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ABSTRACT 

In the eighteenth century, Landen, Lagrange and Gauss studied a function of 
two positive real numbers that has become known as the arithmetic-geometric mean 
(AGM). In the nineteenth century, Borchardt generalized the AGM to a function of 
any 2n(n = 1, 2, 3, ... ) positive real numbers. In this paper, we generalize the AGM 
to a function of any even number of positive real numbers. If M( a, b) is the original 
AGM then M(a, b) is concave in the pair (a, b) of positive numbers and log M(ea, 
eP) is convex in the pair (a, J3) of real numbers; all our generalizations of the AGM 
behave similarly. We generalize this analysis extensively. 

If a and b are positive real numbers, define a new pair (a~> b1) of positive reals 

by 

(
a +b tnl 

(a1,b1)=f(a,b)= -2-,[ab] r (1) 

Iff denotes the kth iterate of f, there is a positive number A. = A.( a, b) such that 



lim /(a, b)= (A, A). (2) 
/c-+oo 

The number A is usually called the arithmetic-geometric mean or AGM of a and b 

and is sometimes written M(a, b). Landen, Lagrange and Gauss (see [2,7] for 

references) independently proved that 

where 

1t 
A(a, b)= U(a, b) 

" 2. 

f d9 
l(a,b)= 112 · 

0 [a2 cos2 9 + b 2 sin2 9] 

A nice proof of (3) is given by Carlson [5]. 

(3) 

(4) 

Recall that a map g from a convex subset D of a vector space X to the reals is 

called "convex" if g((1-t)x +ty) s; (1-t)g(x)+tg(y) for all x, y e D, 0 s; t s; 1. 

The map g is "concave" if -g is convex. Define K = { x e 9tn: xj ~ 0 for 1 .:s; j .:s; n} 
0 

and K to be the interior of K, i.e., the set of real n vectors with positive elements. 
0 0 

More generally, if K is a cone in a Banach space and iff: K ~ K is a suitable map, 
0 0 

it may happen that for every x e K there exists a fixed point g (x) e K off such that 

lim f(x) = g(x): see Theorem 1 below or Section 3 of [12] for some general results 
0 , % 

of this type. For x e 9tll and y e K, defi~e ez = (e,,e , ... ,e ")and logy= (log 

Y~o log y2, ••• , log Yn). We shall give general conditions under which y ~ g(y) is 

concave or convex or x ~log g(ex) is convex. The purpose of this note is to prove 

very general convexity results of this type, by elementary arguments, for large classes 

of examples of interest. A very special corollary of these results for the AGM is 

that the map (a, b)~ A(a, b) is concave and (a,j3) ~ logA(ea,eP) is convex, and 

even the latter result may be new. 

If a, b, c, d are positive reals, Borchardt (see [2,4]) defined a map f by 

~(a b c d)= (a +b +c +d [ab] 112+ [cd] 112 [ac]112+[bd]112 [ad]112+ [be] 112) 
J' ' ' ' 4 ' 2 2 2 

(5) 

and proved (this is the easy part of his work) that 

lim /(a, b, c, d)= (A, A, A, A), A> 0. (6) 
/c-+oo 

Borchardt defined an analogous map whenever the number of variables is a power 

of2. 



We now offer a new natural generalization of the map (5) whenever n, the 

number of variables, is an even integer, n = 2m. To do this we recall a special case 

of a much deeper result of Baranyai [3] concerning partitions of a finite set into 

subsets with j elements. Let X= { 1, 2, ... , n} and let E denote the collection of 

subsets with exactly two elements; so E has n(n-1 )/2 elements. If n = 2m, then one 

can partition E into n-1 disjoint sets FJ, 1 ~j ~ n-1, each containing m elements, such 

that if, for some j, A, B e FJ, then A n B = 0 if A * B; and such that 

X = u A, for each j . 
AeF1 

If n = 2m and E is partitioned into n-1 subsets FJ as above, define 

1 
~F(x) =- ~ [x;Xt12 , for x e K. 

J n1si,.tsn 
{i,k} e F1 

0 0 

Define a map f: K ~ K (dependent on the above partition of E) by 

1 II 

ft(x) =-~xi, 
n .t=1 

(7) 

(8) 

(9) 

where ~(x) denotes the jth component of f(x). We shall refer to such a map as a 

"Borchardt map." For example, if n=6, a Borchardt map is given by 

1 
ft(x) =6(x1 +x2+x3 +x4+xs+xJ, 

1 
h(X) = 3 ([x1xJ 112 + [x~J 112 + [xsXJ 112), 

1 
IJ(x) = 3 ([x1xJ 112 + [x~sl112 + [x~J 112), 

1 
t,(x) = 3 ([x1xJ 112 + [¥J 112 + [x~sl112), 

1 
t,(x) = 3 ([x1xJ 112 + [x~sl112 + [x~J 112). 



