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Two players, Red and Blue, each independently choose a vertex of a 
connected graph G. Red must then pay Blue an amount equal to the 
distance between the vertices chosen. In this note, we investigate the 
value v(G) of this pursuit-evasion game for various classes of graphs G, 
as well as those optimal mixed strategies for achieving v(G). It is shown 
that some rather counterintuitive behavior can occur. For example, there 
exist graphs G in which, for any optimal mixed strategy, Red never 
selects a vertex in the center of G. 

1. PRELIMINARIES 

Suppose G is a finite connected graph* with p vertices, and with no loops or 
multiple edges. By the distance d(u, v) between two vertices u and v of G, we 
mean the minimum number of edges in any path between u and v. We define 
on G a two-person (Blue, Red) zero-sum garnet with payoff matrix D = 
(d(u, v): u, v E G) as follows: Blue and Red each independently select a vertex 
of G, with no prior knowledge of the other player. If Blue selects u and Red 
selects v, then Red must pay Blue the amount d(u, v). We imagine this process 
being carried out repeatedly for a large number of times. Of course, Blue's 

*For undefined concepts in graph theory, see [1] or [4]. 
tFor undefined concepts in game theory, see [3] or [5]. 
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objective is to collect as much as possible from Red while, conversely, Red 
tries to minimize his total payment to Blue. 

A strategy for this game is defined as a probability vector x = (x(v): v E G) 
where x(v) denotes the probability that the player chooses vertex v. It is said to 
be completely mixed if x(v) > 0 for all v E G. Similarly, a real payoff matrix 
for a two-person zero-sum game is said to be completely mixed if all optimal 
strategies for both players are completely mixed. Strategies x and y for Blue 
and Red, respectively, solve the game specified by the payoff matrix A if 

max (Ay); = min (xTA)1 , 
I j 

in which case the value v(A) of the game is given by the quantity on either side. 
It was shown by von Neumann (see [8]) that, for any A, 

max min xTAy = min max xTAy = v(A). 
y 

(1) 

Finally, we will let rad(G), diam(G), and cen(G) denote the radius, diameter, 
and center of a graph G, respectively, and for v E G, we let e(v) denote the 
eccentricity of G, i.e., e(v) = max"d(u, v). 

2. THE PURSUIT -EVASION GAME ON G 

By v(G) we will mean v(D) where D = D(G) is the distance matrix of G. 

Fact 1. If G is vertex-transitive then the (uniform) strategy p = (l/p, . .. , 1/p) 
is optimal for both players. 

Proof. Since the set of optimal strategies for each player is convex, and p 
is a convex combination of optimal strategies if G is vertex-transitive, then the 
result follows. Note that in this case 

v(G) = pTDp. I 

As special cases of Fact 1, we have 

and 

. _ {0 if p is even 
w1th e - 1 .f . dd 

1 p IS 0 , 

where KP and CP denote the complete graph and cycle on p vertices, respec­
tively. Note that, when p is even, another optimal strategy (for either player) 
on cp is to assign probability l/2 to two diametrically opposite vertices. 
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Fact 2. If G is a graph with p vertices then 

(i) v(G) = 1 - 1/p, 
(2) 

(ii) 1 ~ v(G) ~ rad(G) if G #- KP. 

Proof. The right-hand side of (ii) follows by noting that Red can always 
choose a vertex in cen(G). If G = KP then (i) follows by an earlier remark. 
Suppose G #- KP. Let a and b be nonadjacent vertices in G. One strategy x0 for 
Blue is to assign probability 1 /2 to both a and b. Suppose the best counter­
strategy for Red assigns probability Yv to vertex v. Then the value of this pair of 
strategies is at least 

1 2 L (d(v, a) + d(v, b))yv 2:: 1. 
v 

Thus, 

v(G) = max min xTDy 2:: min x0 Dy 2:: 1. 
X _)' y 

This proves (2). I 

Fact 3. v(G) < diam(G). 

Proof. Let x and y be optimal strategies for Blue and Red, respectively. 
Thus, 

v(G) = max(Dy)i = min(xTD)r 
i j 

At least one component of x, say x1, must be positive. Therefore, 

Hence, 

i>1 

~ (1 - x1) diam(G) 

< diam(G) = max diJ. 
i,j 

Fact 4. If G is a graph with p vertices then 

(i) v(G) = (p - 1)/2, if G = PP, a path with p vertices, 

(ii) v(G) ~ (p - 2)/2, if G #- PP. 
(3) 
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Proof. It is easy to see that rad(G) :S (p - 1)/2 [and thus, v(G) :S 

