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Abstract 
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We prove the existence of unique limits and establish inequalities for matrix 
generalizations of the arithmetic-geometric mean of Lagrange and Gauss. For 
example, for a matrix A= (ai1) with positive elements ai1, define (contrary to custom) 
Al elementwise by [Al]ii = (ai1)l. Let A(O) and B(O) be dxd matrices (1 < d < oo) 
with all elements positive real numbers. Let A(n+1) = (A(n)+B(n))/2 and 
B(n+1) = (d- 1A(n)B(n))l. Then all elements of A(n) and B(n) approach a common 
positive limit L. When A(O) and B(O) are both row-stochastic or both column­
stochastic, dL is less than or equal to the arithmetic average of the spectral radii of 
A(O) and B(O). 

1. A limit theorem for positive matrices 

Let a and b be positive numbers. Define the sequences a= {a(n)}~=o and 
b = {b(n)}~-o by 

a(O) = a, b(O) = b, 

a(n+ 1) = (a(n)+b(n))/2, b(n+ 1) = (a(n)b(n))l 
1 

(n = 0, 1, ... ).J 
(1) 

Because max(a,b) ~ (a+b)/2 ~ (ab)~ ~ min(a,b) > 0, 

with strict inequality everywhere if a =l= b, the sequences a and b each have a limit 
and it is the same limit. Denote the common limit by M(a, b). 

According to Cox[3], Lagrange defined the sequences (1) in 1785, noted that they 
have a common limit M(a, b), and showed how to use them to compute elliptic 
integrals. In 1791, Gauss, then 14, independently discovered the sequences (1) and 
defined M(a, b) to be the arithmetic-geometric mean, which he abbreviated to agM, 
of two positive numbers a, b. The agM has deep connections with elliptic integrals 
and diverse applications [1-3]. 

The iteration (1) applies as well to complex numbers a and b with positive real 
parts; the square root can be chosen so that every b(n) has a positive real part. Stickel 
[7] established the convergence of the iteration ( 1) when a is I, the d x d identity 
matrix, and b is any d x d complex matrix, the eigenvalues of which all have positive 
real parts. The matrix square root is chosen so that the eigenvalues of every b(n) have 
positive real parts. 

Here we propose some different matrix generalizations of the iteration (1), show 
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that they converge, and establish some inequalities governing the limiting values. 
Additional exact results and inequalities concerning the iteration (3) below have been 
established by P. D. Borwein and E. U. Stickel (personal communication, 4 March 
1986) on the basis of a previous draft of this manuscript and correspondence. 

For a fixed positive integer d, let A and B be d x d positive matrices, i.e. matriees 
in which all elements are positive numbers. For such A = (ai1), define Al by 
[Ai]ii = (ai1)i. This elementwise square root is not the usual definition of the square 
root of a non-singular matrix (e.g. [5]). Clearly AlAi *A, but Al * Ai =A, where * 
denotes the Schur or Hadamard product, i.e. elementwise multiplication 
([A*B]ii = aiibi1). 

If the sequences A*= {A(n)}~_0 , B* = {B(n)}~-o of d x d positive matrices are 
defined by 

A(O) = A, B(O) = B, l 
A(n+ 1) = (A(n)+B(n))/2, B(n+ 1) = (A(n) *B(n))l, J 

(2) 

then obviously A* and B* have the common limit M*(A, B) with elements 
[M*(A, B)]ii = M(aii' bi1). 

The purpose of this note is to define and describe the limiting behaviour of slightly 
less trivial generalizations of the agM for positive matrices. Define the sequenees 
{A(n)}~_0 , {B(n)}~-o of d x d positive matriees by 

A(O) = A, B(O) = B l 
A(n+ 1) = (A(n) +B(n))/2, B(n+ 1) = (d-1A(n) B(n))t,J 

(3) 

where AB denotes the ordinary matrix product A times B. (When d = 1, (2) and (3) 
both reduce to (1).) Let J be the d x d matrix in which every element is 1. 

