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~1etapopulation dinrsity patterns depend on the relations among the timescales of local biological 
interactions 'predation. competition', the rates of dispersal among local populations and the 
patterns of disturbance. \\"c inYestigate these relationships using a family of simple non-linear 
~farko\" chain models. We consider three models for imerspecific competition; if the species are 
identified with early and late successional species, the models describe the facilitation, inhibition and 
tolerance models of ecological succession. BY adding a third competing species we also compare 
transltin competitin hierarchies and intransiti,·e competiti,·e networks. FinallY. we examine the 
effects of predation in mediating coexistence among competing prey species. In each model we find 
circumstances in which biotic or abiotic disturbance can increase both local and regional diYersity, 
but those circumstances depend on the ,-arious timescalcs in the model in ways that are neither 
obYious nor triYial. 
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The distinction between the metapopulation and the local populations that 
constitute it implies that metapopulation models must include at least two spatial 
scales, and must find a way to link processes taking place at these scales. In this 
paper we present a simple modelling framework to do this, and use it to explore 
the relationships between disturbance and diversity. 'Ve will consider both biotic 
and abiotic disturbance, and both local and regional species diversity. The 
models we use can describe many different ecological situations; we will use them 
here to examine alternative mechanisms of succession, transitive and intransitive 
competitive relations and predator-mediated coexistence. 

Theories of ecological diYersity have traditionally been based on results about 
species coexistence. Because of the multiscale organization of metapopulations, 
coexistence at the regional level may result from mechanisms which do not af>f:}ly 
to local. populations. In particular, in metapopulations th'e Interaction of 
competition and disturbance can maintain fugitive or non-equilibrium species 
(Hutchinson, 1951, 1953) which persist regionally even though they are 
excluded locally whenever they come into contact with superior competitors. 
Ricklefs ( 1987) has emphasized the importance of distinguishing regional and 
local processes in the determination of diversity patterns. 

'Vhat proportion of the species in a community are fugitives is not easy to 
determine, but in some cases it may be large. Hartshorn (1980), for example, 
found that more than two-thirds of the canopy and sub-canopy trees in a diverse 
tropical lowland forest in Costa Rica require treefall gaps for regeneration, and 
presumably could not persist in the absence of this type of disturbance. In some 
rocky intertidal areas, predatory starfish are an important agent of disturbance. 
Exclusion of these predators resulted in the rapid loss of 50% of the sessile 
invertebrate species in a study in Washington (Paine, 1966) and 33% of the 
species in a similar study in New Zealand (Paine, 1971). These may or may not 
be extreme cases, but it seems unwise to assume that fugitive species are a 
minority. 

The interaction of disturbance and competltwn in metapopulations also 
suggests that species diversity will be maximized at intermediate disturbance 
frequencies (Connell, 1978; Huston, 1979). If disturbance is too rare, local 
competition will proceed to equilibrium and fugitive species will be eliminated. 
If disturbance is too frequent, it will eliminate fugitive and equilibrium species 
alike. At intermediate frequencies, the combination of fugitive species and 
equilibrium species produces a maximum in species diversity. This effect has 
been documented in hard substrate marine benthic communities (e.g. Dayton, 
1971; Osman, 1977; Connell, 1978; Sousa, 1979a; Dethier, 1984 and many 
others). 

The common denominator among these examples is the suggestion that 
coexistence and diversity in metapopulations are determined by the interaction 
of rates operating on several scales-competition (and other interspecific 
interactions) within patches, dispersal among patches and disturbance operating 
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across a landscape ofpatches. To explore these relations, we examine a family of 
simple models in which these rates appear explicitly. 

The model 

We describe our metapopulations using a patch-occupancy model formulated 
as a non-linear Markov chain (for more details see Caswell & Cohen, 1990). Our 
approach is to specify the rates of local processes, to transform those rates into 
rates of transition among local patch states, and then to infer from those rates the 
dynamics of a regional distribution of patch states. 

Consider an effectively infinite set of effectively identical patches. This 
landscape is inhabitated by n species, S1, ••• , S". The state of a patch is defined 
by the presence and absence of the species; there are 2" possible patch states. 
These states can be numbered by letting 0 denote absence and 1 denote 
presence, and then adding 1 to the resulting binary number. For example, if 
n = 2, the possible states are 

s2 sl State 

0 0 1 
0 1 2 
1 0 3 
1 1 4 

\Ve assume that the state of the metapopulation as a whole is given by a vector 
x whose entries X; give the proportion of patches in state i, i = I, ... ,2". The 
state of a patch changes as a result of within-patch interactions, disturbance and 
colonization from other patches. The transition probabilities among patch states 
will depend on the state of the entire meta population, because colonization rates 
depend on the abundance of the colonizing species. The resulting dynamics are 
given by a (non-linear) Markov chain 

x(t+ 1) = A,.x ( 1) 

the trans1t10n matrix for which (Ax) is obtained from hypotheses about the 
timescales of disturbance, colonization, and interspecific interaction (Caswell & 
Cohen, 1990). In the next sections, we develop the transition matrices for a 
variety of different ecological models. 

