Lemma 1. Let v be a fixed vertex of f5 such that the subgraph induced in an 
underlying multigraph of f5 by S; ( v) contains no cycles. Then the probability that 
v stabilizes in at most I steps is larger than 1-8/1. 

Proof. Let p 1 denote the probability that v does not stabilize by (up to and 
including) time I, p 1 ::58/l. We shall find a recurrence formula for p 1+ 1 • If both 
inputs of v have stabilized in I steps, then clearly v stabilizes in I+ 1 steps no 
matter what Boolean function is placed in it. Since S ,-+ 1 ( v) does not contain 
cycles, stabilization of one input in I steps is independent of stabilization in the 
other input. When neither of the inputs stabilizes in I steps, which happens with 
probability p~, then the Boolean function in v must be different from tautology 
(all 1's as output) and contradiction (all O's as output) and the probability of such 
an event equals 7 I 8. Finally, when exactly one of the inneighbors of v stabilizes in 
I steps (an event with probability 2p1(l- p1)), then the behavior of v must be 
determined by the behavior of the nonstabilized inneighbor of v and must not be 
a constant function of the nonstabilized inneighbor of v; hence the probability of 
the event that v does not stabilize is the same as the probability that the value of a 
Boolean function of one argument depends on the argument, namely that the 
Boolean function is not identity or negation; this probability equals 1/2. Thus 

and clearly Po = 7/8. 

Pt+l = (7 18)p7 + p 1(l- pJ 

= P1 - (1 18)p~ 
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We show that p 1 :::::: 8//::::::1 for all l ~ 8 by induction: 

1 2 8 8 8(1- 1) 
Pt+l =Pi- 8 Pi ::5 I - f = /2 ::5 8/(l + 1) 0 • 

Ill the proof of Theorem 1 we shall need the following fact about the structure 
of D. 

Fact. With probability tending to 1 as n ~ oo, the number of vertices of jj which 
belong to cycles of length less than (2/3) log n in the underlying multigraph of D 
is smaller than n°. 94

• 

Proof of Fact. Let N = L(2/3) log nJ, the greatest integer less than or equal to 
(2/3) log n. Let X be the number of vertices of D contained in cycles of length k, 
k = 2, 3, ... , N, in the underlying multigraph of D. Then, for k = 2, 3, ... , N, 

the k vertices of a k-cycle can be chosen in ( ~) ways; from these k vertices, an 

undirected cycle can be constructed in (k- 1)! /2 ways if k:::::: 3 and one way when 
k = 2; each such cycle contains k vertices; and the probability that all the k 
undirected edges in the underlying multigraph are present is the kth power of 2 
times the probability that an arrow in either direction between two of the chosen 

vertices is present in D, and the latter probability is just (n- 2)/( n; 
1 

). Thus, 
for the expectation of X we get 

For large n, since k:::::: (2/3) log n ~ n, we have 

N 

EX:::::: 8 + L 4k:::::: 4(2t3Jtog n+2 = 16 . n<2t3Jtog 4:::::: no.93. 
k~3 

Thus, from Markov's inequality, P(X ~ n°. 94
):::::: n -o.ot ~ 0. • 

Proof of Theorem 1. Let Y count vertices in D which do not belong to cycles of 
length less than (2/3) log n in the underlying multigraph of jj and do not stabilize 
by time (1/3) log n. Then the expectation of Y, due to the Lemma, can be 
estimated from above by 

8 24n 
EY :::::: n · ( 1 I 3) log n log n 

so, using Markov's inequality, we get 

P(Y> nw(n)) < ~~o 
- 2log n - w(n) · 
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Hence, due to the Fact, at least 

nw(n) 0 .94 nw(n) 
n----n 2:n---

2log n log n 

vertices stabilize in at most (113) log n steps. • 
Proof of Corollary to Theorem 1. Theorem 1 implies that, with probability 
1 - o( 1), at most nw( n) I log n vertices of ( jj, b) do not stabilize after time less 
than ( 1 I 3) log n, where w( n) ~ oo as n ~ oo. The maximum cycle length is 
bounded by the maximum number of states these nonstabilized vertices can 
specify, i.e., for every x 

c(i5, E, x) :5 znw(n)llog n :5 exp( ~:~~) . • 

3. PROOF OF THEOREM 2 

Let N; ( v) = { v} and Nt+ 1 ( v) be the set of all outneighbors of vertices in N;+ ( v). 
Moreover, let 

S;+(v) = U N7(v). 
j~O 

This construction is analogous to that for inneighbors in the previous section. The 
result corresponding to Lemma 1 is: 

Lemma 2. Let v be a vertex such that the sub graph induced by S 1+ ( v) in the 
underlying multigraph of jj contains no cycles. Then the probability ft that a 
change of state of v affects the state of some vertex in Nt(v) is smaller than 211. 

Proof of Lemma 2. The probability that fixed vertex v has exactly k outneighbors 
is given by 

Thus, since for k 2: log n this probability is of order less than n -z, with 
probability 1- o(1) all vertices of jj have less than log n outneighbors, and for a 
fixed vertex v and all k, 0:5 k :5log n we have 

(*) 
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Now we find a recurrence formula for 1- ft+ 1 i.e., the probability that a 
change of the state of vertex v does not affect any vertex from N(+1(v). Choose a 
vertex wE N7(v). With probability 1/2 the Boolean function placed in w just 
ignores the state of v; and, when it is "sensitive" to it, with probability 1 - ft the 
change of state of w will not be transmitted further than l steps ahead. Thus, 
combining this with ( *) gives 

[lognJ( 1 1 )k + 

1- ft+1 = ;;o 2 + 2 (1-ft) P{IN1 (v)l = k} 

= e-2 ~ (2 ~()k + O(n- 1(log n)2
) 

= exp(-ft) + O(n-1(log n)2
). 

Hence 

where, of course, fo ::51. 
In fact, ft ::52 I l for l 2: 2, because 

ft+ 1 = 1- exp(-[;) + O(n -\log n)2
) 

::5 1 - 1 + £ - f~ + fi 
11 2 6 

2 2 4 2 3[ 2 
- 3[ + 2 

<---+-=-·---,---
- t t 2 3t 3 t 3t 2 

2 ( [- 2) 2 
=[+1 1 -3[3 ::5[+1" • 

Proof of Theorem 2. Let Z count the vertices v which do not lie on cycles of 
length less than 2log log n and the state of which affects some vertices from 
N~ogtognJ(v). Then, due to Lemma 2, 

2 
EZ::::;n --­

log log n 

Hence, Markov's inequality implies that 

2n 
log log n · 

P{z nw(n) } 4 
0 > <--~ 

2log log n - w(n) · 

Moreover, from the Fact and Theorem 1 we know that, with probability 
1- o(1), fewer than u = 2nw(n) flog n vertices of the system either do not 
stabilize in time (1/3) log n or belong to cycles of length less than 2log log n. 
Thus, the number of vertices from which these vertices can be reached in less than 
log log n steps is less than 
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llog log nJ 

u L i ~ u 0 iog log n +I ~ n 
;~o log log n 

provided we choose w(n) ~log log n. Thus, with probability 1- o(l), the system 
CD, b) contains at least 

n w(n)n nw(n) 
n- - >n-

log log n 2 log log n - log log n 

vertices v such that changing the state of v can affect only vertices which stabilize 
quickly and so cannot change the cycle the system enters. • 
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