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The physical theory of phase transition explains sudden changes of phase in materials that 
undergo gradual changes of some parameter like temperature. There are analogs of phase transi­
tion in the theory of random graphs, initiated by Erdos and Renyi. This paper gives a nontechnical 
but precise account, without proofs, of some of the beautiful discoveries of Erdos and Renyi 
about threshold phenomena in graphs, describes an application of their methods to interval 
graphs, and gives some examples of threshold phenomena under other definitions of randomness 
and in combinatorial structures other than graphs. The paper offers some speculations on possi­
ble applications of random combinatorial structures to telecommunications, neurobiology, and 
the origin of life. 

1. Introduction 

A rich man commissioned three experts, a veteri­
narian, an engineer, and a theoretical physicist, to 
find out what made the best race horses. After a few 
years they reported their results. The vet concluded 
from genetic studies that brown horses were the 
fastest. The engineer found that thin legs were op­
timal for racing. The theoretical physicist asked for 
more time to study the question because the case of 
the spherical horse was proving extremely interesting. 

Aharon Katchalsky 

No one is exempt from talking nonsense; 
the only misfortune is to do it solemnly. 

Montaigne 

How does it happen that ordinary water, superficially well behaved as its tempera­
ture is raised from 1 o to 99° C, abruptly changes to steam and remains steam as 
its temperature rises above 100° C? Sudden changes of phase in response to gradual 
changes of some parameter such as temperature or pressure are widespread among 
materials. The physical theory of phase transitions is devoted to explaining such 
changes. 

In the mathematical models of this theory, a phase transition appears only in the 
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limit as the number of particles or interacting units in the system becomes very large. 
The large number of elements is crucial to the possibility of an aburpt change in 
overall quality as a function of smooth changes of a parameter. 

There are analogs to phase transition in the theory of random graphs of Erdos 
and Renyi [11]. This theory appears not to be widely known except among specia­
lists in probabilistic combinatorics. Kennedy [I7] proposes using a modification of 
the Erdos-Renyi theory of random graphs to explain properties of water. My pur­
pose in Section 2 is to give a nontechnical but precise account of selected results of 
the beautiful theory of Erdos and Renyi. I will eschew proofs altogether. I will then 
(in Section 3) describe some recent results of applying the method of Erdos and 
Renyi to the problem of finding the probability that a large random graph is an in­
terval graph. This problem arises in diverse life sciences. In Section 4, I will give 
examples to show that threshold phenomena like those discovered by Erdos and 
Renyi arise under other definitions of randomness and in combinatorial structures 
other than graphs. Finally, in Section 5, I will offer some pure speculation on possi­
ble applications of random combinatorial structures to telecommunications, neuro­
biology, and the origin of life. I emphasize that Section 5 is speculative to avoid 
discrediting the empirically detailed applications of the theory of Erdos and Renyi 
in Section 3. Section 5 is to biology as the rich man's theoretical physicist is to horse 
racing. 

2. Erdos and Renyi 

Erdos and Renyi [II] need no interpreter: their exposition is as beautiful as their 
results. In this account, I read between the lines of their proofs in order to highlight 
some of their conclusions. 

A graph is a set of some positive number n of labelled points or vertices P 1, ••• , Pn 
and a set of some positive number N of edges, which are distinct unordered pairs 
{Pi, P1 } with i-=F j. Parallel edges and edges from a point to itself are excluded. 

There are G)= n(n- I)/2 possible edges in a graph on n points. The number of 
graphs with N edges on n points is the number Cn,N of ways of choosing N edges 
from the G) possible edges. A random graph Gn,N with n points and N edges is 
defined as one chosen by regarding each of the Cn,N graphs as equiprobable. 

One graph is a subgraph of a second if the set of points of the first is a subset 
of the set of pants of the second and if the set of edges of the first is a subset of 
the set of edges of the second. 

Now suppose that the number n of points of a random graph Gn,N gets very 
large, i.e., increases beyond any finite bound. Consider the subgraphs of Gn,N 

under various assumptions about the number N of edges. 
To take a trivial case first, suppose that as n increases, the number N of edges 

is always bounded above by some fixed finite constant greater than 2. The propor­
tion of all possible graphs in which any two edges have a common point will grow 
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smaller and smaller. In the limit, the probability that a random graph with a bound­
ed number of edges contains two edges with a common point is 0. 

Could the number N of edges increase without bound as the number n of points 
gets arbitrarily large so that, in a random graph Gn,N• every edge would still be an 
isolated edge with probability approaching I? Yes: all that is required is that 
N = o(n 112

), meaning that, in the limit as n gets large, the ratio of N to the square 
root of n approaches 0. 