0 0 

According to Corollary 2 below, if f: K ~ K is a Borchardt map, 

0 

lim /(x) = A.(x) (1, 1, ... , 1) for every x e K, where A.(x) > 0 and x ~ A.(x) is real 
lc~-

analytic. Again one can ask about concavity or convexity properties of the map x 

~ A.(x). 

There are many examples of "means and their iterates": see [1, 2, 5-8, 10-15] 

and the references there. In order to handle these examples in a reasonably unified 

way, we shall need a general framework. If X is a Hausdorff, topological vector 

space over the real numbers, a subset C of X will be called a cone (with vertex at 0) 

if C is closed and convex, tC c C for all t > 0, and x e C - { 0} implies that -x e: C 

. An example is provided by K = { x e 9tn: xJ ~ 0 for 1 .=:; i .=:; n}, which we shall call 

the standard cone in 9t0
• A cone induces a partial ordering on x by x .=:; y if and only 

if y - x e C. If x andy are elements of C, x and y will be called "comparable" if 

there exist strictly positive scalars a and ~ such that ax.=:; y .=:; ~x. Comparability is 

an equivalence relationship and divides C into disjoint equivalence classes called 

"components of C". If u e C - { 0}, we shall define Cu by 

C" = {x e C: x is comparable to u} . (10) 

0 0 

Note that if C has nonempty interior and u e C , then C" = C . In the standard cone 

in 9tn, Cuis all the vectors inC with positive elements at the same positions as those 

ofu. 

Suppose that XJ, j = 1, 2, is a Hausdorff topological real vector space with cone 

CJ. If D is a subset of X1, a map f : D ~ X2 is called "order-preserving" if f(iJ .=:; 2 

ft.y) for all x, y e D such that x .=:; 1 y. Here .=:;1 denotes the partial ordering induced 

by C1 and~ that induced by ~· If X1=X2 we shall usually have C1=~. If D is a 

convex subset ofXh a map g: D ~ X2 will be called "concave" if g((l-t)x + ty) ~ 

(1-t)g(x) + tg(y) for all x, y e D and real numbers t with 0 .=:; t .=:; 1; g will be called 

convex if -g is concave. 

Now suppose that C is a cone in a Hausdorff topological real vector space X, 

Cv is a component of C and f: Cv ~ Cv is a map. Assume that for every x e Cv (or 

for every x in some convex open subset G of Cv) there exists u(x) e Cv such that 

lim /(x) = u(x). (11) 
lc~-



We are interested in concavity and convexity properties of x ~ u(x). In many 

examples, the vector u(x) in (11) is always a positive multiple of a fixed vector u e 

Cv. u(x) = A.(x)u; and in this case one can ask about concavity and convexity properties 

ofx ~ A.(x). 

The existence of a limit as in ( 11) is a strong assumption, but there are many 

examples for which the existence of such a limit has been established: see [2, 6, 

14], Section 3 of [12] and [15]. We mention explicitly a special case of Theorem 

3.2 in [12]. 

Theorem 1. (See Theorem 3.2 in [ 12].) Let C be a cone with nonempty interior 
0 0 0 

C in a finite dimensional Banach space X. Assume that f: C ~ C is 

order-preserving (with respect to the partial order induced by C) and homogeneous 
0 

of degree one (so f(tx) = tf(x) for all x e C and t > 0). Assume that f(u) = u for 
0 

some u e C, that f is continuously Frechet differentiable on an open neighborhood 
0 

of u, and that there exists an integer m ~ 1 such that L "'(C - {0}) c C, where L = 
0 

f'(u) is the Frechet derivative off at u. Then for every x e C there exists A.(x) > 0 

such that 

lim 11/(x)-A{x)ull =0. 
k-.-

0 

The map x ~ A.(x) is continuous on C and continuously differentiable on an open 

neighborhood of u. If u • = A.'(u), the Frechet derivative of A. at u, then u "'(u) = 1 and 
0 0 

L"'(u"') = u"'. Iff is ct. (real analytic) on C, then x ~ A.(x) is~ (real analytic) on C. 

