Spectral Inequalities for Matrix Exponentials

Joel E. Cohen
The Rockefeller University
1230 York Avenue, Box 20
New York, New York 10021

Submitted by Richard A. Brualdi

ABSTRACT

This note generalizes an inequality of Bernstein as follows. If \(C \) is an \(n \times n \) complex matrix and \(C^{(k)} \) is the \(k \)th compound of \(C \), \(1 \leq k \leq n \), \(N = \left(\begin{array}{c} n \\ k \end{array} \right) \), and if the eigenvalues of \(C^{(k)} \) are labeled in order of decreasing magnitude \(|\lambda_1(C^{(k)})| \geq |\lambda_2(C^{(k)})| \geq \cdots \geq |\lambda_N(C^{(k)})| \), define the partial trace \(\text{tr}^{(k)}(C) \) by

\[
\text{tr}^{(k)}(C) = \sum_{h=1}^{i} \lambda_h(C^{(k)}), \quad i = 1, \ldots, N.
\]

Then for any complex \(n \times n \) matrix \(A \),

\[
\text{tr}^{(k)}(e^{A}e^{A^*}) \leq \text{tr}^{(k)}(e^{A+A^*}), \quad i = 1, \ldots, N,
\]

with equality if \(A \) is normal or \(k = n \). A spectral inequality of K. Fan is also generalized through the use of compound matrices.

1. INTRODUCTION

Mathematical models in control theory [1], statistical mechanics [5], and population biology [2] lead to formulas containing \(e^{A}e^{B} \) and \(e^{A+B} \), for noncommuting \(n \times n \) matrices \(A \) and \(B \). The behaviors of these models depend on functions of the eigenvalues of \(e^{A}e^{B} \) and \(e^{A+B} \). The purpose of
this note is to extend a recent inequality that compares the eigenvalues of $e^{A}e^{B}$ with those of e^{A+B} in the special case when $B = A^*$.

Bernstein [1] proved, among other inequalities, that if A is a real $n \times n$ matrix, $1 < n < \infty$, A^T is the transpose of A, and $\text{tr}(A)$ is the trace of A, then

$$\text{tr}(e^{A}e^{A^T}) \leq \text{tr}(e^{A+A^T}).$$

(1.1)

Bernstein's proof of (1.1) relies on Theorem 3 of Fan [3, p. 654]. This note generalizes Fan's theorem and then exploits that generalization fully to extend (1.1). The remainder of this introductory section gives some notation and definitions.

As usual, for any complex $n \times n$ matrix C, let C^* denote the conjugate transpose of C. A complex matrix C is normal if $CC^* = C^*C$. The kth compound $C^{(k)}$ of C, for $k = 1, \ldots, n$, is the $N \times N$ matrix, where $N = \binom{n}{k}$, the elements of which are the determinants of all the possible $k \times k$ submatrices of C that consist of the intersections of rows i_1, i_2, \ldots, i_k, where $1 \leq i_1 < \cdots < i_k \leq n$, and of columns j_1, j_2, \ldots, j_k, where $1 \leq j_1 < \cdots < j_k \leq n$. The elements of $C^{(k)}$ are ordered lexicographically by the indices of the rows or columns of C that are included. (See [4] for a review of compound matrices.) A first key fact (e.g., [4]) is the Binet-Cauchy formula: for any complex $n \times n$ matrices A and B, $A^{(k)}B^{(k)} = (AB)^{(k)}$, $k = 1, \ldots, n$. A second key fact is that if $\lambda_i(C)$, $i = 1, \ldots, n$, are the eigenvalues of C (some of which may be repeated), then the N eigenvalues of $C^{(k)}$ are all the products of eigenvalues of C taken k at a time:

$$\lambda_{i_1}(C)\lambda_{i_2}(C) \cdots \lambda_{i_k}(C), \quad \text{for} \quad 1 \leq i_1 < \cdots < i_k \leq n.$$

To illustrate, $C^{(1)} = C$ and $C^{(n)} = \det C$, where $\det = \text{determinant}$.