(p - 1)/2] unless G = PP, for p even. In the latter case, Red can assign proba­
bility 1/2 to each of the central vertices of PP to get v(Pp) :S (p - 1)/2 as 
well. Now, suppose G is not a path. Then, G contains a spanning tree T with 
a vertex w of degree at least 3. Let T' be the tree obtained by deleting all the 
endpoints ofT. Thus, T' hasp' :s: p - 3 vertices, and 

v(G) :S rad(G) :S rad(T) = rad(T') + 1 :s: (p' - 1)/2 + 1 :S (p - 2)/2 

unless p' is even and T' = Pp'· In the latter case, either p' :s: p - 4 and 
v(G) :s: rad(T') + 1 = p' /2 + I :s: (p - 2)/2, or else p' = p - 3 is even 
and T' = Pp'· In this last case, T consists of a path with an even number p - 1 
of vertices together with an additional edge incident to the internal vertex w. 
For any vertex x of G, the sum of the distances to the two central vertices of the 
path is at most 

(p - 1)/2 + ((p - 1)/2 - l) = p - 2. 

Thus, if Red assigns probability 1/2 to each of the central vertices of the path, 
then Red will pay at most (p - ~/2. This shows that 

1 
v(G) :S -(p - 2) 

2 

and the proof is complete. I 

3. COUNTEREXAMPLES 

The perimeter per (G) of G is the set of vertices v such that, for some u, 
d( u, v) = diam( G). Evidently per (G) contains at least two distinct vertices. In 
paths of order p > 2, the center and the perimeter are disjoint. In circuits of 
order p > 2, the perimeter and the center both consist of all vertices. 

It is tempting to conjecture that, if x is an optimal strategy for Blue, then the 
support of x lies in per (G). To see that this conjecture is false, consider Fig. 1. 

If :X is any strategy with its support in per (G)= {1,2}, then by choosing y 
with y6 = y 10 = 1/2, Red pays no more than 5/2. 

However, let x have x 1 = x 2 = x 3 = 1/3. For any vertex v, d(v, 1) + 
d(v, 2) + d(v, 3) :2: 8. Therefore Red has to pay at least 8/3 > 5/2. Thus :X is 
not optimal. 

It also seems plausible to conjecture that for every v in cen(G), there exists 
an optimal strategy y for Red such that the support of y contains v. This too is 
false. Consider Fig. 2. Choose y with probability 1/2 on vertices 4 and 5 for 
Red. For any vertex v, d(v, 4) + d(v, 5) :s: 3. Therefore Red pays at most 3/2. 
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FIGURE 1 
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FIGURE 2 

We will show that any strategy y for Red putting positive probability 
y3 > 0 on vertex 3 pays more than 3/2 and therefore is not optimal. Choose the 
strategy x for Blue given by x 1 = x 2 = 1/2. For any vertex v, if v =I' 3, then 
d(v, 1) + d(v, 2) ~ 3, and d(3, 1) + d(3, 2) = 4. Thus, 

G) ~ Yv(d(v, 1) + d(v, 2)) ~ G) (1 - y 3) + 2y3 > ~ . 

Ther~fore, y cannot be optimal. I 

Even the weaker conjecture that some optimal strategy for Red contains a 
vertex in cen( G) is false. In fact, for Fig. 3, any optimal strategy for Red 
avoids the center. 

2 

7 8 

FIGURE 3 
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The center of G is {1}. Consider a strategy y for Red given by y2 = 1/5, 
y1 = y4 = 2/5. It can be easily checked that for any vertex v, 

Thus v(G) $ 14/5 and Red has to pay no more than 14/5. 
Now suppose Red has a strategy y with y 1 > 0 (putting positive probability 

on the center vertex 1). If there is a strategy x for Blue that forces Red to pay 
more than 14/5, then y is not optimal. 

Let us choose x so that x 1 = x 6 = 3/10, x7 = x 8 = 2/10. Then 

and fori"" 1, 

t(i): = (:0) d(i, 5) + (:0) d(i, 6) + C2

0) d(i, 7) + (~0) d(i, s) 2: ~4 . 

(It is enough to compute/(2) = f(3) = f(4) = 14/5,/(9) = /(10) = 16/5, 

/(5) = /(6) = 3, /(11) = /(12) > 3, /(13) = /(14) = 3.) 

Therefore 

This means Red has to pay more than 14/5 and soy is not optimal. 

4. GAMES ON DIGRAPHS 

The pursuit-evasion game on graphs extends naturally to strongly connected 
digraphs, the distance matrix of which need not constitute a metric space. The 
digraphs considered from now on are assumed to be strongly connected (e.g., 
see [9]). 

