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CHAPTER6 

Untangling 'An Entangled Bank': 

Recent Facts and Theories About Community Food Webs 

Joel E. Cohen 

Rockefeller University, 1230 York Avenue, New York, NY 10021-6399, U.S.A. 

I. INTRODUCTION 

This paper is an expository and nontechnical review of some recent discoveries about 

food webs. The discoveries are those I have been privileged to make jointly with two splendid 

collaborators: Fr&:Ieric Briand, formerly at the University of Ottawa and now at the 

International Union for the Conservation of Nature, Gland, Switzerland; and Charles M. 

Newman, at the University of Arizona, Tucson. These discoveries depend on data collected 

by scores of field ecologists, so the circle of contributors is much wider. 

I do not attempt here a panoramic review of community ecology (for which, see e.g. 

Diamond and Case, 1986; Kikkawa and Anderson, 1986), or even of food webs (see Pimm, 

1982, and this volume; DeAngelis et a!., 1983). I attempt rather to describe in a simple way 

some new facts that, in their original presentations, may appear forbiddingly technical. I 

hope that, in the future, a thorough theoretical understanding of these facts, and of models 

that can provide quantitative explanations of them, will lead eventually to quantitative 

understanding of many other empirically justified approaches to food webs (e.g. Cohen, 1978; 

Pimm, Chapter 7, this volume; Sugihara, 1984). 

Food webs describe which species of organisms in a community eat which other species, 

if any. Food webs figure in one of the most famous paragraphs in biology, the last paragraph 

of Charles Darwin's book, 11 0n the Origin of Species. 11 That paragraph begins: 11 1t is 
interesting to contemplate an entangled bank, clothed with many plants of many kinds, with 

birds singing on the bushes, with various insects flitting about, and with worms crawling 

through the damp earth, and to reflect that these elaborately constructed forms, so different 

from each other, and dependent on each other in so complex a manner, have all been produced 

by laws acting around us. 11 Darwin summarizes his theory of evolution and resumes: 11Thus, 

from the war of nature, from famine and death, the most exalted object which we (Darwin 

speaks anthropocentrically here] are capable of conceiving, namely, the production of the 

higher animals, directly follows. 11 The study of food webs is the study of that war of nature, 

and of the laws acting around us which govern it. 

So far as I know, food webs were first described in scientific detail at the beginning of 

this century. Now, more than a century and a quarter after Darwin published his theory of 

evolution, enough examples of the war of nature have been patiently observed and recorded to 

make it possible to understand how the lines of battle are drawn. I will illustrate what a food 
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web is and how a food web is described. 

Even relatively simple webs may seem very complex, too complex to understand 

\."~ole .. Until recent decades, ecological theorists studied small components of webs, such as 
• • ·. • ·J • • •• • : -.. ~ • ...... ~ • ~ • ..... ; • .' • '> ••• •,1- ... : ...... !!".. ~ • •. " •• • • . •• • •• .... • .. • - \.. • ..... • • • ........ ' 

interactions between a predator speCies and a prey speCies~ I have turned in the opposite · 

direction, in the hope that ensembles or collections of food webs might display simple general 

properties that are not evident from any single web. This hope, after the long labors of 

gathering and analyzing data on many webs, has been fulfilled. I will present some 

quantitative empirical generalizations that we have recently discovered about food webs. 

Then I will present two models. One of the models unifies the quantitative 

generalizations. This successful model is ridiculously simple. Any self-respecting field 

ecologist would sneer at it. (Rightly so: Where are its dynamiC's, its spatial structure, its 

representation of behavior and genetics and physiology and energy flow and environmental 

fluctuations?) I present it only because no other model at present connects and explains 

quantitatively what is observed. We call the successful model the cascade model. After 

showing that the cascade model describes what we know already, I then show that it makes 

novel predictions about things we did not know already. These predictions can be tested. 

Finally, I will outline some potential uses of facts and theories about food webs. 