Let limn mean the limit as n approaches infinity. If limnN!n° 12l-e=c, where c 

and e are any positive constants independent of n, then, with a probability that 
approaches 1, no two edges of Gn,N will have a point in common. However, if 
limnN/n 112 =c, where again cis a positive constant that does not depend on n, 
Gn,N will contain a tree of order 3 (three points linked by two edges) with a prob­
ability that approaches a positive limit depending on c. (More generally, a tree of 
order k is a connected graph with k points and k- I edges such that none of its sub­
graphs is a cycle. A cycle of order k is a cyclic sequence of k edges of a graph such 
that every two consecutive edges and only these have a common vertex. A graph is 
connected if every pair of its points belongs to some sequence of edges, called a 
path, such that every two consecutive edges and only these have a point in common.) 
If limnN1n 112 =oo (for example, if limnN!n° 12)+£=c, where c and e are positive 
constants), then a random graph Gn,N will contain a tree of order 3 with a probabi­
lity that approaches I in the limit as n increases. Provided (112)+e<2/3, almost 
no random graph Gn,N will contain a tree of order 4 or larger or, for that matter, 
any connected subgraph with 4 or more points. 

It is natural to call n 112 a threshold function for trees of order 3. With increasing 
n, if N (the number of edges) increases more slowly than n 112

, trees of order 3 
occur asymptotically with probability 0: for practical purposes, not at all. If N in­
creases faster than n 112

, trees of order 3 occur asymptotically with probability I: 
for practical purposes, with certainty. 

In my view, the most surprising finding of Erdos and Renyi is just that threshold 
functions exist and can be explicitly calculated for many fundamental properties of 
graphs. Having illustrated the meaning of a threshold function for trees of order 
3, I now give the definition of a threshold function A (n) corresponding to any pro­
perty A of a graph. A function A (n) that tends monotonically to + oo as n increases 
without bound is a threshold function for property A if the probability Pn.N(A) 
that a random graph Gn,N has the property A satisfies: 

limnPn,N(A)=O if limnNIA(n)=O, 

=I iflimnNIA(n)=+oo. 

The following facts about threshold functions are consequences of a more general 
theorem of Erdos and Renyi: 

The threshold function for the property that a random graph contains a tree of 
order k is n<k- 2)/(k-IJ, for k=3,4, .... 
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The threshold function for the property that a graph contains a cycle of order k 
is n, for k=3,4, .... 

The threshold function for the property that a graph contains a complete sub­
graph of order k?. 3 is n 2<k- 2)/(k- t). (A complete graph of order k is a set of k 
points together with all (~) possible edges on those points.) 

The threshold function for the property that a graph contains a subgraph con­
sisting of a+b points P1, ... ,P0 ,Qt>···•Qb, and of all ab edges {P;,Q1} is 
n 2 -[(a+b)/(abll. (Such a graph is called a saturated even subgraph of type (a,b).) 
When a= 1 and the total number of points in the saturated even subgraph of type 
(1, b) is k = 1 + b, 2- [(a+ b)/(ab)] = (k- 2)/(k- 1) and the threshold function 
reduces to that for a tree of order k, as desired. 

To see these same facts from another point of view, consider the subgraphs of 
a very large random graph Gn,N with Non the order of nz. Suppose z increases 
gradually from 0 to 2. For z up to but not including z = 1/2, almost all graphs con­
tain only isolated edges or edgeless subgraphs. When z passes through 1/2, large 
random graphs suddenly contain trees of order 3 with probability 1. Such trees may 
also be viewed as saturated even subgraph of type (1, 2). When z reaches 2/3, trees 
of order 4 suddenly appear, and these include saturated even subgraphs of type 
(1, 3). As z gets closer and closer to 1, trees of larger and larger order appear, in­
cluding saturated even subgraphs of type (1, b) for larger and larger values of b. As 
long as N = o(n), Gn,N is the union of disjoint trees with asymptotic probability 
equal to 1. Exactly when z passes through the value 1, even though z is changing 
smoothly, the asymptotic probability of cycles of all orders changes from 0 to 1. 
Cycles of order 3 can also be viewed as complete graphs of order 3, and cycles of 
order 4 can also be viewed as saturated even sub graphs of type {2, 2). When z passes 
7/6, saturated even subgraphs of type (2, 3) pass from probability 0 to probability 
1, followed at z = 5/4 by saturated even subgraphs of type (2, 4). At z = 4/3 complete 
graphs on 4 points appear simultaneously with saturated even subgraphs of type 
(3, 3). As z continues to increase, saturated even subgraphs of larger and larger type 
and complete graphs of larger and larger order continue to appear. For even k, 
saturated even subgraphs of type (k/2, k/2) appear at a value of z = 2(k- 2)/ k 
smaller than the value of z = 2(k- 2)/(k- 1) at which complete graphs with the same 
number of points appear. As z approaches 2, almost every random graph approaches 
the complete graph on n points. 

