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Two well-established, and almost equivalent, em
pirical generalizations about community food webs are 
the link-species scaling law and the hyperbolic con
nectance law. The link-species scaling law says that, 
in community food webs with a moderate number of 
trophic species (~ 5-50), the expected number of tro
phic links is directly proportional to the number of 
trophic species, with a coefficient of proportionality 
near 2; on average, community food webs have about 
twice as many trophic links as trophic species. The 
hyperbolic connectance law says that in community 
food webs with a moderate number of trophic species, 
the product of the number of species and the con
nectance (defined below) is approximately constant 
(with a value near 4), i.e., that the connectance is a 
hyperbolic functi<m ofthe number of species. The link
species scaling law and the hyperbolic connectance law 
are mathematically equivalent when the number of 
trophic species is large compared with 1. 

Here we explain these empirical laws quantitatively 
by combining a dynamic model of ecological com
munities with a model of the incompleteness of eco
logical observations. This conceptual link provides, for 
the first time, a partial dynamic basis for the cascade 
model, a static stochastic model that predicts impor
tant structural properties of community food webs. On 
the basis of parameter estimates obtained by fitting the 
models to the link-species scaling law, it is estimated 
that ecologists record in food webs 20% or fewer of the 
dynamic interactions among species in communities 
with 30 or more trophic species, and 10% or fewer of 
the dynamic interactions among species in commu
nities with 50 or more trophic species. 

A MODEL WITH A CHANGING COMMUNITY MATRIX 

Paine (1988) pointed out that it would be highly 
desirable to find a dynamic basis for static empirical 
regularities and static stochastic models that describe 
observed community food webs. The same desire to 
find a dynamic basis has been expressed by others, 

including Pimm (1982), Cohen and Newman (1985b: 
442), Cohen et al. (1985:460), and Newman and Cohen 
(1986:376). Paine also pointed out, as have others, that 
ecological data generally, and especially data on trophic 
and dynamic interactions in communities, result from 
the selective and imperfect attention of ecologists. 

Here we suggest that criteria for the probable sta
bility or instability of an ecological community, in 
combination with a simple model of the incomplete
ness of ecological observations, can provide a partial 
dynamic basis for some static regularities (e.g., Briand 
1983, Briand and Cohen 1984, Cohen and Briand 1984) 
and static models offood webs (e.g., Cohen and New
man 1985b, Cohen et al. 1985, 1986, Newman and 
Cohen 1986). The almost equivalent static empirical 
regularities that will be explained here are the link
species scaling law and the hyperbolic connectance law. 

Others have proposed a dynamic derivation of the 
hyperbolic connectance law from May's criteria (1972, 
1973) for the stability or instability of a model of eco
systems. Unfortunately, those criteria are erroneous for 
May's model (Cohen and Newman 1984, 1985a), and 
hence that proposed derivation fails. 

Consider a simple, highly idealized community model 
(Cohen and Newman 1984) inspired by a model from 
May (1972, 1973). Suppose the state of a community 
is described by a real vector x(t) of S 0 elements. The 
positive integer S0 represents the number of species 
selected for a dynamic description of the community. 
These "dynamic" species might correspond to biolog
ical species, or to age groups within a species if age 
structure is important, or to genotypes within age groups 
if age structure and genetics are important. No matter 
what level ofbiological detail is selected, a purely biotic 
description of the state of a community represents a 
gross simplification that omits a large number of other 
potentially influential variables. Hence it is to be ex
pected that a description of community dynamics in 
terms of S0 dynamic species will be incomplete and 
therefore subject to influences that may appear random 
within the framework of the biotic model. 
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The i'h element x,(t) ofx(t) is interpreted as the dif
ference between the quantity (e.g., number of individ
uals or biomass) of dynamic species i at time t and the 
quantity of the same species at a hypothetical point of 
equilibrium, arbitrarily taken to be the origin 0. Sup
pose timet to be discrete, t = 0, 1, 2, .... The generally 
nonlinear dynamics of the community are modeled by 
a linear approximation near the origin: 

x(t) = A(t)x(t - 1), t = 1, 2, 0 0 0, (1) 

where x(O) i" 0 (i.e., the community is initially per
turbed away from equilibrium) and each A(t) is a real 
S0 x S0 matrix with random elements au(t) indepen
dently and identically distributed for all i = 1, ... , S0 ; 

allj = 1, ... , S0 ; and all t = 1, 2, .... 
The matrix A(t) is called the community matrix. The 

element ay(l) describes the effect of each incremental 
unit ofx;(t- 1) on x,(t). The elements of A(t) represent, 
not only trophic relations, but all interactions that af
fect dynamics, including, e.g., competition, mutualism, 
and the effects of random environmental perturbations 
on these interactions. For this reason, we do not require 
that au(t) < 0 whenever ait) > 0, as might be reasonable 
if we were modeling only trophic interactions, or that 
a,(t) <0, as might be reasonable if density-dependent 
autoregulation were the only factor effective in con
trolling the size of the i'h dynamic species. We assume 
that many factors affect dynamic interactions in the 
community and that trophic factors are not necessarily 
always dominant. 