THEOREM 1. There exists a positive number ,u(A, B) such that 

limA(n) = limB(n) = ,u(A, B)J = M(A,B), (4) 
ntco ntco 

and convergence to the limit is geometrically fast. 
Before proving (4), we note that if A(n) = B(n) = cJ for some positive number, c, 

then A(n+ 1) = B(n+ 1) = cJ, so cJ is a 'steady-state' solution of (3). The task is to 
prove that every solution of (3) converges to this steady-state solution with c 
depending on A and B. 

It is also easy to see, as David A. Cox pointed out (personal communieation, 
23 January 1986) that ,u(aJ, bJ) = M(a, b) when a and bare positive real numbers. 

Proof of Theorem 1. Consider the directed graph D with 2d2 vertices labelled by Cii 
where C takes the values C =A or C = B, and i = 1, ... , d, and j = 1, ... , d. Each 
vertex of D represents one of the 2d2 elements of the matrices A and B. Let there 
be a directed edge to (C1 )ii from (C2 )gh• and write (C1 }w~-(C2 )gh• if and only if, 
according to (3), 

For example, Au <c-Bu because Au(n+ 1) = (Au(n)+Bu(n))/2 so Bu at step n 
influences Au at step n + 1. Similarly, for i = 1, ... , d, Bu <c- Bi1 . 



Arithmetic-geometric means of positive matrices 211 

It follows from the chain rule that D has a directed path of k ~ 1 directed edges 
from (02)gh to (01 )ii• and we write (01 )ii+--k (02)gh• if and only if 

o[01(n+ k)]i1jo[02(n)]gh > 0. 

Returning to the preceding examples, Au +--2 Bi1 , fori = 1, ... , d, i.e. Au at step n + 2 
is influenced by or depends on every element of the first column of B at step n. 

We next show that Dis strongly connected, i.e., that there is a directed path from 
any vertex to any other. Since, for any i = 1, ... , d, we have Bil +-- Aii for all 
j = 1, ... , d; and since Aii +-- Bii for all i,j = 1, ... , d, we have the following paths: 

Au +--3 Aij and Au +--4 Bii•} 

Bu +--2 Aij . ~n~ Bu +-a Bij• 

(for all ~.J- 1, ... ,d). 

(5) 

Since the choice of the (1, 1) element of A orB is arbitrary, obviously the same is 
true for any other element of A or B. Thus Dis strongly connected. 

Moreover, Ai1+-- AiJ• for all i, j = 1, ... , d. Therefore for all k ~ 4, for all g, h, i, 
j = 1, ... , d, and for 0 1 , 0 2 =A orB, 

(Ol)ii+--k (02)gh· 

Fork~ 4, each element of01 (n+k) depends simultaneously on all elements of02(n). 
Define the upper and lower bounds, for n = 0, 1, ... , 

Then, from (3), 

U(n) =max max (Ai1(n), Bi1(n)), 
i, j 

L(n) =min min (Ai1(n), Bi1(n)). 
i, j 

U(n) ~ U(n+ 1) ~ L(n+ 1) ~ L(n), 

so the limits L = limntoo L(n), U = limntoo U(n) exist and U ~ L. 

(6) 

We now show that U =Land that U(n) and L(n) converge to their common limit 
geometrically fast. 

Fix nand let U* = U(n), L* = L(n). Since each element of A(n+ 1) and B(n+ 1) 
is a monotone non-decreasing function of each element of A(n) and B(n), U(n+ 1 ), the 
largest of the elements of A(n+ 1) and B(n+ 1), will be large as possible if some single 
element of A(n) or B(n) equals L* and all the remaining' elements of A(n) and B(n) 
equal U*. So suppose this is true. If Ai1(n+ 1) and Bi1(n+ 1) are elements of A(n+ 1) 
and B(n+ 1) that depend on the element of A(n) or B(n) that is equal to L*, then 

Ai1(n+ 1) = (L*+ U*)/2 = U*-(U*-L*)/2, 

Bi1(n+ 1) = [d-1{(d-1) U* 2 + U*L*}]! = [U*{(1-1/d) U*+L*jd}]! 

