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Abstract 

In an uncongested transportation network, adding routes and capacity to an 
existing network must decrease, or at worst not change, the average time individuals 
require to travel through the network from a source to a destination. Braess ( 1968) 
discovered that the same is not true in congested networks. Here we give an example 
of a queuing network in which added capacity leads to an increase in the mean transit 
time for everyone. Self-seeking individuals are unable to refrain from using the 
additional capacity, even though ·using it leads to deterioration in the mean transit 
time. This example appears to be the first queuing network to demonstrate the 
general principle that in non-co-operative games with smooth payoff functions, user
determined equilibria generically deviate from system-optimal equilibria. 

BRAESS'S PARADOX; NASH EQUILIBRIA; NON-CO-OPERATIVE GAME 

1. Introduction 

It seems intuitively obvious that adding routes and capacity to an existing trans
portation network should decrease, or at worst not change, the average time individuals 
require to travel through the network from a source to a destination. In an uncongested 
transportation network, the obvious is true. In a congested transportation network, the 
obvious need not be true. 

Braess ( 1968) discovered a deterministic mathematical model of a congested network 
such that, paradoxically, when a link is added and each individual seeks his or her best 
possible route, at the new equilibrium the cost of travel for all individuals is higher than 
before. At equilibrium, independently self-seeking individuals are unable to ignore the 
added capacity that ends up increasing their travel cost. Braess's paradox is not a 
peculiarity of the parameter values or functional forms in Braess's example (Steinberg 
and Zangwill (1983); Dafermos and Nagurney (1984a,b)). The paradox may actually 
have occurred during 'development' in the center of Stuttgart (Knodel (1969)). 

We report the first example ofBraess's paradox in a mathematical model of a queuing 
network. Our example shows that the paradox is not a peculiarity of the mathematical 
formalism Braess used to describe a transportation network, but appears to be a more 
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general property of congested flows. Braess's paradox is not mentioned in recent reviews 
of optimal routing in queuing networks (Gallager (1977), Bertsekas (1982)), though it is 
known that decentralized routing based on the shortest expected delay may result in 
poor performance (Bertsekas ( 1982), p. 630). 

2. Queuing network: behavioral assumptions 

In an initial queuing network (Figure 1), individuals (customers, messages, manufac
turing jobs, etc.) enter the network at node A and exit at node F. Arrival streams are 
assumed to be Poisson. When a flow divides in two, e.g., at node A, the outgoing streams 
are assumed to be independent Poisson flows. Individuals know the mean delays in the 
queues in the network, but do not know the instantaneous queue lengths. 

Each individual chooses a route to minimize his or her total mean time of transit from 
entry to exit, given the choices of other individuals. Equilibrium is defined to occur when 
no individual can lower his or her mean transit time by a change of route, if all other 
individuals retain their present routes. Thus the individuals in the network may be 
viewed as playing a non-co-operative game, each seeking to minimize the mean transit 
time from entrance to exit. 

The network contains two kinds of servers, FCFS and IS. FCFS denotes a single-server 
queue with a first-come-first-served queue discipline. Service times are assumed to be 
independent exponential random variables with mean of llrp time units, where rp > 0 is 
fixed throughout. If individuals arrive at a stationary FCFS queue in a Poisson stream 
with a mean of x individuals per unit of time, where x < rp, the mean sojourn time in the 
queue of an individual is 1/(rp- x). 
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1/(<1>- A.) 

Figure l. Initial queuing network. The entrance node is A. The exit node is F. Infinite-server queues are 
denoted IS; first-come-first-served single-server queues are denoted FCFS. The figure or formula adjacent 
to each node is the mean sojourn time in that node at equilibrium. The figure or formula adjacent to each 

arrow is the mean of the Poisson flow along that arrow at equilibrium 
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IS denotes an infinite-server queue at which each individual is delayed by some 
random amount of time, the average of which is independent of the number of 
individuals awaiting service. In the two IS queues in Figure 1, the average delay is 2 time 
units. 

The augmented queuing network shown in Figure 2 differs from that in Figure 1 by the 
addition of an IS queue (node G) with a mean delay of 1 time unit and a route from node 
B to node G to node E. 
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2(A.' - A.) 

Figure 2. Augmented queuing network. An infinite-server queue (node G) has been added to the 
network of Figure I. All symbols are as in Figure I. The additional capacity in this queuing network 

increases the mean transit time of every individual at equilibrium 

3. Analysis 

For certain parameter values, if individuals choose a route from entry to exit so as to 
minimize their average transit time, given the choices of other individuals, then at 
equilibrium the mean transit time in the augmented network (Figure 2) is strictly larger 
than the mean transit time in the initial network (Figure 1 ). 