II. TERMS 

Let me introduce some terms and illustrate them with an example. A food web is a 

collection of trophic species, together with their feeding relations. A trophic species is a 

collection of organisms that have the same diets and the same predators. A biological species, 

in the usual use of the term, refers to a collection of organisms with shared genetics. A 

trophic species will sometimes be a biological species, but not always. A trophic species may 

be a biological species of plant or animal, or several species, or a stage in the life cycle of one 

biological species. Hereafter, the word "species" means "trophic species." 

Each arrow in a food web goes from food to eater, or from prey to predator. I call each 

arrow a "link", short for "trophic link." 

Fig. 1 is a picture of the food web on an island in the Pacific Ocean. Some species are 

top, meaning that no other species in the web eats them, e.g., reef heron, starlings. Notice 

that the web omits decomposers. Some species are intermediate, meaning that at least one 

species eats them, and they eat at least one species, e.g., insects, skinks, fish. Some species 

are basal, meaning that they eat no other species, e.g., algae, phytoplankton. To quantify the 

structure of webs, we count the numbers of species that are top, intermediate and basal. 

These three kinds of species specify four kinds of links: basal-intermediate links, e.g., 

phytoplankton to zooplankton; basal-top links, e.g., coconut to man; 

intermediate-intermediate links, e.g., zooplankton to fish; and intermediate-top links, e.g., 

fish to frigate birds. We also count the numbers of links of each of these four kinds. 
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A chain is a path of links from a basal species to a top species, e.g., phytoplankton to 

fish to terns. The length of a chain is the number of links in it. In Fig. 1, the longest chain 

.. _,,.,_ I·~~ 8~r/?~- p~~-~ -~~-:t~~-~~-i.~ ~l}l~}ln_e, ~h.~~~~?,~ }~~&t~:f.gu;,::;.S.~~J~.s.~¥~; ~e: ~ry.~~·8~. ~···''· , .-.. . :.:~, ,, 
webs. ··. · . ·· · · . ·. · · · 

A cycle is a directed sequence of one or more links starting from, and ending at, the 

same species. A cycle of length 1 describes cannibalism, in which a species eats itseli. 

Cannibalism is common in nature. But ecologists report cannibalism so unreliably that we 

have simply suppressed it from all the data even where it is reporteq. A cycle of length 2 

means that A eats B and B eats A. In this example, as in most webs, there are no cycles of 

length 2 or more. 

In summary, the terms just defined are trophic species, including top, intermediate and 

basal; links, including basal-intermediate, basal-top, intermediate-intermediate and 

intermediate-top; and chains, length (the number of links) and cycles. 

III. LAWS 

Here are five ·laws or em-pirical generalizations ·about food webs. · · 

First, excluding cannibalism, cycles ar~ rare. This generalization, without detailed 

supporting data, was offered as long ago as 1972 (Gallopin, 1972). Of 113 webs, three webs 

each contained a single cycle of length 2, and there were no other cycles (Cohen and Newman, 

1985, p. 426; Cohen, Briand and Newman, 1986, p. 333). 

Second, chains are short (Hutchinson, 1959). If one finds the maximum chain length 

within each web, then the median of this maximum in the 113 webs in the collection studied 

by Cohen, Briand, and Newman (1986) is four links and the upper quartile of the maximum 

chain length is five links. The longest chains in all 113 webs had ten links, and only one web 

had chains that long. 

The last three laws deal with scale in variance (Cohen, 1977; Briand and Cohen, 1984; 

Cohen and Briand, 1984). We have compared the form of webs of different sizes. Such a 

comparison might be called the allometry of food webs. To appreciate the significance of 

what we found, consider a baby's face. The location of the eyes with respect to the top and 

the bottom of the head differs from the location of the eyes in an adult's face. That means 

that as the size of the face increases, the proportions change. I'm going to describe three laws 

which report that food webs, unlike a baby's face, have the same shape at different sizes. 

Scale invariance means that food webs of different size have constant proportions. 

