
Mobius Inversion of Random Acyclic Directed Graphs 

By Joel E. Cohen 

Suppose a random acyclic digraph has adjacency matrix A with independent 
columns or independent rows. Then the mean Mobius inverse of the zeta matrix 
I+ A is the Mobius inverse of the mean zeta matrix, i.e., E[( I+ A) -I]= 

[I+ E(A)]- 1• 

The purpose of this note is to show that, under natural conditions, the mean 
Mobius inverse of a random acyclic directed graph (digraph) equals the Mobius 
inverse of the mean acyclic digraph. 

Let the vertex set V be {1, ... , n} for a fixed integer n, 1 < n < oo, and let R be 
a subset of V x V. An element {i,j) E R is called an arc from i to j. A digraph 
D is an ordered pair D = (V, R) of vertices and arcs. A topologically ordered 
acyclic digraph (TOAD) is a digraph D = (V, R) such that every arc {i, j) in R 
satisfies i < j. It is well known that every acyclic digraph can be converted to a 
TOAD by permuting the labels of the vertices, and conversely every acyclic 
digraph can be obtained by permuting the labels of the vertices of a TOAD. 
The adjacency matrix A= A(D) = A(V, R) of any digraph D = (V, R) is an 
n X n matrix such that aii = 1 if {i,j) E R, a;i = 0 if (i,j) ~ R. It is also well 
known that (V, R) is a TOAD if and only if A(V, R) is strictly upper triangular, 
i.e., a;i = 0 whenever i ~ j. (See [4] for background on digraphs.) 

The zeta function of any acyclic digraph D with adjacency matrix A is 
defined by ~ = I+ A, where I is the n X n identity matrix. ~ is the adjacency 
matrix of the digraph formed from D by adjoining loops to each vertex, i.e., by 
adjoining all the arcs {i, i) where i E V. The Mobius inverse J.L =~-I exists, 
because if P is a permutation matrix such that PAP- 1 is strictly upper 
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triangular, then det(/ +A)= det[P(I + A)p-I] = det(/ +PAP-I)= 1. (Recall 
that for a permutation matrix P, p-I= pr, so PAP-I is the matrix obtained by 
relabeling the indices of the rows and columns of A according to P.) (See [5; 2, 
Chapter 2; 3, Chapter 25] for background on Mobius inverses.) 

Let S be the set of all strictly upper triangular 0- 1 n X n matrices, and let U 
be the set of all matrices PAPr, where P is a permutation matrix and A E S. 
The matrices in S are exactly the adjacency matrices of the set of all TOADs, 
and the matrices in U are exactly the adjacency matrices of the set of all acyclic 
digraphs. 

A random acyclic digraph is specified by a probability distribution on U. 
Specifically, if A denotes the random adjacency matrix of a random acyclic 
digraph D, then for every A E U, p(A) = P{A =A}. The mean adjacency 
matrix of D is E(A) = IA e uAp(A). The mean Mobius inverse of D is E(JL) = 
IAeuU+A)-Ip(A). Under natural conditions, stated in Theorem 2, E(JL)= 
[I+ E(A)] -I. This follows from a slightly more general result, stated as Theo
rem 1. 

Let M be a random n X n matrix (implicitly, a space of n X n matrices 
together with a probability measure on that space). Say that M = (m;j) has 
independent columns if and only if, for all j, k such that 1 :s; j < k :s; n, the 
vector consisting of column j of M and the vector consisting of column k of M 
are independent. (Arbitrary dependence within any column is allowed.) Say that 
a random matrix has independent rows if its transpose has independent columns. 
If the rows or columns of M are independent, so are those of PMPr, for any 
permutation matrix P. 

As usual, "a.s." means "almost surely." 
For any deterministic matrix M = (M;j), the skeleton of M is another 

deterministic matrix H = (hij) such that hij = 1 if m;j =1= 0, hij = 0 if mij = 0. For 
any random matrix M, define the movie of M to be the random matrix H 
formed by taking the skeleton of each realization of M. For any random matrix 
M, define the still of M to be the deterministic matrix H defined by h ij = 0 if 
m;j = 0 a.s., hij = 1 if P{mij =1= 0} > 0. For example, if 

M 2 = (~ ~). 

and P{M = MI} = t, P{M = M2} = t. then the movie 

H = (~ b) whenever M = MI, H = ( ~ ~) whenever M = M2 , 

and the still 

H = (~ ~)· 

Though H is acyclic a.s., the skeleton of E(H), namely H, is not acyclic. 
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Define a deterministic matrix M to be nilpotent if there exists a positive 
integer k such that Mk = 0. It is well known that M is nilpotent if and only if 
the skeleton of M is in U, i.e., if and only if PMPT is strictly upper triangular 
for some permutation matrix P. The previous example shows that it is possible 
to have M be nilpotent a.s. while the still of M is not nilpotent. However, if M 
has independent rows or columns, such a possibility is excluded. 

LEMMA. Let M be a complex-valued random matrix with independent rows or 
independent columns and such that M is nilpotent a.s. Then the still of M is 
nilpotent. 

Proof" Let H = (h;) be the still of M. Then P{M is nilpotent}= 1 implies that 
for every k, 1 ::;; k ::;; n, and for every set {i 1, ... , i k} of k distinct elements of 
V = {1, ... ,n}, 

Since the rows or columns of M are independent, 

which implies that at least one factor on the right is 0. Therefore, at least one of 
h;

1
;

2
, h;

2
;
3

, ••• , h;k;
1 

is 0. Since this is true for every set {i1, ••. , ik} of k distinct 
eleme.nts of V, H is nilpotent. 0 

Define the off-diagonal part of a random matrix A to be the random matrix B 
such that bii = aii a.s. for all (i, j) with i -:1= j, and b;; = 0 a.s. for all i E V. 