Erdos and Renyi derive much more detailed information about the asymptotic 
probability distributions of the numbers of trees and cycles when the number of 
edges in a large random graph is close to the number of edges specified by the 
threshold function. I will give one example of an asymptotic probability distribution 
in the next section. 

In addition to finding the threshold functions and the asymptotic probability 
distribution functions for important classes of subgraphs of random graphs, Erdos 
and Renyi investigate global properties of the large random graph Gn,N in the sen­
sitive region where z = 1; that is, they consider the behavior of random graphs where 
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limn Nln = c for various values of the positive constant c. Each time I reread these 
theorems, I have the feeling that a miracle has just passed before my eyes. 

An isolated subgraph G' of a graph G is defined as a subgraph such that if any 
edge of G has one or both endpoints belonging to G', then the edge also belongs 
toG'. Let Vn,N be the number of points of a random graph Gn,N that belong to an 
isolated tree contained in Gn,N• and let E( ·) be the expected value of the random 
variable(·). Then when limnNin=c, 

limnE(Vn,N)In= 1, for c~ 112, 

=x(c)/2c, for c> 112, 

where x(c) is the only root in the open interval (0, 1) of the equation xe-x = 2ce- 2
c. 

(x(c) can be computed using an infinite series.) For c> 112, the graph of x(c)/2c 
roughly resembles an exponentially decaying function that drops from 1 asymptoti­
cally toward 0. (Erdos and Renyi give a picture.) Thus, in the limit, E(Vn,N)In 
changes suddenly from a constant 1 to a sharply falling fraction as c passes beyond 
112. 

Recall that the threshold function for the appearance of cycles of all orders is n. 
Let Hn,N denote the number of all cycles contained in the random graph Gn,N· 
Then, when limn Nln = c, 

limn E(Hn,N) =- (112) log(l- 2c)- c- c2
, for c< 1/2, 

E(Hn,N)-(114)logn, for c=1/2. 

Here - means that the ratio of the quantities on the right and left approaches 1 as 
n increases. Thus for c< 112, the average number of all cycles remains bounded as 
n gets arbitrarily large, but increases without bound when c = 112. For 0 < c < 1/2, 
with asymptotic probability 1, all components of G n, N are either trees or com­
ponents containing exactly one cycle. (A component of a graph is a connected, iso­
lated subgraph of the graph. The number of points belonging to the component is 
called the size of the component.) 

If Sn,N denotes the number of components of Gn,N and limn Nln = c, then 

E(Sn,N) = n- N + 0(1), O<c< 112, 

=n-N+O(Iogn), c=112, 

lim E(Sn,N)In = (11(2c))(x(c)- (x(c))2 /2) c> 112, 

where x(c) is the same as before and a(n) ~ O(b(n)) means that la(n)l!b(n) is bounded 
as n increases. Here the bound on the 0(1) term depends only on c. Equivalently, 
limn E(Sn,N)In = 1- c for c~ 1/2 but limn E(Sn,N)In decreases slower than linearly 
for c> 112. 

I conclude this feast of phenomena with a double jump that even Erdos and 
Renyi, who must have been at home among such wonders, considered "one of the 
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most striking facts concerning random graphs". Let Rn,N be the size of the largest 
component of Gn,N· When limnNin=c, Rn,N is of order 

logn, for0<c<1/2, 

n 213
, for c= 1/2, 

n, for c> 1/2. 

More precisely, for c> 112, and for any positive constant e, 

limn P([Rn,Nin- G(c)[ <e)= 1. 

G(c), the asymptotic fraction of all points belonging to the 'giant component', is 
given by G(c)= 1-x(c)/(2c) and x(c) is as before. In this case (c> 1/2), neglecting 
o(n) points, Gn,N consists, with asymptotic probability 1, only of isolated trees and 
of a single giant component whose size is asymptotically G(c)n. The number of the 
trees of order k is approximately (n/(2c))e- 2(2ce- 2c)k /(k!). As c increases, the 
giant component absorbs one isolated tree after another. The larger the tree, the 
larger the risk of absorption. 