Related theorems in which f is not necessarily order-preserving are given in 

Section 3 of [12] and [15]. 
--

If K is the standard cone in 9t0
, then L is the Jacobian matrix off at u and L 

has all nonnegative entries. The assumptions of the theorem amount to the 

assumption that Lis "primitive," i.e., L"' has all positive entries for some positive 

integerm. 

It will be useful to recall the definition of a class M of maps of the standard 

cone Kin 9tn into itself. The class M has been extensively studied in [12, 13] and 

includes many examples of generalized means. If a is a probability vector in K (so 
n o 

L O'i = 1) and r is a real number, define a map Mra: K ~ (0, oo) by 
i=l 

(12) 



If r = 0, define 
II 

MCKJ(x) = n X;CJ; =lim M,a<x). 
i=l r-+0 

(13) 

For each i, 1 ~ i ~ n, let ri be a finite collection of ordered pairs (r, cr), where r e 9t 

and cr is a probability vector in K; and for 1 ~ i ~ n and (r, cr) e ri suppose that ciro 
0 0 

is a given positive number. Define a map I: K ~ K by 

/;(x) =the i th component of l(x) = I. c;rc)f,ix). (14) 
(r,a)e r; 

0 0 

If I: K ~ K can be written as in (14) we shall say that f e M. Iff e M and fi (x) 

can be expressed as in (14) in such a way that r ~ 0 for all (r, cr) e ri, 1 ~ i ~ n, we 

shall write I e M+; iff can be written so that r < 0 for all (r, cr) e r" 1 ~ i ~ n, we 

shall write f e M_ . Linear maps in M lie in M+r.M_ because, if ~Jk is the Kronecker 

delta, 

and the left side is in M+ while the right is in M_. We define M (~. M_) to be the 
0 0 

smallest set of maps I: K ~ K which is closed under composition of functions and 

addition of functions and contains M (M+, M_). One can prove (see [14] and Section 

2 of [13]) that iff e M, then fis order-preserving, homogeneous of degree one, c-
o 

(in fact, real analytic) on K, and extends continuously to K. In particular, Borchardt 

maps are elements of M+and are order-preserving and homogeneous of degree one. 

We shall apply our theorems to functions f e M. 

For completeness, we begin with some easy lemmas, the proofs of whiclr are 

omitted. 

Lemma I. Let Oi be a convex subset of a Hausdorff, topological real vector 

space ~. i = 1, 2, and suppose that X3 is also a Hausdorff topological real vector 

space. Assume that C" i = 2, 3, is a cone in Xi and that g : 0 1 ~ 0 2 is a concave 

(respectively, convex) map with respect to the ordering induced by~ and f: 0 2 ~ 

~ is concave (respectively, convex) and order-preserving with respect to the 

orderings induced by C2 and C3• Then h = f · g is concave (respectively, convex) 

and h is order-preserving if g is order-preserving. 



Lemma 2. Suppose that X is a Hausdotff topological real vector space and that 

C is a cone in X. Assume that D is a convex subset of X and that gk: D ~ X, 1 .::s; k 

< oo, is a concave (respectively, convex) map with respect to the partial ordering 

induced by C. Assume that for every x e D one has 

lim gk(x) = g(x). (15) 
k-+-

Then the map g is concave (respectively, convex). 

If ~in Lemma 2 is order-preserving for all k ~ 1, one easily can prove that g 

is order-preserving. 

Theorem 2. Let C be a cone in a Hausdotff topological real vector space X and 

forv e C-(0}, let Cv be as in (10). Assume that f: Cv ~ Cv is order-preserving and 

concave (respectively, convex) and that for every x e Cv. there exists u(x) e Cv Sl!Ch 

that 

lim /(x) = u(x). (16) 
k-+-

Then the map x ~ u(x) is concave (respectively, convex) and order-preserving. 

Proof. Deline gk(x) = ft(x) and g(x) = u(x). Repeated application of Lemma 

1 implies that gk is concave and order-preserving. The conclusion of the theorem 

then follows from Lemma 2. [] 

Theorem 2 is of interest only if one can find examples of functions f which are 

order-preserving, concave (or convex) and satisfy (16). The next theorem gives a 

start in this direction. 

Theorem 3. Let the notation and the assumptions be as in Theorem 1. In 
0 0 

addition, assume that/: C ~ C is concave (respectively, convex). Then the map 

x ~ A.(x) is concave (respectively, convex). 

