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A model of consensus leads to examples in which the ergodic behavior of a nonstationary 
product of random nonnegative matrices depends discontinuously on a contin:,ous parameter. In 
these examples, a product of random matrices, each of which is a scrambling stochastic matrix, 
change~ from bein:; weakly ergodic (asymptotically of rank 1) with probability I to being weakly 
erg•>·iic with probaLility 0 as a parameter of the process changes smoc<hly. 

·products of random nonnegative matrices * ergodicity * inhomogeneous productS·* zeta 
function * strong limit laws * zero-one laws 

1. Introduction 

Suppose n experts are trying to evaluate some quantity that can be described by 
a real scalar or real vector. Their initial estimates are respectively F), i = 1, ... , n. 

They share and discuss their estimates and form new estimates F~. The process then 
iterates to yield further estimates F~, k = 1, 2, ... , i = 1, ... , n. 

Suppose (DeGroot, 1974; Chatterjee and Seneta, 1977) that at each stage k+1 
of the process, the ith expert forms his or her new estimate as a weighted mean of 
all prior estimates at stage k: 

pk+t = ;, a<klpk ;, a<kl = 1 k 1 2 · 1 
I ~I)}'~ 1) ' =' , ... ,!= , ... ,n. 

j=l j=l 

The weighting coefficients a\ik) may depend on the trial k. If each expert pays no 
attention to the estimates of the other experts, the weights are given by the identity 
matrix, Ak = I for all k. The model is open to empirical testing because if any 
expert's estimate at stage k + 1 falls outside the convex hull of all estimates at stage 
k, the model is wrong. Writing Fk for then-vector with elements F~ and Ak = (a~kl), 
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we have for all k;;. 2, Fk = Ak_1Ak_2 • • • A 1 F
1

• We shall say that {Ak} ";'is consensual 
if for every F 1 the experts will approach consensus, i.e. IF~- FJI ~ 0 for all i,j = 

1, ... , n as kjoo. If {Ad";' is not consensual, then there exist initial estimates F 1 

such that consensus will not occur, i.e. such that, for some i andj, i ¥- j, IF~- FJI ~ 0. 
To allow for the possibility that the evaluation process begins at stage j > 1 with 

some Fj not obtained from an earlier Fj-\ define (see Hajnal, 1958) {Ak}";' to be 
(left) weakly ergodic if, for each j, {Ak}j' is consensual. A more detailed definition 
will be given below in Section 2. Note that {Ad";' may be consensual but not weakly 
ergodic when, for example, a single Ak has all its rows equal. 

DeGroot (1974) gives necessary and sufficient conditions for {Ak}";' to be con­
sensual when Ak =A for all k;;. 1. When Ak =A, Berger (1981) observes that, for 
some initial estimates F\ the experts will approach consensus even when {Ak}";' is 
not consensual (for example, if all the experts happen to agree at the outset). Berger 
gives necessary and sufficient conditions on A and F 1 for the experts to approach 
consensus. He admits (p. 417) that it is "hard to imagine" that the conditions required 
of F 1 would be satisfied when A is such that {Ad is not consensual. 

Chatterjee and Seneta (1977) point out that the experts may approach consensus 
even if they gradually harden their positions by increasing the weight they assign to 
their own estimates and decreasing the weight they assign to the other estimates. 

The purpose of this paper is to show by examples that, when experts harden their 
•Jositions, a very small change in the process of weighting other experts' esJimates 
cdn divert the process from moving towr.rd consensus almost surely tc remai-ning 
in dissension almost surely, or vice versa. More generally, the ergod.ic behavior of 
a product of random nonnegative matrices, including e.g. a Markov chain in random 
environments, can depend discontinuously on a continuous parameter. In the 
examples to be described, a nonstationary product of random matrices changes 
from being weakly ergodic with probability 1 (w.p. 1) to being weakly ergodic with 
probability 0 (w.p. 0) as a parameter of the process changes smoothly. 

Other aspects of the dependence on a parameter of the asymptotic behavior of 
a product of random matrices have been investigated by Kingman (1976), Goldsheid 
(1980), Cohen (1980), and Kifer (1982). Models of consensus among experts are 
reviewed by Seneta (1981, Ch. 4) (along with the relevant matrix theory), Wagner 
and Lehrer (1981), Zidek (1983) and, most comprehensively, Genest and Zidek 
(1986). 