Theorem. Let 2.ii denote the total traffic departing from node A and assume 
2.ii > rp - 1 > .ii > 0. Then the mean transit time in the initial network is strictly less than 
3 time units, while the mean transit time in the augmented network equals 3 time units. 

Proof. In the initial network (Figure 1 ), if xis the Poisson flow from A to B, then the 
total mean transit time along the route ABCF is 1 /( rp - x) + 2; the first term is the mean 
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wait at node Band the second is the mean wait at node C. This is a con ¥ex function of x. 
By symmetry the mean transit time along ADEF is 1/(qJ- [2.?. - x]) + 2. It follows that 
at equilibrium individuals minimize their mean transit time by behaving so that x =.A, 
i.e., by distributing themselves equally between the two possible routes. Thus the mean 
transit time for all individuals is 1/(qJ -.A)+ 2. 

The assumption that qJ- 1 >.A> 0 implies that 0 < 1/(qJ- .A)< 1, hence the mean 
transit time is less than 3 time units. 

In the augmented network (Figure 2), there are three routes from entry to exit: ABCF, 
ABGEF and ADEF. Whichever of these routes have positive flows of traffic at equili
brium must also have equal mean transit times, for if not individuals would shift from a 
route with greater mean transit time to a route with lesser mean transit time. We shall 
show that all three routes carry positive traffic flows and that the mean transit time for all 
is 3 time units. 

Suppose the Poisson flow from node A to node B is .A'. Then the mean transit time 
along ABCF is 1 /( qJ - .A') + 2. Let x be the Poisson flow from node B to node C and let y 
be the Poisson flow from node B to the newly added node G; x + y =.A'. The residual 
flow from node A to node Dis 2.?. -.A'. Therefore the total Poisson stream arriving at 
node E from nodes D and G is 2.?.- .A'+ y. 

An individual who departs from node Band goes to node C faces a mean transit time 
of2 units before arriving at node F. An individual who travels from nodeBto node Fvia 
nodes G and E faces a mean transit time of 1 + 1/(qJ - [2.?. -.A'+ y]). 

If y > 0, these transit times must be equal, whence y = qJ - 2.?. +.A' - 1. Therefore the 
Poisson stream arriving at node E is just qJ - 1 and the mean sojourn time in the queue 
at node E is precisely 1 unit. Therefore the mean transit time along ADEF is 3 units; 
hence the mean sojourn time at node B must be I unit, i.e., 1 = 1/(qJ- .A') or .A'= qJ- 1 
andy= 2(.?.'- .A) and x = 2.?.- .A'. The mean transit time along each possible route is 3 
time units. 

Suppose y = 0. The argument given for the initial network implies that .A'= .A, so the 
flow from node D to node E is just .A and the mean sojourn time in the queue at node E is 
only 1/(qJ- .A)< 1. So an individual departing from node B could arrive at node Fin 
only 1 /( qJ - .A) + 1 time units via nodes G and E, and this would be faster than the 2 time 
units required to travel by node C. Hence at equilibrium y > 0. By hypothesis, 
2.?. > qJ- 1, and we showed that qJ- 1 =.A'. Since x = 2.?.- .A', it follows that x > 0 and 
the flows along all three routes are positive, with a mean transit time of 3 time units. 

The additional node G in the augmented network allows some individuals to pass 
through both FCFS servers and to avoid both of the original IS servers. The additional 
flow through the FCFS servers increases the mean delay there with no compensating 
reduction in the mean delay incurred at the IS servers. Thus the initial decrease in total 
waiting time of the customers that choose the new route is more than paid for by the 
increase in delay from the congestion at the merging of this new traffic. 

This result illustrates a general method for constructing queuing networks that display 
paradoxes analogous to those of deterministic network models. After the first presen
tation of these results, Richard Stone (personal communication) used the same approach 
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to construct a queuing analog of another novel paradox of deterministic congested 
network models. 

4. Conclusion 

In the simple queuing network reported here, added capacity leads to an increase in 
the mean transit time of everyone, because self-seeking individuals are unable to refrain 
from using the additional capacity even though using it leads to deterioration in the 
mean transit time. This example appears to be the first queuing network to demonstrate 
the general principle (Dubey (1986)) that in non-co-operative games with smooth payoff 
functions, user-determined equilibria generically deviate from system-optimal equili
bria. In the language of game theory, Nash equilibria are generally Pareto-inefficient. 

It would be valuable to learn how frequently this paradox arises in real queuing 
networks, and whether the paradox is sensitive to the assumption that individuals 
respond to mean sojourn times rather than to instantaneous queue lengths. It may also 
be rewarding to recognize analogous paradoxes in other technological and biological 
systems where individual actions have significant consequences for others. 
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