The assumption that the elements a,;(t) are random 
and independent for all i, j, and t reflects a lack of 
detailed knowledge of their actual values and is in
tended to approximate their behavior in an ensemble 
of communities. May (1972) assumed A(t) to be the 
same for all t. Allowing the community matrix to vary 
in time appears to be a step in the direction of realism. 

Modell shares with May's (1972) model a potential 
weakness pointed out by DeAngelis (1975): neither 
represents explicitly a material or energy balance of 
biomass flows. How important this potential weakness 
actually is depends on how variable assimilation effi
ciencies are over time and from species to species, and 
on how large and variable autotrophic flows are com
pared with heterotrophic flows. Some more general 
conditions for Model 1 considered by Cohen and New
man (1984) may incorporate a material or energy bal
ance in biomass flows, but that remains to be deter
mined. 

The distance of the community's state vector x from 
the point of equilibrium 0 will be measured by llxll = 

max1 I x1 I (but the following results apply to most other 
norms, such as Euclidean distance). For any nonran
dom initial perturbation x(O), the asymptotic rate of 
growth ofllxll is A[x(O)] = lim,_oollx(t)ll 11', provided the 
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limit exists with probability 1. In the cases that will be 
considered here, A[x(O)] exists almost surely (i.e., with 
probability 1), is nonrandom, and does not depend on 
the initial state of the community x(O) [assuming al
ways that x(O) i" 0]. Consequently, it will make sense 
to speak simply of the asymptotic growth rate A of 
perturbations from equilibrium, keeping in mind that 
A depends on both the number of dynamic species and 
the distribution assumed for the random elements au(t). 

The community described by the time-series of com
munity matrices {A(t)}~~~ is defined to be stable if 
and ortly if A < 1, because the deviations x(t) from 
equilibrium 0 almost surely eventually decay toward 
0 at an exponential rate. Similarly, the community is 
defined to be unstable if and only ifA > 1, because the 
deviations x(t) from equilibrium almost surely even
tually increase in size at an exponential rate. When A 
= 1, the community is defined to be at the frontier of 
stability. For a fixed number of dynamic species, there 
are some distributions (those in the domain of stability) 
of the random elements ay(t) where A < 1; some dis
tributions (those in the domain of instability) where A 
> 1; and some distributions (those at the frontier of 
stability) where A = 1. 

A community that is unstable, according to the mod
el, is in theory less likely to persist as a community. 
However, a community could fail to satisfy the crite
rion of local linear stability used here and still satisfy 
other criteria of stability, such as having stable limit 
cycles. So it is not surprising, as Auerbach (1984) sug
gests, that communities that fail to satisfy a criterion 
of stability are observed in nature. The concept of sta
bility used here is widely used by others (e.g., Pimm 
1982, 1984) and may be useful, but clearly has its 
limits. 

As did May (1972), consider a sequence of com
munities with increasing numbers S0 of dynamic 
species. For each S0 , the state vectors x(t) and matrices 
{A(t)}~~~ are of size S0 and S0 x S0 , respectively. 
The sequence of model communities is defined to be 
asymptotically stable (or asymptotically unstable) if 
and only if, for large enough S0 , the community is 
always stable, A < 1 (or unstable, A > 1), i.e., if and 
only if there exists a positive integer S0 such that, for 
all S0 > S0 , the community is stable (or unstable). 

A MODEL OF IMPERFECT OBSERVATION 

Prompted by Paine's (1988) criticisms of ecological 
data, we suppose that a field ecologist has a threshold 
for noting the existence of an interaction between two 
species. Specifically, we suppose that there exists a pos
itive number .:l such that, whenever -.:l :s ay(l) :s +.:l, 
the ecologist records alj(t) = 0; while whenever au(t) < 
-.:lorau(t) > +.:l, theecologistsrecordsa,;(t)ashaving 
some nonzero value. Define P(S0 ) to be the probability 
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that the ecologist records a,it) as having some nonzero 
value in a community matrix with S0 species, i.e., the 
probability that a,it) > +~or aiJ(t) < -~. If F(x) is 
the cumulative distribution function of aiJ(t), i.e., the 
probability that a,if) < x, then P(S0 ) = F( -~) + 1 -
F(~). 

Let L 0 (t) be the number of recorded nonzero ele
ments of A(t), i.e., the number of recorded dynamic 
"links" in the community. Since the probability that 
any one link au( f) is recorded as nonzero is just P(S0 ), 

L 0 (t) is the number of "successes" (i.e., nonzero ele
ments) in Sf, trials with probability of success P(S0 ). 