THEOREM 1. Let M be a complex-valued random matrix such that 

(i) the expectation E(M) exists; 
(ii) the off-diagonal part of M is a.s. nilpotent, i.e., the movie of the 

off-diagonal part of M is a.s. nilpotent; 
(iii) m;; = C; a.s., where C;-:!= 0 is a nonzero constant; 
(iv) M has independent columns or M has independent rows. 

Then E(M -I) exists and E(M -I)= [ E(M)] -I. 

Proof" By the Lemma, the still of the off-diagonal part of M is nilpotent, and 
therefore so is the expectation of the off-diagonal part of M. Hence E(M) is 
nonsingular. 

Let K = (k;) have elements 8;jci, where 8ii is Kronecker's delta, 8;; = 1, 
8;i = 0 if i -:1= j. Then H = K- 1 M has all diagonal elements equal to 1 a.s. Let 
I - H = L. Then L has a.s. the same movie as the off-diagonal part of M and is 
a.s. nilpotent, so a.s. Ln = 0. Therefore, (/-L)- 1 =I +L+L2 + · · · +Ln-J a.s. 
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Hence a.s. 

M-t = (KH) -t = H-tK-t =(I -L) -t K-t 

= (/ +L+L2 + · · · +Ln-t)K-1, 

so if E(M- 1) exists, it must be 

Now fork =2, ... ,n-1, 

n n n 

(Lk)ij = L L " L .. L .. · · ·L. .. 
/...., 1• 11 1112 'k-1,) 

i1=1 i2=1 ik-1 = 1 

Because L is a.s. nilpotent, the only terms on the right that are not a.s. 0 are 
those in which i,i 1,i2 , ••• ,ik-t•j are all distinct. Then, since L has independent 
columns or rows (inherited from M and H), 

" E(L .. )E(L .. ) · · · E(L. .)· l...i 1,11 lt12 1k-J,} ' 

{i, i1, ••• ,ik-l ,j) all distinct 

hence E(Lk) = [E(L)Jk if E(L) exists, and E(L) = I- K- 1E(M) does exist by (i). 
Thus E(M - 1) exists and equals 

E(M- 1) = {I+ E(L) + (E(L)] 2 + · · · + (E(L)r- 1}K- 1 

= [I- E(L)] -t K- 1 = [K{I- E(L))] - 1 

= (E(M)] -t. 0 

By contrast with Theorem 1, if X is a nondegenerate random variable such 
that X> 0 a.s. and E(X) and E(X- 1) exists, then [E(X)]- 1 < E(X)- 1• [Since 
f(x) = x- 1 is strictly convex on (0, oo), the inequality follows by Jensen's inequal
ity.] The matrix equality obtained in Theorem 1 differs from the scalar inequal
ity because, of course, the 1 x 1 case of the matrix M is a.s. a constant, not a 
nondegenerate scalar random variable; for a constant scalar or degenerate 
random variable X, [E(X)]- 1 = E(X- 1) = x- 1 a.s. 

THEOREM 2. Suppose a random acyclic digraph has adjacency matrix A with 
independent columns or independent rows. Then E(A) exists and the mean Mobius 
inverse is E[(l +A) -t] =[I + E(A)] - 1• 
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Proof: E(A) exists because the elements of A are drawn from {0, 1}, so 
' = I +A satisfies hypothesis (i) of Theorem 1. The off-diagonal part of the zeta 
matrix ' = I +A is just the adjacency matrix A, so ' = I+ A satisfies (ii), (iii) 
because ';; = 1 a.s., and (iv) by assumption. The conclusion of Theorem 2 then 
follows from Theorem 1. 0 

Example of Theorem 2 (The cascade model [1]): Suppose a;j = 0 a.s. if i ~ j, 
while a;i = 1 with probability p and a;i = 0 with probability q = 1- p, indepen
dently for all (i,j) with i < j, where 0 < p < 1. Then E(a;) = pJ{i<il' where 
J{i<il = 1 if i < j, l{i<il = 0 if i ~ j. Let M = (m;) = E(tJ.) = E[(l +A)- 1

) =[I+ 
E(A)] -I. Then it is easy to check that 

r if i > j, 
m;i = 1 if i= f, 

' - p(1- p)j-i-1 if i <j. 

For example, if n = 4, then 

0 p p p 

E(A) = 0 0 p p 

0 0 0 p 

0 0 0 0 

1 -p - p(l- p) - p(1- p)2 

E(tJ.) = [I+ E(A)] -I = 0 1 -p - p(1- p) 

0 0 1 -p 

0 0 0 1 

In the ecological interpretation of the cascade model [1] the elements of V 
represent groups of organisms called trophic species, aii = 1 means species j 
eats species i, and a;i = 0 means species j does not eat species i. The TOAD 
specified by A is called a food web. Let xT =(x1, ... ,xn) and yT =(y1, ... ,yn) be 
row vectors such that yT = xT(l +A), i.e., yi is the sum of xi plus all the X; such 
that j eats i according to A. Then yT(J +A)- 1 = xT. Now suppose yT is 
fixed, e.g., yT can be measured directly with negligible error. Then E(xT) = 
yTE[(/+A)- 1]=yTM provides a way of estimating the mean of xT from 
measurements of yT and the average structure of the food web; the latter may 
be derived from the cascade model in the absence of more detailed data. 
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