3. Interval graphs 

In several areas of the life sciences, it is desirable to know the probability that a 
random graph, in the sense of Erdos and Renyi, is an interval graph. A graph G 
with a finite number n of points PI> ... , Pn and distinct undirected edges { P;, Pi}, 
i-=1:- j, is an interval graph if, for each point P;, there is a non-empty interval S; of 
the real line such that { P;, Pi} is an edge of G if and only if S; and Si overlap, or 
have non-empty intersection. Koml6s [7] has shown how the methods of Erdos and 
Renyi can be extended to calculate the probability that a random graph is an interval 
graph in the limit as n gets arbitrarily large. The asymptotic results are useful for 
finite numbers of points. Here I sketch the results and give two examples of how 
the question arises [7]. 

The possibility of applying the methods of Erdos and Renyi to find the asymptotic 
probability that a random graph is an interval graph depends on a characterization 
of interval graphs in terms of forbidden induced subgraphs. A subgraph G' of a 
graph G is an induced subgraph of G if there is an edge between two points of G' 
whenever there is an edge between two points in G. A graph G is an interval graph 
if and only if G contains no induced subgraph belonging to any of five specified 
classes of graphs. Four of these five classes of forbidden induced subgraphs contain 
cycles, and therefore have threshold functions that are not of smaller order than n. 
One of the five classes of forbidden induced subgraphs is a tree on seven points. 
From the results of Erdos and Renyi, the threshold function for the appearance of 
this tree as an isolated subgraph of a large random graph G n, N is n 516

• Recall that 
a subgraph G' was defined as isolated if all edges of G, one or both endpoints of 
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which belong to G', belong to G'. Thus every isolated subgraph G' is an induced 
subgraph G', but not conversely. So a random graph is an interval graph with prob­
ability 1 in the limit of large n if the number N of edges is of smaller order of 
magnitude than n 516 and is an interval graph with asymptotic probability 0 if N is 
of magnitude larger than n 516

• 

Now suppose limn N!n 516 =c. The probability that a random graph Gn,N is an in­
terval graph is asymptotically exp(- 32c6 /3). This function exp(- 32c6 /3) illustrates 
a class of functions called threshold distribution functions F(c) by Erdos and Renyi. 
They discovered that among the structural properties A of graphs for which thres­
hold functions A(n) exist, there are some for which there also exists a probability 
distribution function F(c) that is the limit of the probability that a random graph 
possesses property A as limnN/A(n)=c. Erdos and Renyi computed threshold 
distribution functions for a variety of properties. 

For large n and N, as long as ~In 5 is not orders of magnitude greater than 1, 
a more refined estimate of the asymptotic probability that a random graph Gn,N is 
an interval graph is 

exp(- (~)(7!/6)p 6(1-p)
15
). where p =N / (;). 

Similarly precise formulas can be derived by the same methods for a variety of 
graphs related to interval graphs [8]. 

To determine how large n must be for these asymptotic formulas to be close to 
the truth, we generated 100 random graphs on a computer for each of several values 
of n, found the proportion of these graphs that were interval graphs, and compared 
the proportions with the probabilities given by the asymptotic theory [7]. For 
n = 200, the deviations between the Monte Carlo proportions and the asymptotic 
probabilities could be attributed to sampling fluctuations. For n = 100, the asymp­
totic theory was not too close to the Monte Carlo proportions. 

The probability that a random graph is an interval graph is needed for statistical 
inference in biology. When graphs are observed to be interval graphs, it is desired 
to know how likely it is that these graphs would be interval graphs by chance alone. 
I give two examples. 

Benzer, a biologist at the California Institute of Technology, is one of two in­
dependent inventors of interval graphs [2]. He wanted to know whether the genetic 
fine structure of a virus called T4 could be linear. Using n= 19 different clones of 
viruses with mutations in the rii region of their genetic material, he performed all 
possible ( ~) recombination experiments and found N = 61 pairwise overlaps of the 
mutant regions. The graph with one point for each mutant clone and an edge cor­
responding to each overlap of two mutant regions was an interval graph. 

Substituting n = 19 and N = 61 into N = nz gives approximately z= 1.40. Benzer's 
graph falls in the region where interval graphs would occur with probability 0 among 
random graphs if the asymptotic theory were relevant. The asymptotic threshold 
distribution function gives the probability that a random graph G19, 61 is an interval 
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graph as exp(- 221942) (and not 10- 51
, as is mistakenly asserted in [7, p. 113]; I 

thank M. Golumbic for catching this error). The Monte Carlo studies for n = 10 and 
n = 40 confirm that the probability is very small that Gn,N is an interval graph. All 
the genetic and physical evidence collected since 1959 has not altered the conclusion 
that genetic fine structure is linear in the rii region of bacteriophage T4. 