Our third iaw is scale invariance.in three ratios: numbers of top-species in proportion 

to numbers of all species; numbers of intermediate species in proportion to numbers of all 

species; and numbers of basal species in proportion to numbers of all species. Fig. 2Jshows J"' 
the proportions of all species that are top species, intermediate species and basal species. 

There's evidently no increasing or decreasing trend as the number of species 

increases (Briand and Cohen, 1984). The variability of proportions with respect to the 
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average could be explained by chance alone. One can summarize crudely by saying that about 

a quarter (29 percent) of all species are top, about half (53 percent) are intermediate and 
.... , . about a qu~ter ( 19 pe~cent) ~f the SPecies· a.re basal .. Here, scale in~ariance describes the 

observation that as the number of species in 62 webs varies from 0 to 33, the proportions of 

top, intermediate and basal species apparently remain invariant. 

Our fourth law is scale invariance in the proportions of the different kinds of links. In 

Fig. 3a (Cohen and Briand, 1984), for example, the abscissa is the number of s_pecies and the 

ordinate is the proportion of basal-intermediate links among all links. There is no clear 

evidence of an increasing or decreasing trend. The proportions of different kinds of links, like 

the proportions of species, are approximately scale-invariant. Here the scatter about a 

horizontal line is too big to be explained by random sampling. 

The fifth law is that the ratio of links to species is scale-invariant. This turns out to 

be fundamental. Fig. 4 plots the observed number of links in each food web against the 

observed number of species, for 113 webs (Cohen, Briand and Newman, 1986). We find a 

straight line with slope about 2. That means that a web of 25 species has on average about 50 

·links. We first came across this generalization with 62 webs (Cohen and Briand, 1984). Then 

Briand collected an additional 51 webs, and we found (Cohen, Briand and Newman, 1986) 

that the new data superimpose beautifully on the old data. This scale-invariant ratio of links 

to species is a consistent feature of nature, not something we have invented. 

In summary, I have reviewed evidence for five "laws" of food webs. Qualitatively, 

these laws state that cycles are rare, chains are short, and there is scale-invariance in the 

proportions of different kinds of species, in the proportions of different kinds of links, and in 

the ratio of links to species. We have quantified each of these laws. 

4. Models 

Let me turn now from empirical regularities to models. Here some mathematics is 

inevitable. This reminds me of a story. 

A mathematician and an ecologist were sharing a cell the night before their execution 

(for crimes unimaginable). The executioner came in to ask their last wishes. 

The mathematician looked over at the ecologist and said, "I've been doing some work 

in mathematical ecology. I have some interesting results. Before I die, I would like 

to give a seminar on my work to an ecologist." 

"Certainly", said the executioner, "we'll arrange it tomorrow morning." He then 

turned to the ecologist. "And what would you like?" 

The ecologist said, "I would like to be executed before the seminar." 

Let S denote the number of trophic species and L the number of links. We 

enumerate all the species along both the rows and columns of a "predation matrix," a square 

table of numbers with S rows and S columns. Name the matrix A. We put a 1 in the 

intersection of row i and column j if the species labeled j eats the species labeled i, and a 

0 otherwise. Since I am excluding cannibalism, all the diagonal elements (where i = j) are 0. ' 
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Fig. 2 Three ratios, plotted as a function of the number of species, show scale-invariance in 

the proportions of species. The fitted lines are constrained to be horizontal. (a) Top 

species/total species. The height of the line is 0.2853. (b) Intermediate species/total species . 

