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Consider graphs on the vertex set Y={l, 2, ••• ,11}, l <II< co, in which the edge 
between vertices i and 1 occ:urs with probability Pr1-=p1, O""P•J" 1, independently 
for all edges. Let P•(pr1) be tho 11 x 11 symmetric matrix of edge probabilities with 
Pu=O, i= 1, ••. , 11. Let T be tho random number of spanning trees. E(TIP) denotes 
the redundancy, i.e., the expected number of spanning trees in random graphs with 
edge probability matrix P. An explicit (detcrminantal) formula for the sensitivity 
of the redundancy to changes in any edge probability, namely, oE(TIP)/op,,. shows. 
that this sensitivity equals the redundancy of random graphs in which vertices I and 1 
have been collapsed to a single vertex or are connected with probability 1. There is. 
an analogous formula for directed graphs. 

1. Random-edge graphs 

Consider graphs (Tutte 1984) on the set V of vertices, V == {I, ... , n}, 1 < n < oo. 
Suppose that the undirected edge {i,J} between i and j occurs with fixed but 
arbitrary probability Pu=PJ~t O~Pu~ 1, independently for all distinct pairs i, j 
that satisfy l~i<j~n. Definep11 =0, i=l, •.• , n. Let P=(pu) be the nxn sym­
metric matrix of edge probabilities. Random graphs or edge probability matrices 
P with at least two different off-diagonal edge probabilities Pu+P,•• 1-:J:g or 
j-:J:h, will be called anisotropic to distinguish them from isotropic random graphs 
in which, by definition, for some p e [0, 1], p11 =p, for all i-:J:j. By this definition, 
anisotropic random graphs necessarily have n>3 vertices, since the symmetry 
of P implies that random graphs with only two vertices are always isotropic: 

Pu=Pz1· 
Let T be the (random) number of spanning trees of a random graph, i.e., the 

number of trees that are incident to every vertex in V. Let E(.) denote expected 
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value or mean. Thus £(TIP) denotes the expected number of spanning trees in 
random graphs with edge probability matrix P. 

Graphs with randomly deleted edges may model a communication network in 
which communication links are subject to random failure, as in systems of stra­
tegic command and control (Ford 1985). The expected number of spanning trees 
could then be interpreted as a network's redundancy, or mean number of distinct 
paths of communication among all verices. The number of spanning trees in a 
fixed graph is sometimes called the complexity of the graph, so the expected 
number of spanning trees in random graphs could be called the mean complexity 
of the random graphs. 

In efforts to alter the redundancy of a network, it is obviously useful to know 
how the redundancy changes with small changes in the probability of survival 
of each edge, namely, oE(TIP)fop11, i,j= I, ... , n. Buzacott (1980, p. 323) calls 
oE(TIP)fcpu the "importance factor" of edge {i,j} for the redundancy £(TIP). 
The first purpose of this note (sections 2, 3) is to compute the importance factors, 
or sensitivities, for anisotropic random graphs (see eq. (2)). I shall also define 
anisotropic random directed graphs and compute (section 4) the importance 
factors for them (see eq. (4)). 

The second purpose of this note is to prove (section 5) that the sum of the 
importance factors for anisotropic random graphs is larger, the more evenly the 
edge probabilities are distributed, in the following sense. 

For any n x n real matrix A with zero diagonal (a11 =0, i= I, ... , n), let p(A) 
= L au/[n(n-1)] be the average of the off-diagonal elements of A. D.=fine A-

l.i 
to be the equisummed matrix of such a (real, zero diagonal) matrix A if A has 
zero diagonal elements and all off-diagonal elements iiu, i-:1:}, equal to p(A). 
By construction, L au= L 'iiu. 

1.} i,J 
For an anisotropic matrix P of edge probabilities, P gives the edge probabilities 

of isotropic random graphs with the same total of edge probabilities. For O~oc~ I, 
define P,=(l-oc)P+ocP. As oc increases from 0 to I, P, becomes closer to the 
edge probabilities of isotropic random graphs, while the total of edge probabilities 
remains conslant. 