~ U*/2+{(1-1/d) U*+L*jd}/2 = U*-(U*-L*)j2d), 

using the inequality of arithmetic and geometric means. Thus every element of 
A(n+1) and B(n+1) that depends on the L* element of A(n) or B(n) is not greater 
than U*-(U*-L*)/(2d). (The other elements of A(n+1) and B(n+1) could be as 
large as U*.) By iteration, every element of A(n+2) and B(n+2) that depends on 



212 JoEL E. CoHEN AND RoGER D. NussBAUM 

any element of A(n+ 1) or B(n+ 1) that in turn depends on the L* element of A(n) 
or B(n) is not greater than 

U*-(U*-[U*-(U*-L*)/(2d)])/(2d) = U*-(U*-L*)/(2d)2
• 

Iterating two more steps, we observe that every element of A(n+4) and B(n+4) 
depends on the L* element of A(n) or B(n) (via a path given by the directed graph 
D) and is not greater than U*-(U*-L*)/(2d) 4 , that is, 

U(n+4) ~ U(n)-(U(n)-L(n))/(2d)4
. 

From the last inequality of (6), we then have 

U(n+4)-L(n+4) < [U(n)-L(n)] (1-(2d)-4 ). 

Hence U = Land, in the notation of (4), both equal fl(A, B). 
Since generally AB =I= BA, generally fl(A, B) =I= fl(B, A). 
David A. Cox (personal communication, 23 January 1986) points out the following 

amusing corollary of Theorem 1. If A is ad x d positive matrix such that (A 2)! = d!A, 
then, for some c > 0, A = cJ. His proof is that if A(O) = B(O) =A, then 
A(n) = B(n) =A for all n. A direct proof of a stronger result involving the 
map A-J>-(d-1A 2)l is sketched in the next section. 

2. A general principle for the existence of a limit 

To keep this paper self-contained, we have given an ad hoc proof of the existence 
of fl(A, B). In this section, we explain how the results of Section 1 are a special case 
of a general theorem of Nussbaum [6]. That general theorem also contains other 
generalizations of the agM, for example, one of Everett and Metropolis[4]. We now 
describe the general theorem and its relation to our problem. 

A closed, convex subset K of a Banach space X will be called a cone if tx E K for 
all t ~ 0 and xEK and if xEK-{0} implies that -xf/=K. A cone induces a partial 
ordering by x ~ y if y-xEK. If the interior, K 0 , of K is non-empty and f:K0-J>-K0 

is a map,jis called order-preserving iff(x) ~ f(y) whenever x ~ y; andfis homogeneous 
of degree 1 iff(tx) = tf(x) for all t > 0 and xEK. 

THEOREM 2. (See theorem 3·2 in [6].) Let K be a cone with non-empty interior in a 
finite-dimensional Banach space X and letf:K0 -J>-K0 be a continuous, order-preserving 
map which is homogeneous of degree 1. Assume that there exists v E KD such that f( v) = v 
and that f is 0 1 on an open neighbourhood of v. Let L = f'(v) be the Frechet derivative 
of fat v. Assume that there exists an integerm ~ 1 such that for each xEK -{0}, LmxEK0 . 

Then for each x E G, there exists a positive number fl(x) such that 

limr(x) = fl(x) v, 
n-.oo 

wherer denotes the composition off with itself n times. The map X-J>- fl(x) is continuous, 
0 1 on an open neighbourhood of v, order-preserving and homogeneous of degree 1. If 
v* EX* denotes the Frechet derivative fl' ( v) of fl at v, then v* is the unique element of X* 
such that L*v* = v* and v*(v) = 1, where L* is the Banach space adjoint of L. Iff is 
Ck (real analytic) on K0 , then fl is Ck (real analytic) on K0 • 

A version of Theorem 2 is also proved in [6] for general Banach spaces. 
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The results of [6] also imply that the convergence in Theorem 2 is geometric: given 
a compact subset M of K 0 , there exist constants Band c, 0 < c < 1, depending on 
M, such that llr(x)-,u(x)vll ~Ben, for all xEM. 

Theorem 2 immediately implies that f has a unique (to within positive scalar 
multiples) eigenvector in K 0 • However, iff extends continuously to Kit may well 
have other eigenvectors in the boundary of K. This will be the case for f given by 
(3). 