. , : ·:·. 'rhe height ofthe line;i& 0.5251.·-:.(c) Basal species/total.species; ··The height:' of the Une-·is ·.,,. ;~··:: · ~:·; ~; ,. · 

0.1896. From p. 265 of Briand and Cohen, 1984: 
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Fig. 3. Four ratios, plotted as a function of the number of species, show scale-invariance in 

the proportions of links. The fitted lines are constrained to be horizontal. (a) 

Basal-intermediate linksftotallinks. The height of the line is 0.274. {b) Basal-top 

links/total links. The height of the line is 0.077. (c) Intermediate-intermediate links/total 

links. The height of the line is 0.301. {d) Intermediate-top links/total links. The height of 

the line is 0.348. The points in the upper left corner of (a) are based on very few links. From 

p. 4107 of Cohen and Briand, 1984. 
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Fig. 4. Observed number L' of links as a function of the observed numberS' of species in 113 

webs. From p. 335 of Cohen, Briand and Newman, 1986. 
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In terms of this predation matrix, the total number of links is the sum of the elements of A. 

The sum picks up a 1 if there is a link from prey to predator and a 0 if there is no link. 

The predation matrix also tells whether a species is top. If a species is top, then 

nobody eats it. That means that the row of that species should be all O's. So a 0-row \ 

corresponds to a top species. Similarly, a 0--wlumn corresponds to a basal species because the 

species is not eating anything. A species that has neither a o-row nor a o-column is 

intermediate. 

I am going to present first a model that does not work. The calculation in this model 

is simple and gives the flavor of a more complicated model that does work. For the model 

that does work, I will just describe the results without going through the calculations. 

Here is the simplest model I could think of: the anarchy model. I hope you will agree 

that it has some beautiful features. The anarchy model assumes that the probability that any 

species j eats any other species i is just cfS, independently of whatever else is going on in 

the food web. That is a simple model. (The brazen unreality of the assumption that all 

species act by identical and independent random mechanisms is just what lends verisimilitude 

to the story about the jailed mathematician and ecologist. But wait and see what emerges 

··from this tissue of fiction!) It follows that the probability that species j 

does not eat species i is 1- cfS. On the average each species eats c species chosen from, 

among the S possible species, randomly and independently of all other species. 

How do the anarchy model's predictions compare with our five laws? The expected 

number of links is the expectation of the sum of the predation matrix elements. As is 

conventional, I will use E to denote average or expected number, so E(L) denotes the 

expected number of links. There are s2 elements in the predation matrix A and the 

probability is c/S that an element aij equals 1. The expected sum of the elements is s2 
x 

cfS = cS = E(L). We have to extract the constant of proportionality, i.e.~ the slope in Figure 

4, from the data. We take c = 2. That is the only curve-fitting in this model. Everything 

else is derived. Thus, the anarchy model predicts that the expected number of links should be 

proportional to the number of species, as observed. The links-species scaling law fits 

quantitatively because we made it fit by taking c = 2. 

Now I show that the anarchy model predicts qualitatively the scale--invariance in the 

proportion of top species, but gets the proportion wrong quantitatively. Since there are S 

species, the expected number of top species is S times the probability that any one species is 

a top species. The probability that one species is a top species is the probability that the sum 

of elements in some row is 0. The row sum is 0 if and only if every elements is 0. So E(T) 

is S times the probability, raised to the S power, that each row element is zero. The 

probability that a single element is 0 is 1- cfS. As S gets big, (1- c/S)S approaches 

e-c. So E(T)/S, the expected fraction of top species, is asymptotically (for large S) e-c. 

Qualitatively, this is good. It means that as the number of species increases the fraction of 



-81-

top species does not change (more accurately, the fraction approache'l a limit). This simple 

model predicts scale-in variance of species proportions. 

However, if c = 2 in this formula, e-c ~ 14 percent. The species scaling law is 

qua:Jitatively good but qu~titatively poor_ beca~e 14 pe,rcent is too-,small::-:;-;-it .. is n9t.n~r _th~ .... , ..... , .. 
O~EHtU~·er (iet a.ion~ 29 Perce~t) ~how~ in Figure 2. . . ... · . . . . . 

What else does this model predict? The probability that a web has at least one 
2 

2-cycle as S goes to infinity is 1 - e -c 12. If c = 2, the model predicts that 86 percent of 

webs should have one or more 2-cycles. That is not good because we found 2-cycles in only 3 

of 113 webs. 