Patch occupancy models are commonly used to describe metapopulation 
dynamics (e.g. Cohen, 1970; Levins, 1970; Slatkin, 1974; Caswell, 1978; 
Crowley, 1979; Hastings, 1978; Hanski, 1983). They make several important 
simplifying assumptions. First, by ignoring within-patch population dynamics, 
they implicitly assume that the timescale of those dynamics is faster than the 
other timescales in the population. Second, the use of x as a state variable 
explicitly assumes that the spatial arrangement of the patches is of no 
importance; this rules out strong local interactions among patches ( cf. Caswell & 
John, 1990 for a discussion ofthe effect oflocal interactions on the choice of state 
variables). Put another way, these models are limited to consideration of only two 
spatial scales-that of the local, within-patch population and that of the regional 
metapopulation. Only the development of comparable spatially explicit 
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metapopulation models will renal how important these limitations are (Caswell, 
unpublished). For the present, we investigate these models as an improvement 
over local populations which consider only a single spatial scale. 

Since equation ( 1) is a non-linear map, it is a priori capable of a variety of 
dynamics, including stable fixed points, oscillations, quasiperiodic orbits and 
chaos. Analytical results on these models are difficult to obtain, but our extensive 
numerical analyses have revealed only convergence to unique, globally stable 
equilibria. In this paper, we focus our attention on these equilibria and leave the 
possibility of more interesting dynamics as an open problem. 

Convergence of the metapopulation to a stable equilibrium probability 
distribution x (satisfying x = Aix) does not imply that any patch attains 
equilibrium. Indeed, one of the advantages of formulating the model as a 
Marko\· chain is that one can examine the temporal variability at the patch level 
\vhile the landscape is at equilibrium (Caswell & Cohen, 1990). 

From the equilibrium probability distribution :X a variety of indices of 
community structure can be calculated. Here we will focus on 

1. The frequency (};) of occurrence of each species. In the two species gse, 
f.. = x2 + x4 and .h = x3 + x4• 

2. The local or alpha di,·ersity, gh·en by the expected number of species per 
patch. In the two-species case, IX = x2 + x3 + 2x4• 

3. Between-patch, or beta diversity, which measures the change in species 
composition that would be observed along a transect or gradient across the 
landscape. Since there are no actual gradients on our landscape, beta diversity 
can be simply measured by the entropy of the vector :X: 

fJ = - LX; log X; (2) 

Beta diversity is at a minimum when all patches contain the same set of species; 
it is maximized when all different patch types are equally abundant. '"'e also 
calculate biological beta diversity by excluding empty patches: 

[Jb =- f (L/:S xlog Lz:' x) 
s=2 u=2 J y=2 .I 

(3) 

Because fJ and [Jb are highly correlated we report only the results for [Jh here. 
Examination of other community properties, including association patterns, 

turnover rates, and species-area relations appear elsewhere (Caswell & Cohen, 
1990). 

C0:\1PETITION A:\'D ECOLOGICAL SCCCESSJON 

Connell & Slatyer ( 1977) identified three major types of ecological succession: 
facilitation, inhibition and tolerance. In each type, late successional species 
eventually replace early successional species. The types differ, however, in the 
effects of interspecific interactions on colonization. In facilitation, the later 
species can colonize a patch only after the early species have rendered the 
environmental conditions suitable for them. In the inhibition model, the later 
species do not require the early species to facilitate their entry into an empty 
patch, and either species can prevent colonization by the other; thus colonization 
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occurs only into newly disturbed patches. Finally, the tolerance model supposes 
that either early or late species can colonize an empty patch, and that the 
sequence of early to late species is determined by their relative abilities to 
tolerate the reduction in resource levels that occurs as the populations grow. 

Gallagher, Jumars & Trueblood (1983) and Turner (1983a) have recently 
reviewed experimental evidence on successional mechanisms in marine benthic 
systems. Both facilitation (e.g. Osman & Haugsness, 1981; Turner, 1983a; Harris 
et al., 1984; Gallagher et al., 1983) and inhibition (e.g. Sutherland & Karlson, 
1977; Sousa, 1979b) have been clearly documented. There is less evidence for 
tolerance (McCall, 1977), perhaps because it lies so closely in the middle of the 
other two mechanisms. 

No formal theory corresponding to the verbal models of Connell & Slatyer 
( 1977) seems to have been developed. Here we use models for colonization and 
competition of two species as metaphors for succession, with one species 
representing 'early' and one species 'late' successional species. 

Afodels for facilitation, inhibition and tolerance 

We begin with a simple model for tolerance. Suppose that S1 is the ;;thin
patch winner ( = late successional species) and S2 the loser. The rate of 
competitive exclusion of s2 by sl is characterized by the exclusion probability 
0::;; Pc::;; I. Patches are subject to a disturbance characterized by the disturbance 
probability 0 ::;; pd::;; I, which applies to each patch independently. Disturbance 
eliminates all species and returns the patch to the empty state. 