Thus the random variable L 0 (t) is binomially distrib
uted with parameters Sf, and P(S0 ). Consequently, for 
t = 1, 2, ... , the mean of L 0 (t) is E[L0 (t)] = 

P(S0 )Sf,. Since this expectation is independent oftime, 
the indexing by time twill henceforth be dropped when 
referring to the expected number of dynamic links. 
According to the binomial distribution, the variance 
of L 0 (t) is Var[L0 (t)] = P(S0 )[1 - P(S0 )]Sf,. The vari
ance is independent of time. Thus: 

E(L0 ) = P(S0 )Sf, , (2a) 
Var(L 0 ) = P(S0 )[1 - P(S0 )]Sf, . (2b) 

The variables in Equations 1 and 2 are dynamical 
variables. The interacting groups of organisms, S0 in 
number, are defined as narrowly as is necessary to pre
dict dynamics. By contrast, the variables recorded in 
food webs are trophic variables. A food web matrix 
records only feeding interactions. "Trophic species," 
Sr in number, are equivalence classes that consist of 
dynamic species with identical sets of predators and 
identical sets of prey (Sugihara 19 82, Briand and Cohen 
1984). Thus Sr :S So. 

To translate dynamical variables into trophic vari
ables, suppose that, when the number of species is 
sufficiently large, there is a direct proportionality be
tween So and Sr; say S0 = c,Sr. Suppose also that 
there is a direct proportionality between L 0 , the num
ber of dynamic links or elements of A(t) recorded as 
nonzero, and Lr, the number of recorded trophic links 
in the community's food web; say L 0 = c2Lr. Then 
Equations 2a and 2b may be expressed in terms of 
variables measurable in trophically lumped food webs 
as 

E(Lr) = P(c 1Sr)(cflc2)S?, (3a) 
Var(Lr) = P(c,Sr)[1 - P(c 1Sr)](cTicDS?. (3b) 

Eq. 3a (but not 3b) remains valid even if the propor
tionality between L 0 and Lr is not valid for the vari
ables themselves but only for their means. 

What is c 1? If dynamic species interact trophically 
according to the cascade model (Cohen and Newman 
1985b) and if (as observed) there are twice as many 
links as species, the expected fraction of nonisolated 
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(i.e., trophically connected) dynamic species lost due 
to trophic lumping approaches 16e-8/3 "'=' 0.002 as S0 

becomes large (Cohen and Newman 1985b:440). Thus 
c, is very close to 1, and may reasonably be approxi
mated as 1. 

What is c2? If dynamic species} eats dynamic species 
i, the trophic link from i to j contributes a negative 
term to the sum of terms that compose a,it) and con
tributes a positive term to the sum of terms that com
pose a1;(t); assuming the non trophic terms do not cancel 
the trophic term in each element, one trophic link con
tributes to two nonzero dynamic links in the com
munity matrix. Interactions between species other than 
through feeding could cause additional nonzero ele
ments in the community matrix. As a first approxi
mation, we shall take c2 = 2. 

This analysis of the proportionality between L 0 and 
Lr may seem to contradict our justification for inde
pendent and identically distributed elements in the dy
namic community matrix. Although we make no claim 
of a complete argument, that apparent contradiction 
can be greatly lessened by the remark following Eq. 3b. 

Cohen and Briand ( 1984) and Cohen et al. (1986) 
observed empirically that, to good approximation, 

(4) 

with c "" 2. This relation is the link-species scaling law. 
The question is to what extent the empirical linear 
relation (4) between species and links can be reconciled 
with the theoretical relations (2a or 3a). Evidently what 
is required is that P(S0 ) be inversely proportional to 
So. 

MAJOR AssuMPTIONS: LIFE AT THE 

FRONTIER OF STABILITY 

We have described a model of community dynamics 
and a model of imperfect observation. 

In spite of the limitations on the concept of stability 
used here, we suppose further that a community evolves 
to the frontier of stability, either by evolution in the 
number of species S0 or by evolution in the distribu
tion of interaction coefficients or by both. 

For each S0 , we also suppose that each element aiJ(t) 
has a density function sufficiently smooth to satisfy the 
general conditions of Cohen and Newman (1984). 
Within these general assumptions, we shall consider 
two distinct possibilities: first, that the distribution of 
each element has a finite variance u2(S0 ) or, equiva
lently, a finite standard deviation u(S0 ), and, second, 
that the distribution has an infinite variance. The rea
son for considering distributions with infinite variance 
will become clear. When a,1(t) has a mean, it will be 0. 
In all our specific examples, the distribution of aiJ(t) 
will be symmetric. 