The principal problems with the anarchy model are that it predicts too many cycles 

and that it fails to predict the proportion of top species. Let's fix one problem at a time and 

see whether that solves any other problems as well. We get rid of the problem with cycles by 

fiat in the next model, the cascade model. 

I am now going to describe the cascade model, but not the calculations required to 

squeeze results out of it. Assume S species. Somehow nature numbers them from 1 to S 

(w~thout showing us the numbering). Any species j in this hierarchyor cascade can feed on 

any species i with a lower number i < j (which does not mean that j ~·feed on i, only 

that j ~feed on i). However, species j cannot feed on any'species with a number k at 

least as large, k ~ j. The cascade model assumes that each species actually eats any,species 

below it with some probability d/S, independently of whatever else is going on in the web. 

(I have changed notation for the probability parameter from c to d so as not to mix up the· 

anarchy and cascade models.) 

In the predation matrix A, ~j is 0 always if i ~ j. The predation matrix with this 

labelling is strictly upper triangular. An element above the diagonal (i < j) is 1 with 

probability d/S and is 0 with probability 1- d/S, and all elements are independent. 
. . . ~ . . 

To derive predictions from the cascade model, we must take one number from natu~e. 

To simplify slightly, we estimate d approximately as twice tlie observed number of links · 

divided by the observed numbe~ of species;. we multiply the number of links by two here 

because roughly half of the matrix is empty. As the number of species becomes large, the 

cascade model predicts 26 percent top species, 48 percent intermediate species an? 26 percent 

basal species. We observed 29 percent top species, 53 percent intermediate and 19 percent 

basal~ We predict the following percentages ofbasal-:-intermediate, basal-top, .... 

intermediate-intermediate and intermediate-top links: 27, 13, 33 and 27. We observed, 
correspondingly, 27, 8, 30 and 35. · · .- · · 

I think it is nice that the cascade model reproduces all the laws of scale-invariance 

qualitatively, but far more striking that the cascade model gives a remarkable quantitative 

agreement between observed and predicted proportions. We put one number d into the 

cascade model and get out five independent numbers (because the three species proportions 

. l 

' ·.·' 
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have to add up to 1 and the four link proportions have to add up to 1). I would like to 

emphasize that these predictions use only the observed ratio of links to species. 

For a finite number of species, we calculated from the cascade model the expected 

fraction of top species and the predicted variance. Figure 5 shows that the cascade model 

predicts not only the means but also the variability in the proportion of top species. We do 

not know whether the cascade model can predict the variability in proportions of links 

because we do not know how to calculate analytically what variability the cascade model 

predicts. 

The cascade model was built to, and does, explain qualitatively and quantitatively the 

mean proportions of different kinds of species and links. Can the cascade model describe the 

number of chains of each length counting all the possible routes from a basal species to a top 

species? 

Let me illustrate with an artificial example (Figure 6) how to get a frequency 

histogram of chain length from a food web. The link from 1 to 2 is a chain of length 1. The 

path 1, 3, 4 is a chain of length 2, and the path 1, 3, 5 is another chain of length 2. A 

. numerical summary of the chain length distribution of the web in Figure 6 is that it has .. one 

chain of length 1, two chains of length 2 and no longer chains. 

Figure 7 shows the expected number of chains of each length, according to the cascade 

model, using parameters of a typical web, namely 17 species and d close to 4. Figure 7 also 

shows the results of one hundred computer simulations of the model using the same 

parameters. The sample mean numbers of chains of each length agree well with theoretically 

expected number calculated from the model. That agreement increases the probability that 

both the calculations and the simulations are right. 