We suppose that dispersal of propagules is random (so there are no 
neighbourhood effects), and that the mean number of propagules of S; arriving 
at a patch is directly proportional to the frequency of patches containing S;. 
Then the probability of the arri\'al of at least one propagule of S; is, according to 
the Poisson distribution, 

C; = 1- exp ( -dJ;) (4) 

where d; is the dispersal coefficient and}; the frequency of species i. 
The tolerance model assumes that S2 cannot colonize patches containing S~> 

whereas sl can colonize regardless of the presence of s2. 
The result of these hypotheses is a transition structure shown grapically m 

Fig. I. The corresponding transition matrix Ax is gi\'en by 

(

(l-CI)(l-C2) Pd Pd Pd ) 
CI(1-C2) 1-pd 0 (1-pd)Pc (5) 
(l-C1)C2 0 (l-C1)(1-pd) 0 

clc2 o C1(I-pd) (1-pd)(I-pJ 

A;.T) = 

where the C; are functions of x through ( 4). 
Models for facilitation and inhibition can be constructed in a similar manner. 

In the facilitation model, only the early successional species S2 can invade an 
empty patch. The later successional species S1 can invade a patch occupied by S2 
(but not vice versa), and eventually excludes it. 

In the inhibition model, an empty patch can be invaded by either or both 
species, but each species is able to prevent colonization by the other. Direct 
competitive exclusion occurs only when both species colonize a patch 



198 H. CAS\\'ELL AND J. E. COHEN 

c.(I-C,) 

(1-C,)(I-p,) 

Figure I. The transition graph for the two-species competition model (5), which also describes the 
tolerance model of succession. States are numbered as follows: I. empty; 2, S, only, 3, S2 only; 
4, both. The late successional species S1 is assumed to exclude the early successional species S2• State 
2, containing only S1, is the successional 'climax'. 

simultaneously, in which case the late successional species S1 eventually excludes 
S2• The graphs for the corresponding models of facilitation and inhibition are 
shown in Fig. 2. The corresponding matrices are 

A;,_Fi = 

pd 
0 

(1-CI)(l-pd) 
CI(l-pd) 

(6) 

(7) 

In a numerical experiment designed to explore the parameter spaces of these 
models, we calculated the metapopulation equilibrium x for each of the 120 
combinations of parameters 

dl E {1 ,10} 
d2 E { l, 10} 
p, E {0.01, 0.1, l} 
pd E { lO values, log-uniformly spaced between 0.001 and l} 

Our results, extracted from this series of simulations, are shown as a series of 
graphs, plotting output variables as functions of disturbance frequency pd, for 
different dispersal and competitive exclusion rates. 
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Pc(l-pd) 

Cz{I-Cil 

&~~ 
(I-C

1
)(1-pd) (1-pc)(l-pd) 

Figure 2. Transition graphs for the facilitation (left) and inhibition (right) models of succession. In 
each graph, S2 is the early and S1 the later successional species, and state 2 is the 'climax'. States are 
identified as in Fig. I. 
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The frequency}; of the winning competitor is shown in Fig. 3. In the,tol.ei'ance 
model,}; is independent of the losing competitor. In this model, 51 persists if and 
only if d1 > pd (Caswell & Cohen, unpublished). The equilibrium frequency of S1 

declines with increasing disturbance frequency. In the facilitation and inhibition 
models, there is some effect of 52 on 51• In both models,}; declines monotonically 
with pd. In the facilitation model, the decline is most rapid when the dispersal 
rate of the early successional species is low, since this reduces the ability of 51 to 
colonize. In the inhibition model, J; depends on both the absolute and relative 
dispersal rates. Given a sufficient dispersal advantage (d1 = I, d2 = I 0 in 
Fig. 3E,F), the losing competitor is capable of excluding the winning 
competitor; i.e.}; ~ 0. 

The frequency .h of the losing competitor is shown in Fig. 4. In the tolerance 
and facilitation models, 52 is a genuine fugitive species, and is unable to persist in 
the absence of disturbance. In the tolerance model, it appears that disturbance 
must exceed a critical frequency (pd ~ pc/d2 in these simulations) to permit.h > 0. 
The frequency of 52 eventually reaches a maximum at an intermediate 
disturbance frequency. The disturbance frequency which maximizes_h increases 
with increases in the rate of competitive exclusion. The facilitation model 
behaves similarly, except that_h is much less sensitive to variation in d2 than in 
the tolerance model. 

Note that in neither the tolerance nor the facilitation model does 52 require a 
dispersal advantage in order to persist. 

In the inhibition model, the early successional species persists only when 
d2 ~ d1 (Fig. 4E,F). When S2 has a dispersal advantage (d2 > d1), it declines in 
frequency with increasing pd, behaving in this regard like a competitive 
dominant rather than a fugitive species. When the dispersal rates are equal,_h is 
maximized at a disturbance frequency which increases with increasing p,. 