Proof. Theorems 1 and 2 imply that x ~ A.(x)u is concave (convex). By the 

Hahn-Banach theorem there exists a continuous linear functional 'I' which is 

nonnegative on C and satisfies 'If( u) = 1. Because 'I' is concave and order-preserving, 

the map x ~ '\ji(A(x)u) = A.(x) is concave. [] 

It remains to give some examples. The next lemma is a classical result. 

Lemma 3. (See [9].) Let K denote the standard cone in ~n. r a real number 
0 

and 0' e K a probability vector. If r .::s; 1, the map x e K ~ Mra(X) is concave; and 

if r ~ 1, the map is convex. 



Now define M1 to be the collection of functions f e M such that for 1 ~ i < n, 

fi(x) can be represented as in (14) so that r ~ 1 for all (r, a) e ri, 1 ~ i ~ n. Define 
0 0 

M1 to be the smallest set of functions I : K -+ K such that M1 contains M1 and M1 is 

closed under addition and composition of functions. 

Lemma 4. Iff e M1, f is homogeneous of degree 1, order-preserving and 

concave. 

Proof. We have already noted that iff e M :::> Mtt f is homogeneous of degree 

one and order-preserving. It remains to prove that f is concave. Let A denote the 
0 0 

set of maps I : K -+ K which are homogeneous of degree one, order-preserving and 

concave. Lemma 3 implies that M 1 c A, and Lemma 1 implies that A is closed 

under composition. The proof that A is closed under addition is also easy and left 

to the reader. The minimality of M1 now implies that M1 c A. [] 

Corollary 1. Let K denote the standard cone in 9tn and assume that f e M1 (M1 
0 

is defined as above). Assume that there exists u e K such that f(u) = u and that 
0 0 

there exists x0 e K such that r(Xo) is primitive. Then for every x e K , there exists 

A.(x) > 0 such that 

lim /(x) = A.(x)u, (17) 

and the map x -+ A.(x) is concave. 

Proof. It is proved in Lemma 2.2 of [13] (or one can easily prove directly) that 

iff e M (which contains M1) then f'(x) and f'(y) have the same pattern of zero and 
0 0 

positive entries for all x, y e K. In particular, r(x) is primitive for all x e K, and 

(17) follows from Theorem 1. The concavity of A.(x) follows from Theorem 2 and 

Lemma4.[] 

0 

Remark 1. If f e M+ and f' (Xo) is primitive for some Xo e K, there exists u e 
0 

K such that f(u) = ~u and u is unique to within scalar multiples: see Section 2 of 

[13] and [14]. Thus iff e M+ n Mh Corollary 1 can be applied to J..:(/l(x) = g (x ). 

For general f e M, the question of the existence of an eigenvector u in the interior 

of K appears to be subde: see Section 3 of [13]. 

Corollary 2. Suppose that n =2m is an even integer, K is the standard cone in 
0 0 

9tn and f: K -+ K is a Borchardt map. If u = (1, 1, ... , 1), then f(u) = u and for 
0 

every x e K one has 

lim /(x) = A.(x)u. 
k-+~ 



The map x ~ A.(x) is concave. In particular, ifM(a, b) denotes the AGM of positive 

numbers a and b, (a, b)~ M(a, b) is concave. 
0 

Proof. Clearly f e M1, f'<Xo) has all positive entries for every Xo e K and f(u) 

= u, so Corollary 2 follows immediately from Corollary 1. [] 

The next theorem is a variant of Theorem 2. 

Theorem 4. Let C, Cv and X be as in Theorem 2. Assume that f : Cv ~ Cv is 

order-preserving and that for every x e Cv there exists u(x) e Cv such that 

lim /(x) = u(x). 
k-+-

Let D be a convex subset of X and 'If : D ~ Cv a homeomorphism of D onto Cv such 

that 'I' and '1'"1 are both order-preserving (or both order-reversing) and '1'"1f'l' is convex 

(respectively, concave). Then the map x ~ v·1(u('lf(x))) is convex (respectively, 

concave) and order-preserving. 