We shall show that being at the frontier of stability 
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FIG. 1. Number of trophic links as a function of the num
ber of trophic species. Linear: a straight line E(L0 ) = 2S0 , 

summarizing the empirical link-species scaling law. Normal: 
the elements of the community matrix are assumed to be 
normally distributed, and~ = 0.26. Laplace: the elements of 
the community matrix are assumed to be Laplace distributed, 
and~= 0.2525. Stable: the elements of the community matrix 
are assumed to be symmetric stably distributed, and K = ~ -· 
= 15. The upper and lower confidence intervals for the La
place distribution span ± 3 standard deviations. 

constrains the parameters of any distribution of alj(t), 
and that this constraint in combination with the model 
of imperfect observation explains the link-species 
scaling law and the hyperbolic connectance law. 

INTERACTION COEFFICIENTS HAVE FINITE VARIANCE 

Suppose now that each element aiJ(t) has a finite 
variance. We consider specifically the normal distri
bution and the Laplace (or two-tailed exponential) dis
tribution (Johnson and Kotz 1970). 

If a11(t) is a normal random variable N[O, u2(S0 )] 

with mean 0 and variance u2(S0 ), then the model com
munity is at the frontier of stability (A= 1) if and only 
if u2(S0 ) = (1/2)exp[ -1f(S0 /2)], where 1f is the digamma 
function (Cohen and Newman 1984:287, Eq. 2.9). Let 
<I>(x) = P[N(O,l) < x] be the cumulative distribution 
function of the standard normal distribution with mean 
0 and variance 1. The threshold of observation Ll is Ll/ 
u(S0 ) standard deviations from the mean of N[O, u2(S0 )]. 

Since <I>(-x) = 1 - <I>(x), 

P(S0 ) = F(- Ll) + 1 - F(Ll) 
=<I>[ -Ll/u(S0 )] + 1 - <I>[ +Ll/u(S0 )] 

= 2[1 - <I>(+Ll{(l/2)exp[-1f(S0 /2)]}- 112)]. 

Using this formula in Eq. 3a, with S0 = c1Sy, gives an 
exact formula for the expected number of trophic links 
E(Ly) as a function of the number of trophic species. 
That formula can be evaluated numerically using ra
tional approximations for <I> (e.g., Abramowitz and Ste
gun 1965: 932) and finite sums for 1f at integral and 
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half-integral arguments (e.g., Abramowitz and Stegun 
1965:258). We fixed the parameter values c1 = 1 and 
c2 = 2 and selected Ll = 0.26 by numerical experimen
tation and visual inspection. 

Fig. 1 shows that the predictions from the normal 
distribution (open rectangles) are not far from the em
pirical link-species scaling law (solid rectangles), but 
the normal predictions are curved concavely. 

For distributions of alj(t) other than normal, the ex
act variance at the frontier of stability is unknown when 
S0 is finite. More is known about the asymptotic fron
tier of stability in the limit as S0 becomes large. We 
shall use what is known by making the additional im
portant assumption that the theory for large S0 can be 
applied when S0 is finite, as in data. 

Under quite general conditions, which are satisified 
by the Laplace distribution among others, Cohen and 
Newman (1984) proved that if 

(5) 

then the sequence of model communities is asymp
totically stable, while if 

(6) 

the sequence of model communities is asymptotically 
unstable. 

Inequalities 5 and 6 are similar in form to May's 
(1972) criteria for stability and instability, respectively, 
but there is a crucial difference. Here the elements of 
the community matrix are assumed to have probability 
0 of being equal to 0. Every dynamic species interacts 
with every other. If each element a,p) were equal to 0 
with some positive probability, then the community 
modeled by Eq. 1 would be asymptotically stable with 
probability 1, regardless of u2(S0 ), because there would 
be a positive probability for each t that all the elements 
of A(t) would be zero simultaneously, and hence it would 
be inevitable that for some t all the elements of A(t) 
would be zero simultaneously. 

Separating the domain of asymptotic stability (In
equality 5) from the domain of asymptotic instability 
(Inequality 6) is the asymptotic frontier of stability, 
which is close to the solution of S 0 u2(S0 ) = 1 for large 
S0 • Thus for large S0 , u2(S0 ) ""' 1/S0 at the asymptotic 
frontier of stability. As a first approximation, we shall 
take this approximate equality as an equality: u2(S0 ) 

= 11 S0 . Let u = Ll/u(S0 ). Then F(Ll) = F([Ll/u(S0 )]u(S0 )) 

= F[uu(S0 )]. At the asymptotic frontier of stability, we 
have, for large S0 , 

P(S0 ) =F(-Ll) + 1 - F(Ll) 
=F[-uu(S0 )] + 1 - F[+uu(S0 )] 

~ u-2 = u2(S0 )/ Ll2 ""' li(S0 Ll2). (7) 

The inequality in (7) is just the Bienayme-Chebyshev 
inequality. This simple model of imperfect observation 
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implies that, for large S0 , the probability of observing 
a link must fall at least as fast as a constant times 
l/S0 . The fatter the tail of the distribution F, the closer 
the inequality in (7) will be to an equality. However, 
the inequality in (7) cannot be replaced by equality for 
all large S0 if the variance of aJt) is finite, as assumed 
so far. 