Alpha diversity 

Some combinations of competition, disturbance and dispersal result in 
enhanced local species diversity at intermediate disturbance frequencies (Fig. 5). 
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Figure 3. The equilibrium frequency f 1 of the winning competitor ( = late successional species) in 
three succession models, as functions of disturbance frequency (PJ), competith·e exclusion rate (A) 
and species dispersal rates (d1,d2 ,. Left column, p, = 0.01; right column p, = 0.1. A,B, Tolerance. 
C,D, Facilitation. E,F, Inhibition. • 1,1:0 1,10; • 10,1; ~ 10,10. 

In the tolerance model, diversity is enhanced by disturbance when either 
dispersal is rapid or competitive exclusion is slow. When competitive exclusion is 
slow enough, diversity is maximized when pd ~ lOpe (Fig. 5A). The diversity 
maximum disappears when dispersal rates are slow enough, and is less 
pronounced the more rapid the rate of competitive exclusion. 

As competitive exclusion rate increases, higher disturbance frequencies and 
higher dispersal rates are required for diversity enhancement. If dispersal rates 
are high enough, no dispersal advantage on the part of the losing competitor is 
required for diversity enhancement. 

Disturbance enhances alpha diversity in the facilitation model (Fig. 5C,D); 
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Inhibition 

0.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 

Inhibition 
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Figure 4. The equilibrium frequency h. of the losing competitor ( =early successional species) in 
three succession models, as functions of disturbance frequency (]J;), competitive exclusion rate (p,) 
and species dispersal rates (d1,d2). Left column, p, = 0.01; right column p, = 0.1. A,B, Tolerance. 
C,D, Facilitation. E,F, Inhibition .• 1.1; 0 I, 10; A 10, I;~ 10, 10. 

the extent of the enhancement and the disturbance frequency which maximizes 
diversity are nearly independent of dispersal. 

In the inhibition model, diversity 1s enhanced by disturbance only when 
d1 = d2• If either species has a dispersal advantage, the enhancement effect 
disappears; thus the alpha diversity curves for (dlld2) = (1, 10) and (d1,d2) = 
( 10, 1) coincide. 

The interaction of disturbance and dispersal rates is examined in more detail 
in Fig. 6, which shows contours of alpha diversity as a function of pd and d2/d1, for 
d1 = 1 and Pc = 0.01. A diversity maximum at intermediate disturbance 
frequencies can be seen for all values of d2/d1 in the facilitation model (Fig. 6B), 
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Figure 5. !\1ean alpha diversity in three succession models, as functions of disturbance frequency 
(p,), competitive exclusion rate !p,) and species dispersal rates (d1,d2). Left column, p, = 0.01; right 
columnp,=O.J. A,B, Tolerance. C,D, Facilitation. E,F, Inhibition. • 1,1; D 1,10; A 10,1; ~ 
10, 10. 

for d2/d1 ~ 1 in the inhibition model (Fig. 6C), and for d2/d1 ~ 1 in the tolerance 
model (Fig. 6A). 

Spatial heterogeneity 

The interaction of disturbance and compet1t10n in producing spatial 
heterogeneity, measured by {3b, is shown in Fig. 7. In the tolerance model, 
disturbance maintains beta diversity in all cases except when the early 
successional species is at a dispersal disadvantage. In the other cases, f3b increases 
with increasing disturbance rate, eventually reaching a maximum and declining. 



DISTURBANCE AJ\'D DIVERSITY 

:!i ..,N 
.3 -0.1 

-0.6 

A 
-I.OL_ _ _L __ j_j _ _L __ J.__..J_..J..._..Jl.._J.':-..1-'-:":::'-L..l...L:'-!:'-.I.W..U:!' 

-3.0 -2.7 -2.3 -2.0 -1.7 -1.3 -1.0 -0.7 -0.3 -0.0 

-0.6 

c 
-1.0 L_ _ _J... __ J._ _ _..J....J__J.......__J_..J..._..J...__JLL.J....LL.L.LI..l.l..L!JWWlll..J 

-3.0 -2.7 -2.3 -2.0 -1.7 -1.3 -1.0 -0.7 -0.3 0.0 
Log disturbance probability 

Figure 6. Contour plots of alpha diversity as a function of disturbance probability hand the relative 
dispersal rates dJd1 for the A, tolerance, B, facilitation, and C, inhibition models of succession. d1 = I 
and p, = 0.01 in all graphs. 
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Beta diversity in the facilitation model is nearly independent of dispersal rates; 
when the competitive exclusion rate is low (Fig. 7C) there is a suggestion of a 
bimodal response of {Jb to disturbance. In the inhibition model, significant beta 
diversity is maintained only when the two species have equal dispersal rates. 
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Figure 7. Biotic beta diversity in three succession models, as functions of disturbance frequency (pd ), 
competiti\·e exclusion rate (p,), and species dispersal rates (d1,d2). Left column, p, = 0.01; right 
column p, = 0.1. A,B, Tolerance. C,D, Facilitation. E,F, Inhibition. • I, I; 0 I, 10; t;, 10, I; ~ 
10, 10. 