Suppose Blue and Red each independently pick a vertex of a digraph G, with 
no prior knowledge of the choice of the other player. If Blue picks v and Red 
picks w, which may or may not be distinct from v, then Red must pay Blue one 
of two amounts. If Red and Blue are playing a game of "Seek," then Red pays 
Blue d(w, v), because that is the distance Red must travel to arrive at Blue's 
vertex. If Red and Blue are playing a game of "Fetch," then Red pays Blue 
d(v, w), because Blue must be transported that distance to be brought to Red's 
vertex. In general, of course, on a digraph G, d(w, v) need not equal d(v, w). 
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For a digraph G, define the inradius by ir(G) = minw max" d(v, w) and the 
outradius by or(G) = minw max"d(w, v). Then in a game of Fetch, Red has a 
pure strategy that limits his payments to Blue to no more than ir(G ). In a game 
of Seek, Red has a pure strategy that limits his payments to Blue to no more 
than or(G). However, as in the pursuit-evasion game on graphs, there are no 
pure strategies x and y such that (x, y) is optimal for (Blue, Red), because no 
element of the distance matrix is simultaneously the minimum of its row and 
the maximum of its column. When Blue and Red use mixed strategies, the 
value of Fetch is v(D) and the value of Seek is v(D r). It is not true in general 
that v(D ) = v(D r). For example, for Fig. 4, the value of Fetch is v(D) = 7/6, 
with optimal strategies x = (0, 1/2, 1/6, 1/3), y = (0, 1/4, 1/3, 5/12), while 
the value of Seek is v(Dr) = I, with optimal strategies x = (0, 1/2, 0, 1/2), 
y = (1,0,0,0). 

When the distance matrix D is completely mixed, v(D) = v(D r) because 
both equal the reciprocal of the sum of the elements of the inverse of D . Thus 
a graph-theoretic characterization of strongly connected digraphs with a com­
pletely mixed distance matrix would provide a sufficient condition for v(D) = 

v(D r). Such a characterization would provide a partial answer to a more gen­
eral open question: When does the value of Seek equal the value of Fetch? The 
following analogue to Fact 2 is not difficult to prove: 

Fact 5. If G is a strongly connected digraph with p vertices then 

(i) v(G) = 1 

(ii) v(G) 2= 1 

1/p, 

1/(p + 1) 

if G = Kp, 
if G #- Kp, 

where KP denotes a directed complete graph on p vertices. 

5. FAIR GAMES 

A game is defined to be "fair" if its value is 0, because such a game has, on 
average, no net payments between players. Suppose Blue and Red play the pur­
suit-evasion game on a (connected undirected) graph with distance matrix D. 

4 3 

2 

FIGURE 4 



166 JOURNAL OF GRAPH THEORY 

Whenever Blue chooses vertex v and Red chooses w ¥= v, Red pays Blue 
d(w, v), as before. However, now suppose that, whenever Blue and Red land 
on the same vertex, Blue must pay Red a constant penalty 'A, which is inde­
pendent of the particular vertex they both happen to land on. In this modi­
fied game, the payoff matrix is D - AI. How large should 'A be for the game 
to be fair? 

Because D(G) is an irreducible nonnegative matrix, Blackwell's theorem [2] 
implies that 'A= p(D(G)), where p(D) is the spectral radius or Perron­
Frobenius root of D, that this fair game is completely mixed. and that the 
unique optimal strategies for Blue and Red are the unique positive left and right 
eigenvectors, respectively, of D(G ), normalized so that each eigenvector sums 
to I. Because D(G) is symmetric, the normalized positive left and right eigen­
vectors are identical, i.e .. the optimal (mixed) strategies of Blue and Red are 
the same. By contrast, in the unfair pursuit-evasion game without penalty, 
defined above, optimal strategies for Blue and for Red differ, in general. 
This game-theoretic point of view provides an interpretation of the Perron­
Frobenius root and eigenvectors of the distance matrix of a connected graph. 

By obvious analogy, Fair Seek and Fair Fetch can be defined on strongly 
connected digraphs, with the payoff matrices Dr - AI and D - AI, respec­
tively. Because D is not symmetric in general for a strong digraph, Blackwell's 
theorem implies that the unique optimal strategy of Blue will not in general 
equal the unique optimal strategy of Red. 

CONCLUDING REMARKS 

There are numerous other aspects of this topic that space limitations do not allow 
us to discuss here, such as the relationship between v(G), the minimum column 
sum of D = D(G) and the spectral radius p(D) of D, the fact that the only trees 
T possessing completely mixed strategies are paths (because of an explicit form 
of D - 1(T) available from [6]), and the connection to the related results of Gross 
[7] for pursuit-evasion games on m-connected metric spaces. 
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