The Laplace distribution has tails that are fatter and 
easier to describe analytically than those of the normal 
distribution. The Laplace distribution with density 
function fix)= (2•W'exp( -lxl/¢) has mean 0 and vari
ance 2¢2 ; the parameter¢ is assumed to be positive. 
At the asymptotic frontier of stability, for the Laplace 
distribution, 2¢2 = u2(S0 ) :::::: ll S0 , and hence P(S0 ) = 

exp(-~[2S0] 112 ). Taking this approximation as exact 
for the purpose of calculation, we fixed the parameter 
values c, = 1 and c2 = 2 and selected~ = 0.2525 by 
numerical experimentation. For 5 ::s ST ::s 50, the re
sulting agreement between the predicted E(LT) (Fig. 1, 
solid triangles) and the empirical linear function 2ST 
(Fig. 1, solid rectangles) is remarkable. 

The confidence intervals for the Laplace distribution 
given by ± 3 standard deviations around the predicted 
mean numbers of links (Fig. 1) include the curve pre
dicted from the normal distribution. Confidence in
tervals are shown in Fig. 1 only for the Laplace dis
tribution to avoid cluttering the graph. 

The class of distribution functions of the interaction 
coefficients a,it) that will closely approximate the lin
ear relation (Eq. 4) over the observed range of trophic 
species remains to be determined. The ease here of 
finding one such distribution function, the Laplace, 
suggests that this class of distribution functions is not 
small. 

INTERACTION COEFFICIENTS HAVE INFINITE VARIANCE 

To reconcile Prediction 3a from the model of im
perfect observation with the empirical link-species 
scaling law (Eq. 4) requires distributions such that, as 
nearly as possible, P(S0 ) is proportional to ll S0 • We 
therefore give up the assumption that the distribution 
F has a finite variance in order to get a distribution 
with fatter tails. We again resort to the assumption that 
the theory for large S0 can be applied when S0 is finite. 

Distributions of a,1(t) with infinite variance lead to 
criteria for asymptotic stability and asymptotic insta
bility that are different from Inequalities 5 and 6 (Co
hen and Newman 1984). While Inequalities 5 and 6 
are valid for a robust family of models, they are not 
completely insensitive to the probability distribution 
of the interaction coefficients aJt). 

We now consider symmetric stable distributions as 
possible distributions for the independently and iden
tically distributed random elements a,/t). Feller ( 1971: 
169-176) gives a clear, elementary description ofsym-
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metric stable distributions and of their applications in 
astronomy, Brownian motion, and economics. The use 
of the term "stable" for these distributions is too well 
established in probability theory to change here in or
der to avoid conflict with the use of"stable" to describe 
ecological communities. The reader is warned that there 
is no direct connection between the two uses of the 
term. 

Specifically, we suppose that each element a,lt) has 
the distribution p(S8 ) W, where W is a symmetric stable 
random variable of exponent a, and 0 < a ::s 2. Each 
element a,it) has a "spread" p(S0 ) that depends on S0 

so as to keep the model community at the asymptotic 
frontier of stability. When a = 2, W is a standard 
normal random variable; the standard deviation of 
p(S0 ) W is p(S0 ). When a < 2, W has infinite variance, 
but p(S0 ) is still a natural measure of how spread out 
the distribution is. We know already that distributions 
with finite variance cannot make P(S0 ) be proportional 
to l!S0 asymptotically for large S0 , though such dis
tributions certainly can approximate this behavior for 
finite S0 . So we henceforth confine attention to a < 2. 

Let l\(S0 , a) denote the growth rate A for a model 
community with S0 dynamic species when the ele
ments a,,(t) have the distribution p(S0 ) W. The as
sumption that the community evolves to the frontier 
of stability means that p(S0 ) is chosen so that l\(S0 , a) 
= l. We have proved that for any fixed a, 0 < a < 2, 
if A(S0 , a) = 1, then for any ~ > 0, 

The proof is given in the Appendix. 
Since log S0 is a slowly increasing function of S0 , 

li(S0 log S0 ) should be very close to ll S 0 as desired. 
Asymptotically, P(S0 ) does not depend on ~ and a 
separately, but only through the combination K = 

ll~". 

Fig. 1 shows that for any combination of a and ~ 
such that K = 15 (a value obtained by numerical ex
perimentation), the expected number of trophic links 
( + marks) given by Eq. 3a can approximate the em
piricallinear relation (Eq. 4). The predicted expected 
numbers oflinks display notable concavity between 5 
and 15 species. Above 10 trophic species, the predic
tions are very nearly linear, but with a slope <2. 