To apply Theorem 2 to (3), let X denote the Banach space of ordered pairs (A. B) 
of d x d matrices. Let K denote the cone of ordered pairs (A, B) in X all of whose 
components are non-negative. Define f: K0 --+ K0 by 

f(A,B) = ((A+B)/2, (d- 1AB)l), (7) 

where, as before, the square root in (7) is the elementwise square root. It is easy to 
check that f is real analytic on K0 , order-preserving, and homogeneous of degree 1 
and that j(J, J) = (J. J) (where J has every element 1 ). An easy application of the 
chain rule shows that the Frechet derivative off at (J, J) is the linear map L: X--+ X 
given by 

L(A,B) = ((A+B)/2, (2d)-1(AJ+JB)). (8) 

To see that L satisfies the hypotheses of Theorem 2, if (A, B) E K- {0}, define 
(Ak, Bk) = Lk(A, B). Since A and Bare not both 0, A1 has some positive entry, say 
in row i. Equation (8) then implies that all entries in row i of B 2 are positive. Thus, 
JB 2 and B 3 have all entries positive; and finally, A 4 and B 4 have all entries positive, 
i.e. L 4 (A, B) E K0. 

Theorem 2 now implies that 

limr(A,B) = ,u(A,B) (J,J) (,u(A,B) > 0), 
n-+oo 

for all (A, B) E K0, which is just Theorem 1. Furthermore, Theorem 2 implies that 
(A, B)--+ ,u(A, B) is real analytic. Let 1 be the d-vector with all elements 1. If 

v*(A,B) = (2d2
)-

1 ~ (ai1+bi1) = (2d2 )-1 1T(A+B) 1, 
i, j 

(9) 

then v* EX*, v*(J, J) = 1 and L*v* = v*, so v* is the Frechet derivative of ,u at (J, J). 
Two other maps are closely related to f. First, define g: K 0 --+ K0 by 

g(A, B)= ((A +B)/2, ((2d)- 1(AB+BA))l). (10) 

From Theorem 2 or the kind of argument employed in Section 1, one obtains 

lim gn(A, B)= ~(A, B) (J, J) (g(A, B)> 0), (11) 
n-+oo 

for all (A,B)EK0
• The map (A,B)--+~(A,B) is real analytic, homogeneous of degree 

1, order-preserving and has the same Frechet derivative as fat (J, J). In addition. 
~(A, B)= ~(B,A). 

Second, if Y denotes the Banach space of d x d matrices and C is the cone of 
non-negative matrices. define h: C0 --+ 0° by 

(12) 
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where again the square root denotes the elementwise square root. The map h satisfies 
all assumptions of Theorem 2 and h(J) = J, so for each A E CO there exists A(A) > 0 
such that 

lim hn(A) = A(A)J. (13) 
n-.oo 

Equation (13) implies that h has a unique normalized eigenvector in 0°, which is 
basically the observation made at the end of Section 1. 

3. Estimates for ,u(A, B), ~(A, B) and A(A) 

We now give some estimates for ,u(A, B), ~(A, B) and A(A). In certain important 
cases, our estimates use r(A) and r(B), the spectral radii of A and B, respectively. 

First, we renormalize. If J is the d x d matrix with all elements 1, define J 1 by 

(14) 

Then J 11 = 1, so the theory of positive matrices implies r(J1 ) = 1. If A and B are 
positive d x d matrices andf, g and hare as defined in (7), (10) and (12), our previous 
results imply that there are positive numbers ,u1(A, B), ~1 (A, B) and A1(A) such that 

limr(A, B)= .U1(A, B) (Jl, J1), 
n-.oo 

(15) lim gn(A,B) = ~1 (A,B) (Jv J 1), 
n->oo 

lim hn(A) = A1(A)J1. 
n-.oo 

Obviously ,u1 (A, B) = d,u(A, B), etc. 
LEMMA 1. Let A E C and BE 0, i.e. A and B are non-negative d x d matrices. Let x 

be a non-negative d x 1 column vector and xi be its elementwise square root. Let 
E = (d- 1AB)i and F = ((2d)- 1(AB+BA))i. If, for y and zEJRd, one writes y ~ z when 

Yi ~ zifor 1 ~ i ~ d, and if one has 

Ax ~ ax and Bx ~ flx 

for positive scalars a and fl, then 

E(xi) ~ (afJ)hi and F(xi) ~ (afJ)hi. 