In ecology, a 'trophic niche overlap graph' (which I originally called a 'competi­
tion graph', a name that has stuck among graph theorists) has a point for each kind 
of organism in some set and an edge between two points if there is some item of 
diet that both of the corresponding kinds of organisms eat. For example, a fish com­
munity on the rocky shore of Lake Nyasa has n = 28 consumers and N = 256 dietary 
overlaps. Here z =(log 256)/(log 28) = 1.66 is even further into the region where the 
asymptotic theory says that interval graphs occur with probability 0. This and other 
natural communities have overlap graphs that are interval graphs. There is likely to 
be some special structure in the organization of diets among consumers that live to­
gether [6]. At least with the ways of assigning probabilities that have been used so 
far, this corner of nature appears to live in a set of measure 0. Various explanations 
of this observation have been proposed [10]. 

4. Other definitions, other structures 

The threshold phenomena discovered by Erdos and Renyi also arise under other 
definitions of a random graph and in combinatorial structures other than graphs. 

Another definition of a random graph, for example, requires a fixed number p, 

O<p< 1. Define a random graph Gn on n points as one in which each edge {Pi,P1}, 
i =F j, occurs with probability p independently of all other edges. Erdos and Renyi 
mention that many of their threshold results hold true under this second definition 
as well as under the first definition of a random graph used in Sections 2 and 3. 

Now define a clique to be a maximal complete subgraph, that is, a complete sub­
graph that is not contained in a bigger complete subgraph. Then, given e > 0, when 
n is large enough, almost every random graph Gn contains a clique with k points, 
where 

(1 +e)(log n)!log(l!p)<k<(2-e)(Iog n)/log(l/p), 

but does not contain a clique with fewer than (1- e)(log n)/log(1/p) or more than 
(2 + e)(log n)!log(llp) points [5, 23, 24]. Thus, according to this theorem, in a 
perfectly random high school with n = 1000 students, where any two given students 
have a one in ten (p = 0.1) chance of knowing each other, cliques of 4 and 5 students 
are almost certain to exist, but not cliques of fewer than 3 or more than 6 students. 
(Though Bollobas and Erdos [5] give no quantitative information about how large 
n must be for their results to apply, I assume in this example that n = 1000 is large 
enough.) 

In view of the importance of combinatorial structures other than graphs in science 
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and mathematics, it is reassuring that threshold phenomena, in the limit of large 
size, and explicitly calculable threshold functions are not restricted to graphs. Two 
results of Bollobas and Erdos [5] extend immediately to hypergraphs, which are 
structures with many applications [9]. 

A threshold also arises in a problem of Ulam. Let Qn be any permutation of the 
first n positive integers. The integer k, 15 k5 n, is permuted to Qn(k), 15 Qn(k) 5 n. 
L(Qn) is the length of the longest increasing sequence in a random permutation 
Qn, where a random permutation is one chosen with equal probability from the n! 
possible permutations. How does L(Qn) behave as n gets large [18, 21, 30]? 

For any c>O, 

limn P[2(1- c) <L(Qn)ln 112 < 2(1 +c)]= 1. 

Thus, in the limit of large n, almost every random permutation has an increasing 
sequence of length r if r< 2n 112 and almost no random permutation has an increas­
ing sequence of length r if r>2n 112

• 

These examples show that thresholds are not a peculiarity of a special definition 
of randomness nor a peculiarity of graphs. Threshold phenomena occur in a variety 
of random combinatorial structures in the limit of large size. 

5. Some speculations 

Erdos and Renyi [11] observed that "the evolution of graphs may be considered 
as a rather simplified model of the evolution of certain communication nets (railway, 
road or electric network systems, etc.) of a country or some other unit. (Of course, 
if one aims at describing such a real situation, one should replace the hypothesis of 
equiprobability of all connections by some more realistic hypothesis.)" They sug­
gested that graphs with different types of points and different types of edges might 
yield "fairly reasonable models of more complex real growth processes (e.g. the 
growth of a complex communication net consisting of different types of connec­
tions, and even of organic structures of living matter, etc.)". 