Altogether, Fig. 1 shows that if every a,1 (t) is assumed 
to have a Laplace distribution and if an appropriate 
threshold of observation ~ is assumed, then the ex
pected number of trophic links increases nearly lin
early, with slope near 2, as the number ST of trophic 
species increases from 5 to 50. The confidence intervals 
around the predictions of the Laplace distribution in
clude most of the predictions that follow if every a,1(t) 
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FIG. 2. Combinations of parameters a and t. such that 15 
= t,~·. The horizontal line marks a= 2. 

is assumed to have a normal or symmetric stable dis
tribution. Given broad freedom in the choice of a dis
tribution for au(t), this model of dynamics and imper
fect observation can reproduce well the empirical link
species scaling law. 

Given that K = 15 approximately for an assumed 
symmetric stable distribution of au(t), it is possible to 
compute a as a function of~. Since the theory requires 
that a cannot exceed 2, not all values of~ are permitted. 
Fig. 2 shows that for~ > 0.26 approximately, a does 
exceed 2. Symmetric stable distributions with infinite 
variance require that ~ < 0.26. It is interesting that 
the best value of~. obtained indep~ndently of Fig. 2, 
for normally distributed au(t) is ~ = 0.26, and for La
place distributed au(l) is ~ = 0.2525. In the present 
framework, these values of~ correspond to a value of 
a just at or under 2. 

CONNECTANCE 

Connectance C is usually, and here, defined as LT/ 
[ST(ST - 1)/2]. The mean and the standard deviation 
of connectance are given by the corresponding quan
tities (Eq. 3a and square root of Eq. 3b) for LT, each 
divided by [ST(ST - 1)/2]. The standard deviation of 
connectance and the weak law of large numbers give 
asymptotically normal confidence intervals for con
nectance. To our knowledge, confidence intervals for 
connectance have not been derived previously. 

The empirical link-species scaling law (Eq. 4) is 
mathematically equivalent, as Cohen and Briand ( 1984) 
pointed out, to a hyperbolically decreasing relation be
tween expected connectance and the number oftrophic 
species, when the number of trophic species is large 
compared with I, i.e., when ST/(ST- I) approximates 
1. In observed food webs, the product of connectance 
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times the number of species is roughly constant at 4 
(see Rejm{mek and Stary 1979, Pimm 1982, and Auer
bach 1984:418). This is equivalent to the numbers of 
trophic links being twice the number of trophic species, 
or c ~ 2 in Eq. 4. 

If P(S0 ) in Eq. 3a is inversely proportional to S0 , as 
required by the empirical link-species scaling law (Eq. 
4), then expected connectance is inversely proportional 
to the number of trophic species, as observed. In this 
case, for large numbers of trophic species, the standard 
deviation of connectance approaches zero. 

Fig. 3 shows the expected connectance C computed 
from the hyperbolic curve 4/ ST (solid rectangles) and 
from assumed normal, Laplace, and symmetric stable 
distributions for each element au(l), in the range of ST 
from 5 to 50 species. Confidence intervals for con
nectance derived from the Laplace distribution are also 
shown in Fig. 3. As might be expected, the expected 
connectance from the Laplace distribution agrees best 
with the hyperbolic law. Above 25 trophic species, 
there is little possibility of distinguishing among the 
models empirically. 

PROBABILITY OF RECORDING A LINK 

Under all the preceding assumptions, we can esti
mate the probability that ecologists record any given 
dynamic link as a function of the number of trophic 
species. This probability is just P(c 1ST). Fig. 4 shows 
the estimates of this probability using the normal, La
place, and symmetric stable distributions. The three 
hypothetical distributions give divergent estimates of 
the probability of recording a dynamic link when the 
number of trophic species is below 20 or so, but re
markably similar estimates for larger numbers of trophic 
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species. Hyperbolic: C = 4/ S0 , summarizing the empirical 
hyperbolic connectance law. The normal, Laplace, and sym
metric stable distributions are as in Fig. I. 
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species. According to the model developed here, the 
probability of recording a dynamic link when the num
ber of trophic species is large is startlingly low. It is 
estimated that in communities with 30 or more trophic 
species, 20% or fewer of dynamic interactions among 
species are recorded, while in communities with 50 or 
more trophic species, I 0% or fewer of dynamic inter
actions among species are recorded. 

ASSUMPTIONS AND ALTERNATIVES 

We have made many assumptions in deriving the 
link-species scaling law and in estimating the fraction 
of recorded dynamic links in community food webs. 
Ecologists will receive these assumptions with the skep
ticism they deserve. To reinforce that skepticism, we 
review here the major assumptions and their biological 
interpretations. We consider first the model of com
munity dynamics, then the model of imperfect obser
vation. 