I showed previously that if P is anisotropic, then the expected number Ea(D 
eE(TIPa) of spanning trees of random graphs ~ith edge probabilities Pa increases 
strictly with oc in [0, I] (Cohen 1986, Cor. 3.3). Thus, for a given sum of edge 
probabilities, the redundancy E.(T) increases, the closer the matrix of edge prob· 
abilities is to being isotropic (as measured by increasing oc in P.=(l-oc)P+ocP). 

Here I show that for anisotropic random graphs, 

S(oc)s L oE(TIP«)fopiJ 
1<1 
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increases strictly with « in [0, 1 ]. Thus for a given sum of edge probabilities, the 
total sensitivity increases, the closer the matrix of edge probabilities is to being 
isotropic as measured by ex. 

Finally, I conjecture (section 6) that the closer edge probabilities are to being 
isotropic, as measured by « in P., the more nearly uniform are the sensitivities 
after normalization by their total S(a). "Nearness· to uniform" is made precise 
by a claim about majorization (Marshall and Olkin 1979), which I am able to 
prove only for n=3 vertices. Because I lack a proof for general nor a counter­
example, this note is only a progress report. I would welcome a resolution of the 
conjecture. 

2. Direct computation of Importance factors 

A formula (I) for E(TIP) from Cohen (1986) generalizes the matrix-tree theorem 
attributed to Kirchhoff. 

For any n x n real matrix A= (a11), following the terminology of Tutte (1984, 
p. 138), define then x n Kirchhoff matrix K(A) of A by 

K 11= L a11 , i=l, ... , n, 
}<I< I 

K 11 = -aiJ, 1 :!;,.i'#j<n. 

Let det A be the determinant of A and let A(itt ... , i4) be the (n-q)x(n-q) 
principal submatrix of A left after deleting rows and columns itt ... , i11, for 
I :!;,.q:!;,.n. Thus det [A(i)] is the determinant of the (n-1) x (n-1) matrix that 
remains after row and column i are deleted from A. Then (Cohen 1986) 

. E(TjP)=det{[K(P)](h)}, 11=1, ... , n. (1) 

Then, by the chain rule, 

iJE (TIP)/op, 1=( iJdet {[K (P)](II) }/iJ {[K (P)] (h) },1)( iJ {[K (P)] (11) }HfopiJ) 

+(odet {[K(P)](h)}/iJ {[K(P)](Il)}IJ)(iJ {[K (P)](Il)}11/op11) 

+(iJdet {[K(P)] (IJ)}jiJ {[K(P)](h)}1,)(o {[K(P)](h)LdopiJ) 

+(iJdet {[K ( P)] (h) }/iJ {[K (P)](h) }JJ) (iJ{[K (P)](h) }JJfiJp11). 

Now take h=i. Then row and column i of K(P) are absent from {[K(P)(i)}, so 
the first three terms on the right vanish. Then iJ{[K(P)](i)}JJfiJp11= 1 implies 

iJE(TjP)fiJpiJ=det {[K(P)](i ,j)}. (2) 
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Comparison of (2) with Corollary 2.1 of Cohen (1986) establishes an unantici­
pated identity: the sensitivity iJE(TjP)fiJPu of the redundancy E(TjP) to Pu equals 
the redundancy of random graphs in which vertices i and j have been collapsed 
to a single vertex (call it t•). (In the random graph where I and j have been collapsed 
to ;•, an edge {g, h}. g:~<i• and h:~<i•, is assumed to occur with the probability 
that {g, h} occurs in the original graph, and an edge {h, i•}, h:~<i•, occurs in the 
collapsed graph with the probability that either edge {h, i} or {h,J} occurs in the 
original graph; and all edges in the collapsed graph occur independently.) 