In each of the following speculations, the graph theory or the equiprobability 
assumed by Erdos and Renyi require elaboration. The threshold theorems for these 
models remain to be discovered. That such theorems may exist is strongly suggested 
by the existence of limit theorems for random graphs and random directed graphs 
having unequal edge probabilities [19, 20]. 

A natural way to view the telephone network of the United States is to treat each 
subscriber as a point of a large graph and each interconnection as one edge. Initially, 
there were many small independent telephone companies. Gradually more and more 
of these companies become connected to the Bell System. Now interconnection with 
the Bell System is almost universal, both in the United States and worldwide [1, 13]. 

One might consider, as a rough model, a Poisson distribution of central telephone 
exchanges. The intensity of the Poisson process might vary in space and time with 



122 J.E. Cohen 

population density and economic indicators. All subscribers connected to a given 
exchange would correspond to points in a complete subgraph. Complete subgraphs 
could grow by accretion of individual subscribers and by connections between cen­
tral exchanges. Both accretion and interconnection could be modeled by random 
processes. One might calibrate such models against the quantitative details of the 
early history of American telephone companies, if it were possible to obtain credible 
data in the form required to estimate model parameters. It would then be interesting 
to see whether such models, like the graph-theoretic models of Erdos and Renyi, 
predict the discontinuous emergence of a 'giant component' that corresponds to the 
Bell System. 

In referring to "organic structures of living matter", Erdos and Renyi may well 
have had the brain in mind. If so, their hint is being taken to heart, so to speak, 
by neurobiologists only very slowly. The first reference to Erdos and Renyi in the 
neurobiological compendia and papers available to me appears in a manuscript of 
Bienenstock [3]. Bienenstock [4] proposes and investigates numerically a dynamic 
brain model that generalizes the Ising model of statistical mechanics to allow for 
randomly changing edges (or interactions) between sites (or neurons). He uses the 
random graph model of Erdos and Renyi as a null model against which to measure 
the emergence of structure. 

To make one possible interpretation of the graph theory slightly more explicit, 
consider a large number of neurons. (Here 'large' means only large enough to make 
the asymptotic theory relevant, which may be far fewer than the estimated 1010 

neurons of the human brain.) Suppose that the fraction of all pairs of neurons that 
were functionally connected gradually increased during phylogenetic or ontogenetic 
development. If (contrary to all the evidence on the specificity of neuronal connec­
tions) these connections were made at random, as defined by Erdos and Renyi, then 
when the number of connections exceeded the number of neurons, cycles of all 
orders (less than the number of neurons) would pass from asymptotic probability 
0 to asymptotic probability 1. The existence of cycles might be associated with signi­
ficant changes in the functioning of the nervous system. For example, cycles of 
neurons have been proposed as the physiological basis of short term memory. Simi­
larly, perhaps the increasing extent to which brains dominate nervous systems in 
phylogeny could be modeled formally by the growth of the giant component in a 
random graph. Again, the interesting question is how many of the known quantita­
tive details are consistent with the theory of Erdos and Renyi or with some other 
quantitative theory of random structure. 

This simple interpretation of the graph-theoretic model may require at least five 
improvements. First, it may be more useful to identify the points of a randomly con­
nected graph not with neurons but with synapses between neurons and to view an 
edge of such a graph as an interaction between synapses. Second, since neuronal 
connections are typically oriented or directed, an extension of the method of Erdos 
and Renyi to directed graphs might prove necessary. Third, since the large-scale ar­
chitecture of a vertebrate brain is clearly not random, it will be necessary either to 
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replace equiprobable interconnections of elements by probability assignments that 
reflect known anatomy or to narrow the application of the model to regions where 
equiprobable connections are plausible. Fourth, it may be less useful to model inter­
connections between neural units (neurons or synapses) as ali-or-none than to model 
them as graded. The effect of changing discrete to graded connections on the pro­
perties of a random graph in the limit of large size is not clear. Fifth, for an under­
standing of neural functioning, it may be necessary to replace the simple points of 
graph theory by some kind of computing element. Neurobiologists should be able 
to suggest other improvements, each of which will challenge mathematicians. 

Randomly constructed nets of elements that compute randomly chosen logical 
functions have been simulated [14] for another purpose, to which I turn next, but 
could be interpreted as neural models. Other than the results described in Section 
3 on random permutations, which arise as an unrealistic special case of these models, 
I know of no threshold theorems for random computing nets. Kauffman [16] pro­
vides a useful and tantalizing recent review of models and numerical phenomena. 
MacDonald [22] reviews the work of Kauffman and the use of random directed 
graphs, mentioned above in Section 3, in ecology. 