The dynamic model assumes that it is useful to de
scribe the biological components only, omitting the 
physical components, of community dynamics; that an 
equilibrium point exists for the abundance or bio
masses of the dynamic species; that the community is 
always observed near enough to its equilibrium point 
so that the dynamics can usefully be approximated as 
linear; and that in this linear representation of the biot
ic dynamics, it is not necessary to impose any structure 
whatsoever on the interaction coefficients. Balances of 
materials and ei.lergy are ignored. The elements of the 
community matrix are not assumed to be negative on 
the diagonal, as they might be if such elements rep
resented autoregulation of a population, and are not 
assumed to be antisymmetric, as they might be if sym
metric pairs of elements represented only feeding re
lations; instead, each element of the community matrix 
is assumed to combine so many different terms, rep
resenting so many different kinds of biological and en
vironmental interactions, that it is reasonable to treat 
all elements of the community matrix as independently 
and identically distributed random variables. 

The community matrix elements are assumed to have 
mean zero, so that on average no species consistently 
influences any other, or itself, favorably (positively) or 
unfavorably (negatively). The matrix elements are as
sumed to change randomly in time, e.g., from positive 
in one time period to negative in the next, through the 
influence of the nonlinear interactions of all the dy
namic variables that are omitted from explicit repre
sentation in the model. The distribution of community 
matrix elements is assumed to be smooth; all grada
tions of interaction strength between any two species 
are possible. The distribution of community matrix 
elements is assumed to have no mass concentrated at 
0; this means that every species is supposed to affect 
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the model developed here. The normal, Laplace, and sym
metric stable distributions are as in Fig. I. 

directly every other. This last assumption contrasts 
with that of May (1972), who assumed that any pair 
of species has a positive probability of not interacting 
directly at all. 

The analysis of this dynamic model assumes that a 
community must be stable in the technical sense of 
linear local stability analysis. Volumes have been writ
ten about the biological interpretation of this assump
tion (see Pimm 1982, 1984). 

The analysis assumes further that species diversity 
(i.e., number of species) and the variability of the com
munity matrix elements are adjusted so that a com
munity is at the frontier of linear local stability. By 
what biological mechanisms could this adjustment oc
cur? Communities in the domain of instability could 
suffer local extinctions of species, while communities 
within the domain of stability could support speciation 
or immigration of species. By these means, the number 
of species could move toward the frontier of stability 
even when the variance of the community matrix ele
ments is constant. For a fixed number of species, be
havioral and ecological mechanisms might permit 
changes in the variance of community matrix elements 
that would move the community toward the frontier 
of stability. Such changes might be expected to be more 
rapid than evolutionary changes in the number of 
species. 

When the community matrix elements are Laplace 
or symmetric stably distributed, we do not know ex
actly where the frontier of stability is for finite numbers 
of species. So we resorted to an asymptotic analysis for 
large numbers of species. In using that asymptotic anal
ysis, we assumed that the exact frontier of stability for 
finite numbers of species is close to that derived from 
the asymptotic theory. For the normal distribution, we 
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know where the frontier of stability is exactly for finite 
numbers of species and asymptotically for large num
bers of species; although we have not given details here, 
the asymptotic frontier is not far from the exact. We 
therefore think that the asymptotic frontier may be a 
good approximation to the exact frontier for nice 
smooth distributions in addition to the normal distri
bution. 

The numerical calculations included three possible 
forms for the distribution of community matrix ele
ments: normal, Laplace, and symmetric stable. If the 
community matrix elements are the sum of many, small, 
independent terms that reflect various forms of inter
action between two species, they will be (under certain 
assumptions) approximately normal by the central lim
it theorem. Models could also be constructed to lead 
to the Laplace and symmetric stable distributions. In 
fact those distributions, like the normal, were chosen 
for mathematical convenience, and should not be taken 
seriously in advance of data about the real distribution 
of community matrix elements. What is remarkable is 
that, for model communities with > 20 or 30 species, 
the choice of a hypothetical distribution for commu
nity matrix elements appears to make very little dif
ference to the predicted link-species scaling law or to 
the estimated probability of recording a dynamic in
teraction. 

So much for the dynamic model. We turn now to 
the model of imperfect observation. The model as
sumes that an ecologist who observes a given com
munity has a single, fixed threshold of observation such 
that any interaction below that threshold is overlooked 
altogether. The model assumes that the threshold is 
the same for every pair of species: the ecologist is hy
pothetically as interested in granivorous birds as in 
insectivorous reptiles. The model assumes the thresh
old is the same for all time: the ecologist never gets 
tired and never improves field techniques or hires more 
field assistants. The model assumes the threshold is 
the same regardless of the number of species in the 
community: smaller numbers of species are assumed 
not to permit more sensitive observations. The model 
assumes the threshold of observation is the same for 
all ecologists; this assumption seems even less likely 
to be true than the other assumptions. A possible jus
tification for these assumptions about the threshold is 
that the assumed constant threshold actually refers to 
the average of various fluctuating thresholds, and that 
the fluctuations around that threshold have insigificant 
effects compared with other sources of randomness. 