3. Computation of importuce factors 
using BuzacoU's formula 

Buzacott (1980, p. 323) established that, for any measure Q of reliability in 
which an element p11 of P appears linearly, the importance factor of that element 

satisfies 

where Q0 is the value of the reliability measure for random graphs in which Pu 
is replaced by 0 (and, necessarily for graphs, p11 is also replaced by 0) and all 
other elements of P reniain unchanged. Essam (these Proceedings, p. 51) observed 
that the above formula holds if Q is the expectation of any function defined on 
all possible subsets of edges. 

For fixed; andj, let P0 have all elements equal to the corresponding elements 
of P except that (P0) 11=(P0)11 =0. Then, in Buzacott's formula, take 

Q=E(TjP)=det {[K(P)](i)}, 

Q0 =E(TjP0)=det{[K(P0)](i)}. 

If e1 denotes the column n-vector with all elements 0 except a I as thejth element, 
then 

jth column of P0 =Uth column of P)-p11 e,. 

Therefore 

det{[K(P0)](i)}=det{[K(P)](i)}-p11 det{[K(P)](i ,j)} · 
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Hence, from Buzacott's formula 

p1,(oE(TIP)/op11)=det {[K (P)](i)} -det {[K(P0)](i)} 

= p11det{[K(P)](i ,j)}, 

as found directly in (2). 

4. Importance facton for expected 
spanning lntrees of digraphs 
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Let T1 denote the number of spanning intrees (Tutte 1984, Cohen 1986) to 
vertex 1 in random digraphs in which p11 is the probability of a dart {directed 
edge) from vertex ito vertex), i:F} (contrary to the direction of darts in Tutte 
1984), and all darts occur independently. If Pis the (possibly asymmetric) matrix 
of dart probabilities, with 0 diagonal elements, then (Cohen 1986) 

E(T 1IP)=det {[K(P)]{l)}. (3) 

Fix any i and} with i:F} and let~ •• = 1 if g=h, ~,.=0 if g:Fh. Then elementary 
calculations similar to those above lead to 

oE(T,IP>fop,1 

=(l-c5 11){det {[K(P)](l, i)} (4) 

+(1511 -l)( -1)1+ 1det{[K(P)](l, i; l,j)}}, 

where (K(P)] {1, i; I,}) denotes the (u-2)x(n-2) matrix that remains after 
deleting rows I and i and columns 1 and j from K(P). This formula shows that 
E(T1IP) is completely insensitive to changes in the probabilities p1• of darts 
from vertex 1 to any other vertex, as expected. 

To illustrate, {4) gives for n=3 

oE{T,IP)/op21 = P31 + P32 • 

oE(T,IP)/opll= P31• 

both of which follow by differentiating (3), namely, 

E(T,IP)= P21 P31 + P23 PJt + P21 P32· 
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5. Total sensitivity of random graphs increases 
with evenness of probabilities 

As in sections 1, 2 and 3, let P be a symmetric matrix of edge probabilities for 
anisotropic random graphs (with three or more vertices) and let S(a) be the sum 
of the sensitivities when the edge probability matrix is P •. 

If x and y are two real n-vectors, x=(xh ... , x,)r, y=(y., ... , y,)r, let xu1 
~ ... ~xr,1 denote the elements of x in decreasing order, and similarly for y. 
Following Marshall and Olkin {1979), say that xis majorized by y and write 

t t 

x-<y if and only if L x[,1< L Y[IJ• 
1•1 1=1 

k=l, ... ,n-1, 

and 

II II 

L Xr11= L Y[IJ • 
I• 1 I= 1 

Theorem. For n= 3, S(a) is constant in a. For n> 3, S(a) is strictly increasing in 
ex e (0, I] to a maximum of 

S{l)=(n-t)[p(P)nr- 2. 