My final fantasy here concerns the origin of life. If ecology has fundamental pro­
blems, the origin of life must be one of them. "The sequence of events between the 
time when only the mixture of organic precursors existed in the early oceans and 
the time when the first living cell appeared, 3.1 billion [109

] or more years ago, is 
still unclear. It is the only portion of the entire chain of events constituting biological 
evolution that is not yet understood. It is a crucial step, for it marks the transition 
from the nonliving to the living system. Somehow the organic molecules of the 
primitive ocean were assembled into that complex unit of life, the cell." (Oliver [25, 
p. 19]). 

Oliver assesses too kindly the present understanding of biological evolution since 
the appearance of the first living cells, but focuses attention usefully on an even 
greater gap in understanding. According to his view (not accepted e.g. by those who 
believe life originated on a clay matrix), one may take as explained or explicable a 
primordial soup of organic precursors. "We visualize the primitive ocean containing 
in dilute solution a wide variety of organic compounds suitable as precursors for 
living systems. The environment is fairly stable over millions of years. As the com­
pounds degrade they are replaced by more of their kind falling into the sea from 
the atmosphere, and they are modified at the surface by ultraviolet radiation." 
[25, p. 19]. How does this soup become transformed into an ensemble of self­
reproducing systems? 

According to Kauffman [14, p. 465], "One can little doubt that the earliest proto­
organisms aggregated their [chemical] reaction nets at random in the primeval seas ... 
Evolution, therefore, probably had as its initial substrate the behavior of randomly 
aggregated [chemical] reaction nets." 

Kauffman studied the deterministic trajectories of randomly constructed auto­
mata. Each automaton contained a fixed number of elements, each of which had 
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a fixed number K of 0 or 1 inputs that were outputs of other elements in the auto­
maton. Each element computed its state, 0 or 1, at timet, according to a Boolean 
function, chosen initially at random and then fixed, of the K inputs at time t. The 
K elements of the automaton that were inputs to each given element were also 
chosen initially at random and then fixed. The state of the automaton at time t was 
the vector of states of its elements at t. At t + 1, the outputs, if any, of an element 
were its state, either 0 or 1, at t. 

Kauffman [14] identified each element as a gene and each automaton as a cell. 
He found parallels between the simulated behavior of his random automata and 
observations of cellular metabolism. He subsequently developed these parallels in 
much greater detail [15]. 

The trajectories of Kauffman's autonomous, deterministic automata must in­
evitably enter cycles. In computer simulations, Kauffman [14] studied the typical 
lengths of such cycles as a function of the number K of inputs per element and the 
number of elements per automaton. For example, when K = 2, he found that the 
typical cycle length increased approximately as n°· 3

, for numbers n of elements in 
the range from 103 to 104

• Here may be raw material for a threshold theorem. An 
exact theory of the asymptotic behavior of such automata remains to be developed. 

To avoid the mathematical uncertainty, one might turn to the graph theory of 
Erdos and Renyi. Rossler [26, pp. 407-408] pointed out that aspects of prebiological 
evolution might be explained by the theorems of Erdos and Renyi. He did not iden­
tify in detail the points, edges, and probability assignments of Erdos and Renyi with 
the observable features of biochemical systems. One biochemical interpretation of 
the theory would be to pretend that each point of a graph stands for a chemical 
species, and that each edge stands for a reversible chemical reaction between two 
chemical species. Because a graph represents a binary relation, it is a fine model for 
a soup of isomers undergoing isomerization reactions. But isomerizations are of 
much less biochemical interest than chemical cycles, such as 

A+ Bt=;AB, 

AB+ Ct=;ABC, 

ABCt=;A +BC, 

BC1=;B+ C, 

in which each step is associated with a collision or dissociation. For such cycles of 
reactions, graph theory seems an inadequate language. 

An alternative approach is to provide a combinatorial structure appropriate to 
chemistry, tentatively to assign probability distributions to this structure, and then 
to explore asymptotic threshold phenomena. With this approach one might hope at 
least to interest biochemists in the assignment of the probabilities and in interpreting 
any resulting theorems, since the fundamental units of the theory will be the nuts 
and bolts of biochemists' daily work. 
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The first step in this approach has been taken by Sellers [27]; see also [28, 29, 12]. 
I will suggest the flavor of his approach by describing in his terms the illustrative 
chemical cycle given above. First, some formalism. 

In the example, there are three ultimate components, A, Band C. In probabilistic 
developments, the ultimate components could be fixed or could be sampled from 
a larger set of possible ultimate components. The ultimate components are free 
generators of a composition space C0 , which contains sums of ultimate com­
ponents. 