To see how well the cascade model predicts ~he observed distribution of chain length of 

a given real web, we generated random webs according to the cascade model with the 

parameters of the observed web. We measured how often the chain length distribution of a 

random web was further from the chain length distribution predicted by the cascade model 

than the real observed chain length distribution was from the predicted distribution. We used 

two measures of goodness of fit: the sum of squares of differences and a measure like 

Pearson's chi--llquared. If the discrepancy between the observed and the expected frequency 

distributions was smaller than most of the discrepancies between webs randomly generated 

according to the cascade model and the mean frequency distribution expected from the model, 

we said the fit was good. If the discrepancy between observed and 

simulation is 0.003. From p. 324 of Cohen, Briand, and Newman, 1986. 

predicted chain length distributions was bigger than most simulated discrepancies, we said the 

fit was bad. 

Have no illusions about what a good fit means. Food web 18 in Figure 8 illustrates a 

good fit. Food web 53 illustrates a poor fit. 

Of 62 webs in Briand's original collection, 11 or 12 (depending on the measure of 
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Fig. 5. The predicted mea.n propNtion of top species (middle line) and a confidence interval 

of +2 standard deviations (upper and lower lines) as a function of total species S, according 

to the Ca.'jcade model. X is constant environment, o is fluctuating environment. The 

. . . ;symbols X. and o .. have been perturbed from their exa~t locations by a small random amo.unt 
·- . to i~di~;e ~h;~-s~~~r~ f~d :~~b~~h~v~-~~ctl; t·h~' sa;~ ~~~di~afe~·· >rli~' d~t~·'iUe ~~p·l~tt~d .", .. -> ''" . 

-

from Briand and Cohen, 1984. From p. 436 of Cohen and Newman, 1985. 
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goocness of fit used) were badly described by the cascade model. The model's success with 50 

or 51 of these webs made us afraid that we had overfitted the model to the data. Perhaps, by 

constructing the cascade model to explain the mean proportions of top, intermediate and 

basal species and the proportions of different kinds of links, we had used so much information 

from the data that there was no possibility for the fits to the chain length distribution to be 

bad, even though they were not used to build the model. This worried us. So Frederic Briand 

found and edited 51 additional webs which we had never analyzed before. The ratio of links 

to species was the same for these new webs as for the old webs, as I mentioned alreadyr With 

these fresh data, we found only five webs with poor fits to the cascade model's predicted 

frequency distribution of chain length. The proportion of poor fits, 5 of 51 webs, was smaller 

among the new webs than it had been among the original webs. This gave us some confidence 

(in addition to considerable surprise and pleasure). 

The cascade model uses no information about chain length to predict the frequency 

distributions of chain length! The predictions derive solely from the number of species and 

the number of links. No parameters are free. 

Let me moderate this final burst of enthusiasm for the empirical successes of the 

cascade model by emphasizing that the model needs to be tested further, tested until it fails, 

as it surely will. How well can the cascade model predict the moments of chain length (as 

Stuart Pimm has asked), or patterns of omnlvory and intervality (Cohen, Briand and 

Newman, 1986)? Not all the evidence is in yet. Many good questions remain to be asked. 

V. PREDICTIONS 

What new predictions does the cascade model make? 

One prediction may not be new, but receives a new foundation from the cascade model. 

This prediction is that, with improved data, the number of basal species should equal the 

number of top species. The cascade model predicts equal expected numbers of top and basal 

species because the model has complete symmetry between top and basal species. This 

prediction supports what Stuart Pimm had been saying for years. His suspicion (1982) that 

ecologists are more interested in the feathered and furry animals at the top of the web than in 

the slimy and creepy animals at the bottom is consistent with everything that we have found. 

Secondly, in large webs (S > 17), the cascade model implies a rule of thumb which I 

have never seen stated in the ecological literature: The mean length of a chain should equal 

the mean number of prey species plus the mean number of predators of an average species. 

Both should equal a number near 4. That rule of thumb follows from two separate analyses of 

the cascade model. 