Proof. By (2), S(cx) is the sum of all principal minors of order n-2 of K(P.), 
which is identical to the (n-2)nd elementary symmetric function (ESF) of the 
eigenvalues of K(P.) (e.g., Marshall and Olkin 1979, p. 504). The (n-1)-vector 
p(a)=(Jl1(a), ... , Jl,- 1(a))r of the n-1 largest eigenvalues of K(P.), under the 
iabelling p 1(a)~Jl2(a)~ ... ~p,_ 1(a)~Jl .. (a)=O, has strictly positive elements 
when «>0 (Cohen 1986).lfn= 3, the first ESF is just the trace 9f K(P.), which is a 
constant, equal to the trace of K(P) by construction. If n > 3, then the (n- 2)nd 
ESF is a strictly Schur-concave function of p(a) (a fact attributed to I. Schur by 
Marshall and Olkin 1979, p. 78). All terms i~ the ESF that contain Jl,(a)=O as a 
factor vanish. Combining Lemmas 3.1 and 3.3 of Cohen (1986) shows that, if p1 

is the ith biggest eigenvalue of K(P), then p1(a)=(l-a)Jl1+ap(P)n, fori= I, .•. , 
n-1; and if 0<a1 <a2 ~I, then Jl(a2)-< Jl(a 1) but Jl(a2) is not a permutation of 
.u(a 1). By strict Schur-concavity of the (n:_2)nd ESF, S(a1)<S(a2). 
- In the isotropic case, all n-1 elements of the vector Jl (I) are equal to p(P)n, 

so the (n-2)nd ESF is [p(P)nr- 2 (:=~)=<n-l)[p(;)n]"- 2 . 0 
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Since •. for. every _i= I, ... , n, det{[K(P~)](i)} increases strictly with a: e [0, 1] 
when P 1s amsotrop1c (Cohen 1986, Cor. 3.3), and since the Theorem just proved 
shows that S(a:) also increases with « in this case, it is natural to ask whether, 
for all l ~i<j~n. det{[K(P~)](i,j)} also increases with a: e [0, I]. It is easy to 
construct numerical examples that show that, for some i<j, d!t{[K(P~)](i,j)} 
may decrease strictly as a: increases. 

6. Relative sensitivity of random graphs: 
a cooJecture about majorlzation 

Le~ r,j(a:) be the relative sensitivity of E(TjP) to the probability of edge {i,j}. 
that IS, 

Let!(«) be the (;}vector of relative sensitivities r1.1(a:) in some ord!r, such as 

lexicographically by subscript. 

· Conjecture. If the matrix P of edge probabilities is anisotropic, then 

and ! («1) is not a permutation of! («1). 

The conjecture asserts that the nearer P. is to an isotropic matrix, the more 
nearly equal are the importance factors of the different edges. 

Proof of co11jecture for n= 3. By direct com;mtation from (2), 

oE(TjP.)fopu=(l-a:)(p31 + p32 )+2a:p(P), 

oE(TjP.)fopl3=(1-a:)(p21 + p23 )+2ap(P), 

oE(TjP .. )jopz3 =(1-a:)(pu + p13)+2ap(P). 

The sum of these sensitivities, S(a:), equals the sum of the elements of p or trace 
K(P.), which is independent of« and is positive. Call the sum c. Thus cr(a:) is the 
vector of sensitivities and has the form (1-a:)x+a:i, where x is the ~non-zero 
non-negative vector (P3t +P32• P21 +Pz3, Pu+p13) ;nd xis the vector with all 
elements equal to the mean 2p(P) of the elements of x. It f~llows that r(a:2)~r(a1) 

16 . J. E. Cohen 

by a very slight generalization (from positive vectors to non-negative vectors) 
of Lemma 3.1 of Cohen (1986). Since not all elements of x can be equal, !(«z) 

cannot be a permutation of !(a:,). 0 

The conjecture for general n is buttressed by at least one hundred examples 
with randomly chosen P and a:=O, l/4, l/2, 3/4, l for each of n=4, 5 and 6. 
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