Conclusions: The effects of successional mechanisms 

The differences among the facilitation, inhibition and tolerance models have 
implications for coexistence, species diversity and spatial heterogeneity. These 
are summarized in Table I. 

C0~1PETITIVE HIERARCHIES AI\'D I\'ETWORKS 

The distinction between competitive hierarchies and competitive networks 
was emphasized by Jackson & Buss (1975) and Buss & Jackson (1979) in their 
studies of allelopathy among coral reef invertebrates. The interactions m a 
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TABLE I. Properties of tolerance, facilitation and inhibition models of succession 

Variable Tolerance Facilitation Inhibition 

}; independent of S1 increases with increasing d2 > 0 only when d1 :2: d2 

]; requires Po> pjd2; intermediate maximum; weak > 0 when d2 :2: d1; 

intermediate maximum dependence on d, intermediate maximum 
when d2 :2: d1 when d1 ~ d2 

.\lpha intermediate maximum when intermediate maximum intermediate maximum when 
d2 > d1 regardless of d, d! ~ d2 

Beta > 0 if d2 :2: d1 always> 0 > 0 only when d1 ~ d2 

competitive hierarchy are transitiw, so that if sl excludes s2, and s2 excludes s3, 
then S1 also excludes S3• In a competitive network the interactions are 
intransitive (e.g. in the previous example, S3 excludes S1 ). Petraitis ( 1979) 
discusses the problem of measuring the degree of intransitivity in a multispecies 
system. Studies in several marine habitats have produced differing opinions on 
the occurrence of intransitive networks (Buss & Jackson, 1979; Quinn, 1982;  
Sebens, 1986; Todd & Turner, 1988). 

Our interest here is in the effects of intransitivity on diversity in 
metapopulations. Jackson & Buss (1975) suggested that competitive networks 
could enhance di\'ersity. Caswell ( 1978) viewed this as a special case of 
disturbance, in which the within-patch equilibrium is disturbed not by the 
abiotic environment but by the arrival of another competing species. Some 
simulation studies (Karlson & Jackson, 1981; Karlson & Buss, 1984) have 
suggested that intransitive networks can enhance diversity only under low 
disturbance rates. 

The model 

The simplest community capable of supporting both hierarchies and networks 
contains three species. 'Ve consider competing species S1, S2, S3• Let ' > ' denote 
'excludes'; then the hierarcy and network models are characterized by 

hierarchy sl > s2 > s3 and sl > s3 
network sl > s2 > s3 and sl < s3 

We shall assume (as in the tolerance model) that the presence of the wmner 
precludes colonization by the loser. Patch states are numbered 

S3 S2 S1 State 

0 0 0 1 
0 0 1 2 
0 1 0 3 
0 1 1 4 
1 0 0 5 
1 0 1 6 
1 1 0 7 
1 1 1 8 
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For simplicity we assume a common competitive exclusion rate p, for all three 
competitive interactions. \Ve also assume that, when all three species are present 
in a patch, the competitive interactions among them are independent. Thus, for 
example, a patch in state 8 in the network model has a probability p,( I-PY of 
moving to each of states, 4, 6 and 7 (exclusion of one species), a probability 
p;(l-pc) of moving to each of states 5, 3 and 2 (exclusion of two species), and a 
probability p; of moving to state 1 (exclusion of all three species). 

The transition matrices for the two models are given in Tables 2 and 3. 
To examine the effects of transitivity, we conducted a numerical experiment. 

\Ve set the dispersal rates of all three species equal, and varied the parameters in 
all possible combinations of the following values: 

d; E { 1 , 1 0} i = 1 , 2, 3 
p, E { 0.01, 0.1 0, 1.00} 
pd E { 10 values, log-uniformly spaced between 0.001 and I} 

The results for d; = 1 and d; = 10 will permit us to compare low-dispersal and 
high-dispersal communities; within each of these types of communities, we J4U 
examine the interaction between the rate of local competitive exclw;ion and the 
probability of disturbance. The results are shown in the next series of figures. 

Species frequencies 

The pattern of species frequencies in the hierarchy model (Fig. 8) is familiar 
from the tolerance model discussed abo\'e. The frequency f.. of the winning 
species declines as pd increases, reaching 0 when pd ~ d!. s2 and s3, which both 
lose in competition, beha\·e like the losing species in the tolerance model; their 
frequencies f.. are close to zero until the product PA > p" so that the frequency of 
disturbance required for coexistence is directly proportional to the rate of 
competitive exclusion. The frequencies}; andfs are maximized at intermediate 
disturbance frequencies, with the maximizing \'alues of pd proportional to the 
rate of competitive exclusion. 