Assuming the eigenvalues of C are labeled in order of decreasing magnitude $|\lambda_1(C)| \geq |\lambda_2(C)| \geq \cdots \geq |\lambda_n(C)|$, define the partial trace $\text{tr}_i^{(k)}(C)$ by

$$\text{tr}_i^{(k)}(C) = \sum_{h=1}^{i} \lambda_h(C^{(k)}), \quad i = 1, \ldots, N = \binom{n}{k}.$$

(1.2)

Thus $\text{tr}_i^{(k)}(C) = \text{tr}_i^{(i)}(C^{(k)})$. To illustrate, $\text{tr}_i^{(k)}(C)$ is the kth elementary symmetric function of the eigenvalues of C; in particular, $\text{tr}_n^{(1)}(C)$ is the usual trace of C, and $\text{tr}_1^{(1)}(C)$ is the spectral radius of C. When C is nonnegative definite, ordering the eigenvalues of C by decreasing magnitude amounts to
ordering them by the usual order on nonnegative real numbers; thus $\text{tr}^{(k)}(C)$ is the product of the k biggest eigenvalues of C.

2. INEQUALITIES FOR EXPONENTIALS OF A AND A^*

Theorem 1. For any complex $n \times n$ matrix C and for any positive integer r,

$$\text{tr}_i^{(k)}[C'(C')^*] \leq \text{tr}_i^{(k)}[(CC^*)^r], \quad k = 1, \ldots, n, \quad i = 1, \ldots, \binom{n}{k}, \quad (2.1)$$

with equality if C is normal or $k = n$.

Proof. The arguments of $\text{tr}_i^{(k)}(\cdot)$ in (2.1) are Hermitian nonnegative definite and therefore have real nonnegative eigenvalues, so the relation \leq in (2.1) is defined.

Fan [3, p. 654] proved that for any complex $n \times n$ matrix C and for any positive integer r,

$$\text{tr}_i^{(1)}[C'(C')^*] \leq \text{tr}_i^{(1)}[(CC^*)^r], \quad i = 1, \ldots, n. \quad (2.2)$$

Now if C is replaced by $C^{(k)}$, then (by the Binet-Cauchy formula) $C^{(k)} = (C')^{(k)}$ and $(C')^{(k)*} = [(C')^*]^{(k)}$, so the argument on the left of (2.2) becomes $[C'(C')^*]^{(k)}$, and by the definition (1.2) we have $\text{tr}_i^{(1)}[(C'(C')^*])^{(k)}] = \text{tr}_i^{(k)}[C'(C')^*]$. Similarly, replacing C by $C^{(k)}$ in the argument on the right of (2.2) and using the Binet-Cauchy formula give $\text{tr}_i^{(1)}[(C^{(k)}(C^{(k)*})^r] = \text{tr}_i^{(k)}[(CC^*)^r]$.

If C is normal, then $C'(C')^* = (CC^*)^*$, so equality holds in (2.1). If $k = n$, both sides of (2.1) equal $(\det C)'(\det C^*)'$.

Theorem 2. For any complex $n \times n$ matrix A,

$$\text{tr}_i^{(k)}(e^Ae^{A^*}) \leq \text{tr}_i^{(k)}(e^{A+A^*}), \quad k = 1, \ldots, n, \quad i = 1, \ldots, \binom{n}{k}, \quad (2.3)$$

with equality if A is normal or $k = n$.

Proof. In (2.1), let $C = e^{A/r}$. Then, since $(e^A)^* = e^{A^*}$,

$$
tr_1^{(k)}(e^A e^{A^*}) \leq tr_1^{(k)} \left[(e^A e^{A^*})^r \right].
$$

Let $r \uparrow \infty$ in (2.4). By the exponential product formula of Sophus Lie (e.g., [6]), $(e^A/e^{A^*})^r \to e^{A+A^*}$, which implies (2.3).

Equality holds in (2.3) when A is normal because then e^A is normal.

It would be interesting to know necessary and sufficient conditions for equality in (2.3).

The special case of Theorem 2 when A is real, $k = 1$ and $i = n$ is (1.1) above, first proved in [1].

Dennis S. Bernstein (personal communication, 1 June 1988) points out that the square root of both sides of (2.3) in the special case $i = k = 1$ yields another known inequality: $\|e^{Ax}\| \leq e^{\mu(A)x}$, where $\| \cdot \|$ is the spectral norm (the matrix norm induced by the Euclidean vector norm), x is any n-vector, and $\mu(A)$ is the logarithmic "norm" (also called the logarithmic derivative or the measure of a matrix). See e.g. Torsten Ström, On logarithmic norms, SIAM J. Numer. Anal. 12(5):741–753 (1975), Lemma 1c(5). Thus (2.3) unifies (1.1) with a standard inequality involving the logarithmic norm.

This work was supported in part by U.S. National Science Foundation grants BSR 84-07461 and BSR 87-05047 and the hospitality of Mr. and Mrs. William T. Golden.

REFERENCES

Received 13 October 1987; final manuscript accepted 8 December 1987