In the example, there are 6 chemical species, A, B, C, AB, BC, and ABC. A func­
tion J 1 maps each chemical species into its expression in composition space C0 • 

E.g., J 1(ABC)=A+B+C, J 1(BC)=B+C, J 1(A)=A. In probabilistic develop­
ments, the chemical species could be fixed or could be sampled from all possible 
chemical species with the given set of ultimate components. Other possible chemical 
species include A 2 , AC, B2C3 and so on. 

The chemical species are the generators of a reaction space C1• The points of C1 

are what appear on the two sides of a chemical equation, with the convention that 
what goes in on the left of a chemical equation takes a minus sign and what comes 
out on the right takes a plus sign. 

An elementary mechanism, denoted in general by j x k, for any two chemical 
species j and k, is assigned to a point in the reaction space C1 by a function J 2 

according to J2(jxk)=-j-k+jk. Thus J 2(jxk)=O meansj+k=jk. In the ex­
ample, the four chemical equations can be rewritten in terms of four elementary 
mechanisms as 

J2(A xB)=O, 

J2(AB X C)= 0, 

J 2(-A xBC)=O, 

J 2(-BXC)=O. 

In probabilistic developments, the elementary mechanisms could be fixed or could 
be sampled from the set of possible elementary mechanisms, given the chemical 
species. Other possible elementary mechanisms incllJde A x C, B x B, ABC x C, and 
so on. 

The elementary mechanisms are the free generators of a mechanism space C2 , 

whose points are sums or differences of elementary mechanisms. The conversion of 
one mechanism) x k to another mechanism h xj + hj x k- h xjk is called a catalyza­
tion and is denoted h xj x k, where h, j, k, hj, jk, and hjk are chemical species, and 
h is the catalyst for the reaction jx k. A function J 3 maps each catalyzation into 
the difference between any two points in C2 that are related to each other by the 
catalyzation. Thus J 3(h xj x k) =- j x k + h xj + hj x k- h xjk. Any mechanism z 
is a cycle if J 3 (z) = 0, and Sellers proves that every cycle is a linear combination of 
cycles of the form J 3(h xj x k) = 0. In our example, the entire cycle of chemical 
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equations may be expressed concisely as J 3(A x B x C)= 0. In probabilistic develop­
ments, the catalyzations could be fixed or could be sampled from the set of possible 
catalyzations, given the elementary mechanisms. Other possible catalyzations using 
the same ultimate components are A x C x B, A x B x B, A x B 2 x C, and so on. 

What is the profit of this (and more!) formality? Sellers sought to enumerate all 
possible combinations, subject to some constraints, of elementary mechanisms that 
would 'explain' a given mechanism. In so doing, he produced mathematically in­
telligible language for discussing chemical reaction systems. 

Now it becomes possible to ask meaningfully: What is the distribution of the 
lengths of the cycles? How do the answers to these questions vary as one increases 
the fraction of all possible chemical species that are actual chemical species, given 
a set of ultimate components, or as one increases the fracton of all possible ele­
mentary mechanisms that are actual elementary mechanisms, given a set of chemical 
species? The answers to these questions depend on the probability distributions 
chosen. In this choice a knowledge of thermodynamics must play a role, if the 
answers to the questions just asked are to relate to reality. Mathematicians and 
scientists will need to collaborate in the analysis of these complicated structures. 

The pot of gold that waits at the end of this rainbow is threshold laws like those 
found by Erdos and Renyi for random graphs. In particular, suppose that the prob­
ability that any given potential elementary mechanism actually occurs were to in­
crease with time as a result, for example, of an increasing number of chemical 
species capable of acting as catalytic agents or enzymes in the primordial soup. Sup­
pose also that there were a threshold function for the simultaneous appearance of 
cycles of all orders. Some of these cycles might be negative feedback cycles. Others 
might be positive feedback cycles. When the ratio of actual to potential elementary 
mechanisms passed smoothly through this threshold, one might suddenly observe 
an enormous increase in the number of positive feedback cycles. No special law 
would have to be invoked to explain why all the cycles necessary to the sustained 
growth of a self-replicating system would appear simultaneously. Natural selection 
acting among these competing chemical systems could then, in principle, lead to the 
organization of cells. 

Is this program for studying the transition to life pie in the sea? Ultimately, only 
colleagues more expert than I am in the physical and chemical details can say. My 
hope is that this account will embolden these colleagues by making them aware of 
some surprising phenomena that mathematics can explain without magic. 
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