Sections 2 and 3 relate ergodic behavior to zero-one laws for random versions 
of Riemann's zeta function and give some special examples of discontinuity in 
ergodic behavior. Section 4 interprets the results of Sections 2 and 3 in terms of the 
DeGroot-Chatterjee-Seneta model of consensus. 

2. Weak ergodicity of stochastic matrix products 

All matrices in this paper will be assumed to be n x n, 1 < n < oo, and nonnegative, 
i.e. having every element nonnegative. 
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If A~o A 2 , ••• is a sequence of matrices, define L{Ad to be the doubly indexed 
family of matrices {L~c,m; k, m = 1, 2, ... } where 

(1) 

is the product of m matrices from the sequence {Ak};" starting from Ak+l and 

multiplying successive factors on the left (L for "left"). We denote the element in 

row i and column j of L~c,m by (L~c,m)ii. 
Similarly, define R{Ad = {R~c,m; k, m = 1, 2, ... } where Rk,m = 

Ak+!Ak+2 • • • Ak+m-!Ak+m• k, m = 1, 2, ... , with i,j element (R~c,m)ij· 
For any n x n stochastic matrix P = (pij), 1 < n <oo, define 

n 

y(P)=!maxi.j L \Pik-Pjkl· 
k=l 

(2) 

Then 0 :o;;; y( P) :o;;; 1 and y( P) = 0 if and only if all rows of P are identical, i.e. P has 
rank 1. 

A sequence {Ak};" of stochastic matrices Ak is defined to be left (or right) weakly 
ergodic if, for all k, L~c,m (or R~c,m) asymptotically has rank 1 as m ~ oo; i.e. if for 
all k";31, limm-oo y(L~c,m)=O (or the same with L replaced by R). 

Hajnal (1958) discusses only rightward products. Leftward products are intro­
duced and compared to rightward products by Chatterjee and Seneta (1977). For 
brevity we shall henceforth replace "left and right weakly ergodic" by "ergodic". 
Chatterjee and Seneta prove that for leftwi!rd produc;s of stochastic matrices strong 
and weak ergodicity arc equivalent. 

Let {Bdr= 1 be ·a s~quence of random stochastic matrices. The ergodicity of {Bk} 
is an asymptotic property which is unaffected by any single Bk. unlike the con­
sensuality of {Bd;". Let {Wdr=l be any deterministic or random sequence of 
permutation matrices. Clearly { Wd is not ergodic. 

Let {Xk} r= 1 be a sequence of real-valued random variables concentrated on [1, oo). 
Define the random variable 

(3) 

Theorem 1. Suppose there exists positive constants c1 and c2 and a positive integer k0 

such that for k ";3 k0 and for all i, j, 

O<c1k-xk:o;;;j(Bk)ij-(Wk)iij:o;;;c2k-xk w.p.l. (4) 

Then 

P( {Bk} is ergodic)= P(( = oo). (5) 

Proof. Let dk=mini.j\(Bk)ii-(Wkh\, ek=maxi.j\(Bk)ii-(Wk)ii\. Then, by (4), 
c1k-xk :o;;; dk :o;;; ek :o;;; c2 k-xk. Thus ( < oo implies 2: ek < oo. By Hajnal's (1958, p. 244) 

Theorem 6, {Bk} then shares the nonergodicity of { Wk}, i.e. ( < oo implies {Bk} is 
not ergodic. 
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On the other hand, { = oo implies I dk = oo, which easily implies I mini,j(Bk)!i = oo, 
which in turn implies {Bk} is ergodic, by the Corollary to Theorem 4 of Chatterjee 
and Seneta (1977, p. 93). 0 

This theorem reduces the question of ergodicity for models which satisfy (4) to 
the question of the divergence of the random zeta function (3), which is the topic 
of section 3. When the divergence of the series (3) is governed by a zero-one law 
of probability theory, it comes as no surprise, in the light of (5), that the ergodic 
behavior of {Bd is discontinuous. 

3. Discontinuity in ergodic behavior 

We now give conditions under which {, defined in (3), converges or diverges 
almost surely. Define the moment generating function of Xk to be ¢k(t) = 
E(exp[tXk]). If Xk is concentrated on the positive integers only, denote P[Xk = s] = 
Psk. for all positive integers s and k. The next theorem, which concerns independent 
Xk's, is a direct consequence of Kolmogorov's three-series theorem (Loeve, 1977, 
I:24a) applied to Yk = k-xk = exp[ -(In k)Xk]. It will be followed by some specific 

. examples. 