Proof. By assumption v·1t\jf is convex and order-preserving. Lemma 1 implies 

that ('lf"1f'lf)t = v·1fv is convex and order-preserving. The continuity of 'If and the 

displayed equation above then imply that lim(\jf1/'lf)
1 

(x) = 'lf-1(U('If(X))). Lemma 
k-+-

2 implies that '1'"1u'lf is convex and order-preserving. [] 

Remark 2. In general, the fact that a homeomorphism 'I' is order-preserving 

does not imply that '!(1 is order-preserving. For example, ifK is the cone of positive 

semidefinite self-adjoint operators on a Hilbert space H, the map 'If( A) = A 112 is an 

order-preserving homeomorphism of K onto K, but '!(1(A) = A2 is not 

order-preserving. 
0 

lfK is the standard cone in 9tn, define a homeomorphism 'If of9tn onto K by 

"'(y) E eY = ( Y1 Y2 Y,.~ \_e , e , ... , e ) , (18) 

so 

'lf-1(x) = log(x) = (log(x1), log(xJ, ... , log(x,.)). 

Both 'If and 'lf-1 are order-preserving maps with respect to the partial ordering induced 

byK. 

Lemma 5. If K is the standard cone in 9t8
, f e M+ and 'lf(y) = eY is defined by 

(18), then v·1f'l' is a convex, order-preserving map of 9tn to 9tn. 



Proof Suppose that r is a finite collection of ordered pairs (r, a), where r is a 

nonnegative real number and a e K is a probability vector. For each (r, a) e r, let 
0 

Cr cr be a positive real and define g : K -7 9\ by g (x) = :2. croMrcr<x ). To see that 
(r,cr)e r 

y -7 log(g(eY)) is convex, note that if u, v e 9\n, 0 < t < 1 and r ~ 0, then 

Mrcr(e<t-t}u+tv) ~ (Mrcr<e"))l-t (Mrie"))'. (19) 

Ifr = 0, inequality (19) becomes an equality, so assume r > 0. HOlder's inequality 

gives 

It It ) (" )1-t(" )' :2, . r(1-t)ui +rtvi = :2, ( "'I jl -t ( rvi t < :2, . "'I :2, . rv; 
. a,e . ~a;e J ~a;e _ . a,e . a,e , 
•=1 •=1 •=1 •=1 

(20) 

and inequality (19) follows from inequality (20) by taking rth roots. 
0 

For notational convenience, if x and y are vectors in K and a and J3 are real 

numbers define 

Proving the convexity of log(g(eY)) is then equivalent to proving 

g(e<1-t)u+"') ~ (g(e"))1-t (g(e"))' (21) 

where u, v and tare as above. By virtue of inequality (19), inequality (21) follows 

from 

Inequality (22) is a consequence of Holder's inequality. 

By using the above result about g, we immediately see that w·1f'V is convex if 

f E ~. Of course, it is trivial that W"1f'V is order-preserving iff E M+, because w·1' 

f and 'V are order-preserving. 
0 0 

To complete the proof, let A denote the set of maps f : K -7 K such that f is 

order-preserving and w·1f'V is convex. We know that A:::>~. so if we can prove 

that A is closed under composition and addition, it will follow that A :::> M+. Closure 

under composition is immediate from Lemma 1. Closure under addition follows 

because (as is well-known) the sum of log convex functions is log convex. [] 



Corollary 3. Let K denote the standard cone in 9tn and suppose that f e M+ 
0 

(where M+ is defined as above). Assume that there exists u e K such that f(u) = u 
0 0 

and that f'(Xo) is primitive for some x0 e K. Then for every x e K there exists A.(x) 

> 0 such that lim /(x) = A.(x )u, and for y e 9tn, the map y ~ log (A.( eY)) is convex. 
lr.-+-

Proof. The first part of Corollary 3 is immediate from Theorem 1, and the 

convexity of log(A.(eY)) follows from Theorem 4 and Lemma 5. [] 

As a special case of Corollary 3 we obtain: 

Corollary 4. Let the assumptions and the notation be as in Corollary 2. Then 

the mapy ~log (A.(e')) is a convex map from 9tn to 9t. In particular, if M(a, b) 

denotes the AGM,(a, J3) ~log M(ea, e~ is convex. 

Remark 3. lfl(a, b) is the integral given in (4), Corollary 2 and (3) imply that 

(a, b) ~ l(a, b) is convex and Corollary 4 implies that (a, J3) ~log l(ea, er>) is 

concave. Given that one knows the relationship between l(a, b) and M(a, b), a 

specialization of the argument given here seems the easiest way to prove these 

convexity properties of I. 

An open problem is to develop analogues of known results about the AGM of 

pairs of nonzero complex numbers (not merely positive real numbers) [see 7] for 

the new "Borchardt maps" defined here, when these maps operate on even numbers 

of nonzero complex numbers. 
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