The species frequencies in the network model respond quite differently 
(Fig. 9). Because of the symmetry in the competiti\'e relationships (each species 
excludes, and is excluded by, one other), j 1 = j 2 = j 3• At low dispersal rates, 
species frequencies decline with increasing disturbance probability. In high 
dispersal communities, frequencies are maximized at intermediate disturbance 
levels when competition is slow, and are independent of disturbance when 
competition is fast. Regardless of dispersal rates, species frequencies decline with 
increasing p,. 

Alpha diversity 

The response of local species diversity to disturbance for the two models is 
shown in Fig. l 0. In the competitive hierarchy, the response is much like that of 
the tolerance model. Alpha diversity is maximized at an intermediate 
disturbance frequency when dispersal rates are high and/or competitive 
exclusion rates are low. The disturbance frequency which maximizes diversity is 
proportional to p,. 

In a competitive network, when dispersal rates are low, oc declines with 



TABLE 2. Transition matrix lor three-species competitive network model 

2 3 4 5 6 7 8 

I (I-C1)(1-C2)(1-C3) "' p, ,,, p, p, p, p,+ (I - p,)p~ 
2 CI(I-C2)(1-CI) (1-p,)(I-Cj) 0 (1-p,)fl, 0 0 0 (1-p,)p;(l-p,) 
3 (I-C1)C2(1-C3) 0 (l-p,)(I-C1) 0 0 0 (1-p,)p, (1-p,)p;(l-p,) 
4 CIC2(1-C3) 0 (l-f1J)C1 (1-p,)(l-p,) 0 0 0 (I - p.)p,( I - p,)' 
5 (I-C1}(1-C2)C3 0 0 0 (l-p,)(I-C2) (1-p,)p, 0 ( 1-p,)p;( 1-p,) 
6 CI(I-C2)C3 (l-p,)C3 0 0 0 (1-p,)(l-p,) 0 (1-p,)p,(l-p,)' 
7 (I-C1)C2C3 0 0 0 (I-J,,)C2 0 (1-p,)(l-p,) (I - p,)p,( I - p,)' 
8 CIC2G3 0 0 0 0 0 0 (1-P;)(I-PY 

TABLE 3. Transition matrix for three-species competitive hierarchy model 

2 3 4 5 6 7 8 

I (I-C1}(1-C2)(1-C3) p, p, p, ,,, p, p, p, 
2 CI(I-C2)(1-C3) (1-p,) 0 (1-p.)p, 0 (1-p,)p, 0 (1-p,)p~ 
3 (I-C1)C2(1-C1 ) 0 (1-p,)(I-CI) 0 0 0 (1-p.)(I-CI)P, 0 
4 CIC2(1-C3) 0 (l-p,)C1 (1-p,)(l-p,) () 0 (l-p,)C1p, (I -J,,)p,( I - p,) 
5 (I-C1}(1-C2)C1 0 0 0 (1-p,)( I-C1 )(1-C~) () 0 () 

6 C1(1-C2)C3 0 0 0 (l-p,)C1( I-C2) (1-p,)(l-p,) 0 ( 1-/JJ)/1,( I-p,) 
7 (I-C1)Cf:3 0 0 0 (l-f11)(1-C1)C2 0 (l-p,)(I-C1)(1-p,) 0 
8 clc2c, 0 0 0 (I-J1J)C1C2 0 (l-p.)C1(1-p,) (l-/1,){1-jl,)' 
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Figure 8. Equilibrium frequencies / 1, f 2 and f 3 of the three species in the competitive hierarchy 
model, for competitive exclusion probabilities of p, = 0.01 (.), p, = 0.10 (0) and Pc = 1.00 (A.). 

increasing Pd· In high dispersal communities, rx is maximized at intermediate 
disturbance rates for very slow competition. 

Alpha diversity is much higher at low disturbance rates in networks than in 
hierarchies. This supports the conjecture that intransitive competition might act 
like a form of disturbance (Caswell, 1978) and agrees with the simulation results 
of Karlson & Buss ( 1984). 

Spatial heterogeneity 

Spatial heterogeneity also differs between hierarchies and networks (Fig. 11). 
In a competitive hierarchy, disturbance is required to maintain any spatial 
heterogeneity. f3b begins to increase when pd exceeds pcfd; (the point at which the 
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Figure 9. Equilibrium frequenciesj1,j2 andf3 of the three species in the competitive network model, 
for competitive exclusion probabilities of p, = O.Ql \.). p, = 0.10 (0) and p, = 1.00 (,.A.). 

losing species S2 and S3 begin to persist at appreciable frequencies; cf. Fig. 8). It 
increases to a maximum at an intermediate disturbance frequency, and finally 
declines again at high disturbance frequencies. 

In contrast, competitive networks maintain spatial heterogeneity, equivalent 
to the maximum attained by competitive hierarchies, even at low disturbance 
rates. As pd increases, Ph may increase slightly, and eventually declines. 