Analogous conclusions are true if xis a 1 x d row vector and xA ~ax and xB ~ flx. 
Proof. We shall prove the theorem for the matrix E. The proof for F is essentially 

the same. 
The ith component (Exi)i of Exi is given by 

(Exi)i = ~ d-1 ~ aij bjk xk 
2

. 
d ( d )1 

k=1 j-1 
(16) 

Applying the Cauchy-Schwartz inequality to the right side of (16) gives 

(17) 
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A non-negative square matrix A is primitive if, for some m > 1, all entries of Am 
are positive. 

THEOREM 3. Let C be the cone of non-negative d x d matrices (as before) and let h: C--+ C 
be defined as in (12). If AEC is a primitive matrix, then 

lim hn(A) = A1(A)J1 , ( 18) 
n-+oo 

where A1(A) is positive real and J 1 is as in (14). Furthermore, 

A1(A) ~ r(A), (19) 

where r(A) is the spectral radius of A. Equality holds in (19) if A= J 1 . 

Proof. If A E CO, (18) was established in Section 2. However, if Am has all positive 
entries and k is such that 2k ~ m, it is easy to show that hk(A) E CO, so the existence 
of the limit in this case follows from the other case and A1(A) = A1(hk(A)) > 0. 

The theory of non-negative matrices implies that if B is primitive, B has an 
eigenvector with all components positive and with eigenvalue r(B). Furthermore, if 
B is any non-negative, square matrix and By~ fly for some vector y with all 
components positive, then r(B) ~ fl. 

In our case, A has a strictly positive eigenvector with eigenvalue a= r(A). If 
An = hn(A), Lemma 1 implies (taking A = B) 

A l 1 

1 x• ~ ax•, 

and using Lemma 1 repeatedly one obtains 

An(x"n) ~ ax"n, where en= 2-n. 

The previous observations imply that 

r(An) ~ a= r(A), 

and taking the limit as n--+ oo gives 

THEOREM 4. Suppose that A = (ai1) and B = (bi1) are d x d positive matrices and 
define a 

a= max ~ aii• 
l.;;i.;;dj-1 

d 

y = max ~ail 
l.;;j.;;d i-1 

fl = max f biJ• } 
l.;;i.;;dj-1 

d 

and o = max ~ biJ" 
l.;;j.;;d i=l 

If M(a, fl) is the arithmetic-geometric mean of a and fl, then 

Jt1(A,B) ~ min(M(a,fl), M(y,o)),l 

s1(A,B) ~ min(M(a,fl),M(y,o)). j 
Equality holds in (21) if A = aJ1 and B = flJ1• 

(20) 

(21) 

Proof. We shall prove inequality (21) for Jt1(A,B), since the argument for s1(A,B) 
is essentially the same. As before, let 1 denote the d x 1 column vector with all entries 
1 and 1 T its transpose. Then Al ~ al and Bl ~ fll. Lemma 1 implies 
A1 1 ~ ((a+fl)/2) 1 and B 1 1 ~ (afl)il, where (A 1,B1) =f(A,B) and f is as in (7). 
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Generally, if ¢(a,f3) = ((a+ /3)/2, (ajJ)f) and (ak, j]k) = ,Pk(a, b) and (Ak, Bk) = 
fk(A, B), then, by repeated applications of Lemma 1, we obtain Ak 1 ~ ak 1 and 
Bk 1 ~ j]k 1. Taking the limit as k-HIJ, 

p 1(A,B)J11 = p 1(A,B) 1 ~ M(a,fJ) 1, 

so Pl(A,B) ~ M(a,fJ). Since tT A~ yfT and tT B ~otT, the argument that 
p 1(A,B) ~ M(y,o) is completely analogous. I 

If A is ad x d matrix, the formula 
d 

IIA II oo = max ~ lat11 
l,.;i,.;dj=l 

defines a norm. In fact, if one defines for a d x 1 vector x the standard sup norm by 

then 

llxlloo = max lxtl, 
l~i~d 

IIAIIoo = max{IIAxlloo: llxlloo ~ 1}. 