Themem 2. Let X~o X 2 , ••• be mutually independent. Then (i) {<oo w.p. 1 ifand · 
only if tP = I;=l ¢(-Ink)< oo. { = oo w.p. 1 if and only if tP = oo. (ii) If, for every k, 
Xk is concentrated on the positive integers, then { < oo w.p. 1 if and only if p = 
I;= I plkk- 1 <oo. {=oo w.p. 1 if and only if p =OO. 

We now turn to some specific examples of {Xk}. Since the convergence of { 
depends on the distribution of Xk only as k-'» oo, we need to specify the distributions 
only for large k. The criteria given in the examples follow from Theorem 2 and the 
standard facts that 

00 

I [k(ln ktr 1 < oo if a> 1, 
k=2 

=oo ifa~1; 

00 

I [k(ln k)(ln ktr 1 <oo if a> 1, 
k=3 

=oo if a~ 1. 

In Example 1, we use in addition the formula for exponential random variables 
(e.g. Johnson and Kotz, 1970, p. 210) ¢.k(-ln k)=[k(l+uk 1~ k)]- 1

·• · 
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Example 1. Let {Xk}';" be a sequence of independent exponentially distributed 
random variables concentrated on [1, oo) with probability density functionsfk(x) = 0, 
x < 1, fk(x) = a-k" 1 exp[ -(x -1)/ a-d, x 2:1, a-k > 0. (i) Then~= oo w.p. 1 if for some 
c > 0, and for all k;;;: 3, a-k ~ c In In k. In particular ~ = oo w.p. 1 if a-k ~ c with c > 0 
independent of k or if a-k ~ c(ln k)b with b ~ 0. (ii) Also ~ < oo, w.p. 1 if, for k;;;: 3 
and for c > 0, a> 1, a-k;;;: c(ln In kt. In particular, ~ < oo w.p. 1 if a-k;;;: ce with 
b > 0 or if a-k;;;: c(ln k)b with b > 0. 

If Xk has density fk(x) concentrated on [1, oo), asymptotically <f>k( -Ink) 
depends on fk(x) for x near 1 only. For example, if for some s > 0, b > 0, and 
0 < c < oo, fk(x) ~ c(x -1)b for 1 ~ x ~ 1 + s and all large k, it can be shown that 
c1J < oo so that ~ < oo w.p. 1. This follows easily from the estimate 

<f>k(-t)=I"' e-'xfk(x)dx~J"' e-'xc(x-1)bdx+e-t(!+E)I"' fk(x)dx 
I I !+e 

Example 2. Let {Xk} ';"be a sequence of independent random variables concentrated 
on the positive integers 1, 2, ... with P[Xk = s] = Psk as before. (i) Then ~ = oo w.p. 
1 if, fork> 3 and some c > 0, p1k;;;: c[(ln k)(ln In k)r', and in particular if p1k;;;: c > 0 
with c independent of k; or p1k;;;: c(ln k)-a with a~ 1; or p1k;;;: c[(ln k)(ln In ktr' 
with a~ 1. (ii) Also ~<co w.p. i if, for some c > 0, a> 1, a:1d all k;;;: 3, p 1k ~ 
c[(ln k)(ln In ktr'. and in particular if p1k ~ ck-b ·Nith b.> 0 m if P·k ~ c(ln k)-a . . ; 

with a> 1. 
As a referee points out, Theorem 2 can be illustrated by an example in which 

{Xk} are independently and identically distributed on (1, oo). However, such {Xd 
have no interpretation in terms of the hardening of positions in an approach to 
consensus, which is the main application of the theory here, so we omit the example. 

The next theorem concerns Xk's which form a positive-integer valued 
homogeneous Markov chain. If we denote by Si the "time" of the jth occurrence 
of the value or state 1 (Si = oo if 1 occurs fewer than j times), then it is easy to see 
that ~ < oo if and only if I ( ~) _, < oo. The transient and positive recurrent cases of 
the theorem follow directly from this observation. The null recurrent case requires 
the additional result that for i.i.d. strictly positive T; 's, I ( T1 + · · · + 1j )- 1 converges 
(or diverges) w.p. 1 if and only if g [1- E(e-'T•)r' dt < oo (or =oo). The proof of 
this fact, which we have not found stated in the literature, is straightforward but 
lengthy. We follow a referee's request to omit it from the paper; details are available 
directly from the authors. 