Conclusions: the effects of intransitivity 

Transitive and intransitive competitive communities behave very differently. 
At any given disturbance rate, intransitive competitive networks maintain 
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Figure 10. Alpha diversity in competitive hierarchies and networks as a function of disturbance 
probability, for competitive exclusion probabilities p, = 0.01 (.), p, = 0.10 (0) and p, = 1.00 !_&). 

higher values of both alpha and beta diversity than do competitive hierarchies. 
Most of the properties of competitive networks are less sensitive to disturbance 
than the corresponding properties of competitive hierarchies. 

PREDATOR·MEDIA TED COEXISTENCE 

Predator-mediated coexistence refers to coexistence, under the impact of 
predation, of two or more competing species not all of which could persist in the 
absence of the predator. Although studies of predator-mediated coexistence date 
back to the last century, focus on it as an important determinant of community 
structure dates from Paine's ( 1966) experimental work on rocky intertidal 
invertebrates and Harper's ( 1969) review of experiments on terrestrial plant 
communities. Janzen (1970) and Connell (1971) independently proposed a 
special case as a possible mechanism for maintaining high diversity in tropical 
forests. 

There is little doubt that predation has important impacts on prey 
populations and communities. Sih et al. ( 1985) statistically analysed published 
results of field experiments in which predators were manipulated. The vast 
majority of these studies reported significant effects of predation on prey 
abundance and diversity. Almost 30% of the published comparisons found 
significant increases in prey species diversity, and 25% found significant 
increases in prey population size. 
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Figure II. Biotic beta diversity {1, in competiti,·e hierarchies and networks as a function of 
disturbance probability PJ> for competitiw exclusion probabilities p, = 0.01 1.). p, = 0.10 (0) and 
p, = 1.00 (A.). 

This result is at least somewhat habitat specific. Peterson ( 1979) reviewed the 
results of predator exclusion experiments in marine soft-sediment benthic 
communities. He found that these manipulations did not reduce the prey species 
diversity. In fact, they often increased prey diversity. although Peterson notes 
that this may be a cage effect. He proposes several possible explanations for this 
pattern, which is strikingly different from that seen in the intertidal studies. 
Perhaps the soft-sediment studies failed to allow sufficient time for competitive 
exclusion to occur. Perhaps interference competition was less important. Perhaps 
the interaction between adults and settling larvae dominated the community 
dynamics. Or, perhaps the developmental plasticity exhibited by many 
invertebrates means that exploitation competition will affect mainly growth, 
rather than mortality; if so, exclusion should be extremely slow. 

Early theoretical attempts to model predator-mediated coexistence are 
reviewed by Caswell ( 1978). Those studies tended to focus on finding conditions 
under which a three-species system (two competitors and a predator) possesses a 
stable equilibrium while the corresponding two-species system does not. That 
approach is appropriate only if natural systems are usually at stable equilibria. 
In ~etapopulations this may not be true, because continual disturbance by 
preda\~ors of the approach to local equilibrium might greatly extend the 
persistence of competitors which could not maintain themselves in a local 
equilibrium. 
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The model 

We consider a model for three species: two competing prey and one predator. 
We label the species 

sl = winning competitor 
s2 = losing competitor 
s3 = predator 

and use the same numbering of states as in the competitive network model. \'Ve 
assume that competition between sl and s2 follows the tolerance model. 
Predation leads to the elimination of the prey at a rate defined by an elimination 
probability Pe We assume that predation, competition, and disturbance act 
independently within a patch. Thus a patch in state 8 (all three species present) 
goes to state 6 (S1 and S3) and probability p,(l-p,)(l-pd), to state 5 (S3 alone) 
with probability p,(l-pd), and to state 1 (an empty patch) with probability pd; it 
remains in state 8 with probability (1-p,)(l-pd)(l-p,). This predator displays 
no preference for either prey species. Thus coexistence of prey cannot be the 
result of preferential predation on the winning competitor. 

The losing competitor cannot invade a patch that contaihs ""'tne winning 
competitor, regardless of the presence or absence of the predator. The predator is 
permitted to colonize only patches containing at least one prey species. After 
eliminating the prey in a patch, the predator becomes extinct, even if one or 
both prey species should colonize the patch. These rules lead to the transition 
matrix shown in Table 4. 

Coexistence of S1 and S2 in this model is genuinely predator-mediated. 
Suppose there is no disturbance to mediate coexistence, so that h = 0, and that 
the predator is absent so that C3 = 0. Examination of the transition matrix of 
Table 4 shows that state 2 (the vvinning competitor alone) is an absorbing state; 
no matter what the initial state, the community will eventually collapse to a 
monoculture of the winning competitor. 