Thus Theorem 4 provides an estimate for p 1(A,B) in terms of the agM of IIAIIoo and 

IIBIIoo-
There is another natural norm on the set of d x d matrices for which one obtains 

similar estimates. If A is ad x d matrix, define IIA IIHs• the Hilbert-Schmidt norm of 
A, by 

IIAIIHs = (~11~1 lat1 1 2y. 
It is well-known that IIAIIHs actually defines a norm. 

LEMMA 2. Let A and B be non-negative matrices, neither of which is identically zero. 
If (A1 , B 1 ) = f(A, B) is defined by (7), then 

IIA1IIHs ~ (!) (IIAIIHs+ IIBIIHs), 

IIB1IIHs ~ (IIAIIHsll BIIHs)t. 

(22) 

(23) 

Equality holds in (22) if and only if B = aA for some a> 0, and equality holds in 
(23) if and only if there exists f3 > 0 such that ail = f3b1k for all i, j, k. 

Proof. For notational convenience, write 11-11 for II -IIHs· Inequality (22) and the 
condition for equality follow immediately from the Cauchy-Schwartz inequality. 

By definition 

The Cauchy-Schwartz inequality gives 

(24) 

and equality holds in (24) if and only if aii = 0 for 1 ~ j ~ d or there exists Atk ;;:: 0 
such that 

(25) 
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If we define cxi and j]k by 

inequality (24) gives 

IIBlll ~ c~ d-lcxij]k y = (d-lc~l ai)C~lk) y. 
The Cauchy-Schwartz inequality implies that 

i~l ai ~die~~ afy = dliiAII, 

217 

(26) 

(27) 

and equality holds in (27) if and only if all the cxi are equal (so none of the cxi equals 
zero). Similarly, 

(28) 

and equality holds in (28) if and only if all the j]k are equal (and hence all non-zero). 
By substituting inequalities (27) and (28) in (26), we obtain inequality (23). 
Furthermore, our remarks show that equality holds in (23) if and only if all the cxi 
are equal and non-zero, all the j]k are equal and non-zero, and (25) holds. Using 
this information, one can easily see that Aik is a positive constant independent of i 
and k. I 

CoROLLARY 1. Let C be the cone of non-negative d x d matrices, let X= C x C and let 
f:X--+X be defined as in (7). If (A0 ,B0)EaX and (Ak,Bk) =fk(A0 ,B0 )EaX for all 
k ~ 1, then limk-Hxl(Ak,Bk) = (0,0). 

Proof. If j3 is such that A ~ j3J1 and B ~ j3J1 , it is easy to see that Ak ~ j3J1 and 
Bk ~ j3J1 for all k. Lemma 2 implies that IIAkll + IIBkll (where the norm is the 
Hilbert-'rSchmidt norm) is a decreasing function of k, so 

lim IIAkll + IIBkll = L. (29) 
k-+00 

If the corollary is false, then (because Ak and Bk are bounded) we can select a 
subsequence (Aki' Bk) which converges to (E, F) E ax, (E, F) =I= (0, 0). Equation (29) 
implies that if (Ek, Fk) = fk(E, F), then 

(30) 

If E or F is 0, one easily sees that (Ek, Fk) converges to (0, 0), which contradicts (30) 
and the assumption that L =I= 0. If E =I= 0 and F =I= 0, Lemma 2 implies that equality 
can occur in (30) if and only if there exist positive numbers ex andjJ such that ~i = cxEii 
and j]Fjk = Eii for all i, j, k. These equations easily imply that there exist constants 
c and d such that Eij = c and ~j = d for all i, j. Since (E, F) E ax, this is impossible 
unless c = 0 or d = 0, and we assumed before that E =I= 0 and F =I= 0. Thus we have 
obtained a contradiction, and the corollary is true. I 