Theorem 3. Let {Xd be a homogeneous Markov chain with state space equal io the 
positive integers. Let T be the (positive) random interval between the first and 
second occurrences of state 1, i.e. if Xi= 1, Xi= 1, i <j, and Xk.,: 1 for 0 < k < i and 
for i<k<j, then T=j-i. Let g(t)=E(e-'T). (i) If the state 1 is transient, then 
~ < oo w.p. 1. (ii) If the state 1 is positive recurrent, then ~ = oo w.p. 1. (iii) If the 
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state 1 is null recurrent, then ~<oo (or =oo) w.p. 1 if and only if 

f [1-g(t)r 1 dt<oo (or=oo). 

Example 3. Let X 1 = 1 w.p. 1. For positive integers i, j and n, let 

P(Xn+l = j I Xn = i) =Pi> 0 if j = j + 1, 

=qj=1-pj ifj=1, 

= 0 otherwise. 

Except for a translation by 1 in the numbering of states, this defines the transition 
matrix of "the basic example" of Kemeny, Snell and Knapp (1966, p. 83). Let 

k 

f3k = n pj, k ~I; T=min{k~2: Xk=1}-1. 
j=l 

Then P(T~k)=P(X1 =1, X 2 =2, ... ,Xk=k)=f3k· It is known (Kemeny, Snell 
and Knapp, 1966, p. 161) that the chain is recurrent if and only if limk-oo f3k = 0, 
which is equivalent to L:: 1 qi = oo; and that, when the chain is recurrent, it is positive 

recurrent if E ( T) = L:~= 1 f3k < oo and null recurrent if L:~= 1 f3k = oo. 
It is not difficult to show that the chain {Xd is thus (i) positive recurrent, (ii) 

null recurrent, or (iii) transier:i, if for· some a> 1, C in (0, oo) and integer K < oo, 
we have, for ali j ~ K, 

(i) F 1+a/{jlnj)-.r;,qj; 
(ii) C/{jlnj)-.r;,qj:,;;,r 1 +1/{jlnj); 

(iii) qj:,;;, C/[j(lnj) 0
]. 

To analyze the null recurrent case using Theorem 3, one can establish, using 
elementary but long arguments, that if 1/j:,;;, qj:,;;, 1/ j + 1/{j lnj), then the chain {Xd 
is null recurrent with~= oo w.p. 1, while if, for some a< 0 and c > 0, cj(j lnj):,;;, qj:,;;, 
1/j+aj(jlnj), then_{Xd is null recurrent with ~<oo w.p. 1. Thus if qj= 
1/j+aj(jlnj), a-.r;,O, the chain is null recurrent; ~=oo w.p. 1 if a=O but ~<oo 
w.p. 1 if a< 0. 

4. Consensus: Hardening _positions 

In the model of consensus, suppose, for a .very simple example, that on the kth 
round each expert gives his o'rh.er own opinion a weight of 1- k-l-• and the opinion 
of every Qther expert a weiglit of k-1 ~· /(n--:-.1), where e is a nonnegative-valued 
random variable that may depend on k. Let Pk be the probability that e = 0. Then 
consensus will be approached, in spite of the hardening of positions, if Pk is a 
positive constant for all k or at least does no~decrease too rapidly with increasing 
k. Our theorems give a precise meaning to the phrase "too rapidly." 
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More generally, suppose that the weights that an expert attaches to the opinions 
of other experts are on the kth round uniformly bounded below by c1k-x• and 
above by c2k-x•, with 0 < c1 < c2 < oo. Here Xk is a random variable characterizing 
the environment, mood or climate of the experts and of the estimation process. Low 
values of Xk might reflect amiability among the experts, high values hostility. The 
behavior of {Xk} assumed in the Markov chain of Section 3 might describe an initial 
"honeymoon," followed by alternating gradual freezes and abruptly renewed thaws. 
As time k increases, for a given environmental condition Xk, the upper and lower 
bounds on the weights attached to other experts' estimates gradually decrease, 
reflecting a hardening of positions. Within these bounds, the actual weight may be 
complicated functions of the different information available to each expert, of the 
conflicting interests they serve, of their own prior histories, etc. Theorem 1 considered 
in conjunction with the examples of Section 3 shows that the line between converging 
to consensus or not may be remarkably delicate, and the long-run difference may 
be remarkably sharp. 
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