Following the approach of previous sections, we conducted a series of 
numerical experiments, varying the parameters and examining the resulting 
patterns of community structure. Preliminary investigation of the model 
suggested that the predatory elimination rate p, sets the time scale in this model. 
By analogy with our studies of disturbance effects, we examine the response of 
the community to changes in p, varying the parameters as follows: 

d; E { 1, 10} i = 1, 2, 3 
p, E {0.01, 0.1 0, 1.00} 
p, e {1 0 values, log-uniformly spaced between 0.00 I and I} 

Species frequencies 

Species frequencies are shown in Fig. 12. The frequency iJ of the winning 
competitor declines with increasing p,, and is independent ofp,. The frequency .h 
of the losing competitor demonstrates clear predator-mediated coexistence, since 
.h = 0 in the absence of predation and disturbance. s2 is maintained when p, rises 
above a critical value ( ~ pjd;, although that is specific to this set of parameter 
values, where all the dispersal rates are equal), and is maximized at intermediate 



TABLE 4. Transition matrix for the predator-mediated coexistence model 

2 3 4 5 6 8 

I (I-C1)(1-C2) Pi I'd /IJ JiJ+(I-JIJ)(I-C1)(1-C2) p, /IJ /1,, 
2 C1(1-C2) (I-PJ}(I-C3) 0 (1-p,)(I-C,)p, (l-p,)C1(1-C2) 0 0 0 
3 (I-C1)C2 0 (l-p,1)(1-C1)(l-C1) 0 (1-J,,)(I-C,)G; 0 0 0 
4 c,c, 0 (1-p,)C,(I-G,) ( 1-JI,}( 1-C,)( 1-/1,) (I -/IJ)C,C" 0 0 0 
5 0 0 () () (} (l-/1,,)/1, (1-J•,)/>, ( 1-J•,,)/•, 
6 () (I-J>1}C3 0 (1-J•J)C.p, 0 (1-p,)(l-p,) 0 ( 1-JI,)( 1- /1,)/1, 
7 0 0 (I-PJ){I-C1)C3 () 0 0 (I-J1,)(1-C1)(1-p,) 0 
8 () () (1-J•,)C,c, (1-JI,)C.,(I-/>,) () () (I-J1,)C1(1-J>,) (I -11,)( 1-p,)( 1-p,) 
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Figure 12. Species frequencies j, as a function of the predatory elimination probability p, and the 
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o.o 

values of p,. Thus, the maintenance of the losing competitor by predation is 
easiest when competition is slow and dispersal is rapid. 

The frequency J; of the predator declines with increases in p,, which is to be 
expected since p, determines the local extinction rate of the predator. It is 
independent of p,. 

Alpha and beta diversiry 

Results for alpha and beta diversity are shown in Fig. 13. \l\7hen competition is 
slow and dispersal rapid, the overall alpha diversity of this three-species 
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community is maximized at intermediate rates of predation. (Fig. 13A, B). The 
extent of the maximum is greater the slower the rate of competitive exclusion. In 
Fig. 13C, D we plot the alpha diversity among the prey species; this value can be 
directly compared with the results for two-species competition with disturbance. 
When competition is slow, prey diversity is maximized at intermediate predation 
rates. The maximum IX is higher in high-dispersal than low-dispersal 
communities. 

Predation is also capable of maintaining spatial heterogeneity. Figure 13E, F 
shows the biotic beta diversity {Jb for low and high dispersal communities. In the 
absence of predation, the community is spatially uniform, and {Jb increases with 
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p,. The rate of elimination required to maintain significant heterogeneity 
increased with p,. 

These results show predation functioning in much the same way as physical 
disturbance. The rate of predatory elimination within a patch is a crucial 
parameter; the relation between this timescale and the timescale for competitive 
exclusion determines the diversity, spatial heterogeneity, and temporal variation 
in the community. It is of interest to consider the interaction of predation and 
disturbance; we will present results of such a comparison elsewhere. 

CONCLCSJONS 

The results in this paper make it clear that the diversity of metapopulations 
reflects the interaction of at least three different scales: interactions within 
patches, dispersal between patches and disturbance. As our models enlarge from 
two to three species, and from competition alone to the interaction of 
competition and predation, the complexity of possible patterns increases. Any 
attempt to understand diversity v.·ithout considering all three scales is likely to 
give, at best, only partial insight. ::\Ioreover, without quantitative models srn!h as 
we propose here, it seems impossible to try to relate the processes at'work and to 
demonstrate the truly surprising variety of effects produced by the interactions of 
these processes. The unaided intuition seems inadequate to the task. 

As an example of the interaction of different scales, consider the debate over 
the maintenance of diversity in the deep sea (Grassle, 1989), where diversity is 
extremely high and disturbance rates apparently wry low. It is tempting to 
argue that the low disturbance rate implies that the diversity must be 
maintained by equilibrium mechanisms rather than by disturbance. But rates of 
colonization (Grassle & Marse-Porteous, 1987), and of growth and metabolism 
(Turekian et al., 1975; Jannasch & Wirsen, 1977), are also lower. If the low 
growth rates translate into reduced rates of competitive exclusion, then it 
becomes impossible to interpret the lower rate of disturbance, since a low 
disturbance rate in a community with slow competition may have the same 
effects as a higher disturbance rate in a community with more rapid 
competition. 
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