In translating the results of the calculations from 
hypothetical dynamical species and community matrix 
elements into potentially observable trophic species 
and trophic links, we assumed simple proportionality. 
We assumed the constants of proportionality to be the 
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same for all communities, regardless of the number of 
species or links. We offered a justification for the as
sumption that there are about as many dynamic species 
as trophic species, and about twice as many recorded 
(i.e., above-threshold) community matrix elements as 
trophic links. It would be desirable to investigate em
pirically what contribution trophic links make to ele
ments of a community matrix. 

These many assumptions make it possible to link a 
dynamic model of community stability and a model 
of the imperfection of ecological observations with the 
empirical link-species scaling law. We believe it is un
likely that any of the detailed assumptions faithfully 
mirrors reality, but we would not be surprised if the 
qualitative behavior derived from the collection of as
sumptions corresponds well to what would be pre
dicted by vastly more realistic models. It would be 
desirable in the future to test the assumptions directly. 
For now, only a desire for intellectual coherence jus
tifies them. 

The derivation of the link-species scaling law given 
here is not the only possible explanation of that law, 
nor even necessarily the most attractive one. Pimm 
(1982: 189) observed that if the average number of 
prey species per predator species is independent of the 
total number of species in a community, then the prod
uct of the number of species and the connectance is 
independent of the number of species. Limitations on 
the behavioral repertoire or on the trophic apparatus 
of a consumer might limit the number of its prey species 
regardless of the total number of species in a com
munity. Thus the link-species scaling law could be 
derived from behavioral or anatomical hypotheses as 
well as from dynamical and observational hypotheses. 
Of course, the average recorded number of prey species 
per predator species could be independent of the total 
number of species because the observing ecologist sim
ply stops recording prey species when their contribu
tion to a predator's diet becomes too small. Thus ob
servational imperfections may act jointly with 
behavioral and anatomical mechanisms. 

WHERE DOES THE OTHER ASSUMPTION OF THE 

CASCADE MODEL COME FROM? 

The cascade model of Cohen and Newman (1985b) 
rests on two key assumptions: first, that connectance 
is inversely proportional to the number of trophic 
species (equivalently, the link-species scaling law); and 
second, that trophic species are arranged in a linear 
"pecking order" of possible predator-prey relations. 
We have just suggested models that lead to the first 
assumption. The second assumption was introduced 
(Cohen and Newman 1985b) to eliminate an excess of 
cycles in model food webs that lacked this assumption. 
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One might hope to relate the assumed linear order 
of possible predator-prey relations in the cascade mod
el to the empirical finding that the overlaps in the diets 
of predators can very often be represented by intervals 
of a one-dimensional continuum (Cohen 1978, Sugi
hara 1982). However, it is not difficult to construct a 
hypothetical web whose trophic overlaps can be rep
resented in intervals but that has no linear order as 
assumed in the cascade model, as well as a hypothetical 
web consistent with the cascade model whose trophic 
overlaps can not be represented by intervals. Indeed, 
J. Cohen and Z. Palka (personal observation) have shown 
that, according to the cascade model, the probability 
of intervality is near 1 for very small webs, but ap
proaches 0 for very large webs. Intervality cannot ex
plain the ordering assumed in the cascade model. 

Several other approaches have been suggested to ex
plain the rarity of cycles and the possibility of a linear 
ordering of species. Based on numerical simulations, 
Sugihara (1982) argued that webs with "triangulated 
niche overlap graphs" (a slightly weaker property than 
intervality) are more likely to be stable than webs with
out this property. Pimm and Rice (1987) found, in 
numerical simulations ofLotka-Volterra equations, that 
trophic cycles decrease stability; like Sugihara (1982), 
they argued that the requirement of stability explains 
the observed rarity of cycles in real food webs. Another 
approach is based on the observation that, in food 
chains that exclude parasites and decomposers, con
sumers are usually larger than their prey. Cohen (1988) 
and independently Warren and Lawton (1987) sug
gested that an ordering of consumers by body size may 
explain the ordering assumed in the cascade model, 
and Warren and Lawton offered one food web as sup
porting evidence. 
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APPENDIX 

Proof of Eq. 8 

According to Cohen and Newman (1984:289-290, [2.17], 
[2.20], [2.22] and [2.25]), when A.(S0 , a)= I, 

(S0 log S 0 )[p(So)]" ~ 1/K(a) as SoT oo, (9) 

where K(a) = 2f(a)sin(mr/2)/(mr). Now using Eq. 2.26 of 
Cohen and Newman (1984:290), 

P(S0 ) = Prob[lp(S0 )WI ~ ~] = Prob{ I WI"~ (Mp(So)]"} 

100 (100 ) = K(a) v- 2 dv + 0 v-3 dv 
(a/p(So)]" (~p(So}l" 

= K(a)[p(S0 )/ ~]" + O([p(So)/ ~F"). 

Multiplying both sides by S 0 log S 0 and using Expression 
9 several times gives 

(S0 log S0 )P(S0 ) = II~· + o(l), 

which leads to Eq. 8. 