Can the cascade model explain qualitatively why the longest chains in webs are 

typically short? Figure 9 shows the relative expected frequency of various chain lengths as 

the number of species goes to infinity, according to the cascade model. Practically, no chains 

have length 8, 9 or 10. A beautiful piece of mathematics due to Charles M. Newman shows 
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Fig. 6 Hypothetical food web to illustrate how the frequency distribution of chain lengths is 

counted. There is one chain of length 1 (from species 1 to species 2) and there are two chains 

of length 2 (from species 1 to species 4 and from species 1 to species 5). 
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Fig. 7. Theoretically expected number (solid line) of chains of length 1 to 9 in a web of 

S = 17 species, according to the cascade model with c = 3. 75, sample mean number (0) of 

chains of each length in 100 simulations of the ca.'3cade model, and sample mean plus one 

sample standard deviation (o) in the number of chains of each length. No chains with more 

than nine links occurred in the simulations; the expected total number of such chains per 

simulation is 0.003. From p. 324 of Cohen, Briand, and Newman, 1986. 
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that, in very large webs, the longest chain grows like log Sflog logS. That is very slow 

growth. In a web with 1018 species, which is probably an upper bound for the world, the 

caScade model predicts that the longest chain will almost never have more than 20 links. 

VI. APPLICATIONS 

What good is all this for the real world of practical affairs? Let me speculate about 

four ways this work may contribute to human well-being. 

First, environmental toxins cumulate along food chains. An understanding of the 

distribution of the length of food chains is essential, though not sufficient, for understanding 

how toxins are concentrated by living organisms. 

Second, an understanding of the invariant properties of food webs is essential for 

anticipating the consequences of species' removals and introductions. Such perturbations of 

natural ecosystems are being practiced with increasing frequency in programs of biological 

control. So far, people have not been very successful at anticipating all the consequences of 

introducing or eliminating species. An understanding of food webs should help anticipate the 

consequences. 

Third, an understanding of food webs will help in the design of nature reserves and of 

those future, mobile nature reserves that will be required for long-term manned spaceflight. 

A nature reserve with all top species would be expected to have trouble, according to the 

cascade model. For humans to survive and to be fed in space, we need to know more about 

the care and feeding of food webs. 

Fourth, a.nd finally, since food webs include man, perhaps an understanding of such 

webs will give us a better understanding of mants place in nature, here on earth. It is a 

remarkable fact that we have not detected any consistent pattern of difference between those 

webs in which man is a species and those webs in which man is not a species. 

Of course, as a graduate student pointed out to me when I said this, we have not 

looked yet at agricultural ecosystems strongly influenced by man. When we look at a new 

class of food webs, we might see new patterns. God created graduate students to keep us all 
honest. 
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Fig. 8. Examples of "acceptable" and "poor" fits between the predicted (mean) numbers of 

chains of each length according to the cascade model and the observed numbers of chains of 

each length. In the serial numbering of Briand (1983), which is used here, number 18 is the 

Kapingamarangi Atoll food web (see Fig. 1 above) of Niering (1963) and number 37 is the 

California sublittoral (sand bottom) food web of Clarke et al. (1967). These webs correspond 

(see Briand, 1983) respectively to food webs numbered 11 and 2 by Cohen (1978), who gives 

the predation matrices in full. For food web 18, four chains of length 4 are shown while Fig. 1 

has one chain of 4 links. The reason for this discrepancy is that Cohen (1978) added to the 

predation matrix for this web links that Niering (1963) described in his text but omitted from 

his figure. 

food web 18 food web 53 

"acceptable" fit 11 poor11 fit 

chain predicted observed chain predicted observed 

length frequency frequency length frequency fr.equency 

1 6.5 13 1 6.5 1 

2 9.9 10 2 8.6 19 

3 8.6 5 ~3 12.4 0 

4 5.2 4 

~ 5 3.6 0 
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Fig. 9. Asymptotic relative expected frequency of chains of each length, in webs with an 

arbitrarily large number of species, according to the cascade model with c = 3.71. Modified 

from p. 361 of Newman and Cohen, 1986. 
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