If (A0 , B0 ) E X 0 , an examination of the argument in Corollary 1 shows that the same 
sort of argument proves that (Ak, Bk) approaches a positive multiple of (J, J), thus 
yielding a third approach to our basic Theorem 1. 
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By using Corollary 1 we can define ~t(A, B) for all (A, B) E K. If 
(Ak, Bk) = fk(A, B) E 8K for all k ~ 1, define ~t(A, B)= 0; if there exists k ~ 0 such 
thatfk(A,B)EK0 , define ~t(A,B)=~t(Jk(A,B)). We already know that 11 is real 
analytic on K 0 (see Theorem 2), and it is an easy exercise to show by using Corollary 
1 that 11 is continuous on K. 

THEOREM 5. Suppose that A= (ai1) and B = (bi1) are d x d positive matrices. If 
M(a, fJ) denotes the agM of positive numbers a and fJ, then 

and 

fl 1 (A, B)~ M(IIAIIHs• IIBIIHs), 

~1(A,B) ~ M(IIAIIHs• IIBIIHs)· 

Proof. We shall only prove the inequality for fl 1(A, B), since the argument for 
~1 (A, B) is essentially the same. Again we write II . II for II . II H s· 

If (Ak, Bk) = fk(A, B) and if¢ is defined as in the proof of Theorem 4, Lemma 2 
implies (in the obvious notation) 

Repeatedly using this inequality and Lemma 2, we obtain 

(31) 

Since IIJ1 II = 1, the left side of (31) approaches (fl1 , ~t 1 ), where ~t1 = fl1 (A, B), and 
the right side approaches (M,M), where M=M(IIAII,IIBII). This proves the 
theorem. I 

If A and B are both multiples of row-stochastic matrices or both multiples of 
column-stochastic matrices, Theorem 4 implies that 

~t 1 (A,B) ~ i(r(A)+r(B)) and ~t1 (A,B) ~ r((A+B)/2). (32) 

If xis a vector, let llxll 2 denote the standard Euclidean norm (~i lxil2 )l of x; and 
if O.is ad x d matrix, define 11011 2 by 

It is easy to show that 

If 0 is symmetric, it is well-known that 11011 2 = r(O), so if A and B are symmetric 
matrices, all of whose entries are positive, Theorem 5 implies that 

fl 1(A,B) ~ M(IIAIIHs• IIBIIHs) ~ diM(r(A),r(B)) ~ dit(r(A)+r(B)), (33) 

~t 1 (A,B) ~ dir((A+B)/2). (34) 

In view of inequalities (32) to (34), one might hope that there exists a constant 
c such that for all positive matrices A, 

~t(A, A)jr(A) ~c. (35) 

Unfortunately, (35) is not true in general. To see this, define 

A= G ~) 
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forb ~ 1 and define (Ak, Bk) = Jk(A, A). If, at each stage one retains only the highest 
power of b in each entry, an elementary but tedious calculation shows that there 
exists o > 0 (o independent of b forb~ 1) such that 

b'•) 
b'• ' 

where (€1 €2) = (23/32 
€3 €4 17/32 !7/32) and (

€ 5 € 6) = (49/64 49/64) 
€7 €8 37/64 37/64 . 

It follows that for b ~ 1, 

(A 6 , B 6 ) ~ ob'(J, J), where c = 17/32. 

Since ,u(A6 , B 6 ) = ,u(A, A) and ,u is order-preserving, 

,u(A,A) ~ ob'. 

On the other hand, we can directly solve for r(A): 

r(A) = 1+M, 

so lim ,u(A, A)/r(A) = oo. 
b-+00 

Theorems 4 and 5 provide some estimates for ,u1(A, B) and ; 1 (A, B) in terms of the 
agM of certain numbers and hence in terms of elliptic integrals. Stickel [7] established 
a connection between his matrix generalization of the arithmetic-geometric mean 
and elliptic integrals, and derived from this connection algorithms for computing the 
matrix exponential and matrix logarithm. It remains to be seen whether there are 
connections between ,u(A, B), ;(A, B) and elliptic integrals that are deeper than the 
loose connections implied by Theorems 4 and 5. 
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