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This paper develops a theory of the length of food chains in community 
food webs. The theory derives from a mathematical model of webs called 
the cascade model. Our analysis concerns the behaviour of chain lengths 
for webs in which the number, S, of species is large. 

From an exact formula for the expected number of chains of each 
length, we derive a theoretical mean and variance of the length of chains 
in webs with a givenS. For webs in which S becomes large, we compute 
the asymptotic distribution of the length of a randomly chosen chain, 
giving explicit closed-form formulas for the asymptotic mean and vari
ance. The cascade model implies a simple rule of thumb for large webs: 
the mean length of chains approximately equals the mean number of 
predators plus prey of any species in the web. Such a quantitative 
relation between mean chain length and the number of links per species 
appears to be new. 

The height of a web is defined as the length (number of links) in its 
longest chain. We show that, according to the cascade model, the median 
height increases very slowly with the number of species in a web. Indeed, 
the median height is below 17 for S up to one million. This analysis 
provides the first quantitative explanation, we believe, of why the 
longest chains are very short relative to the number of species in a web, 
even when the number of species is very large. 

As a theoretical curiosity, we show, for webs in which S becomes 
unrealistically large, that the height equals one of two adjacent integers 
with a probability that slowly approaches 1. With increasing S, these two 
integers approximate InS/In (InS), and thus grow extremely slowly. 

1. INTRODUCTION 

The purpose of this paper is to develop a theory of the length of food chains that 
is derived from a mathematical model of community food webs called the cascade 
model. Cohen & Newman (1985, hereafter referred to as paper I) and Cohen et al. 
( 1985, hereafter referred to as paper II) showed that the predictions of the cascade 
model describe, to a first approximation, several major characteristics of a 
collection of 62 real webs: the proportions of all species that are top, basal and 
intermediate, and the proportions of all links from basal to intermediate species, 
from basal to top species, from intermediate to intermediate species, and from 
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intermediate to top species. Cohen et al. (1986, hereafter referred to as paper III) 
showed that the cascade model describes the frequency distribution of the length 
of food chains observed in a large majority of 113 real webs. In the light of this 
empirical support for the cascade model, it is desirable to analyse the properties 
of the model further. This paper determines what the cascade model implies for 
the frequency distributions of the length of a typical food chain and of the length 
of the longest chain, primarily in the limit as the number of species in the web 
becomes arbitrarily large. 

Section 2 presents terminology for chains and reviews the cascade model. 
Section 3 derives a generating function for the expected number of chains of each 
length and moments of the chain length distribution for webs with a finite number 
of species. Section 4 describes the frequency distribution of chain lengths in the 
limit as the number of species in a web gets large. Section 5 describes the length 
of the longest chain in a web with a finite number of species. Section 6 describes 
the length of the longest chain as the number of species in a web gets (very) large. 
Section 7 analyses the sensitivity of the asymptotic behaviour of the longest chain 
derived in §6 to the assumptions of the cascade model. The results in §§3-7 are 
obtained by mathematical analysis. Numerical simulations of the cascade model 
in §8 confirm and amplify the prior analytical results concerning the length of the 
longest chain. Section 9 reviews what has been achieved in this paper, and the 
concluding § 10 identifies some tasks that remain. 

We shall accept the mathematical convention of setting off every proof with 
Proof at the beginning and • at the end. Readers may defer or skip proofs with 
no loss of continuity. 

2. TERMINOLOGY; THE CASCADE MODEL 

This section reviews and introduces terminology, then describes the cascade 
model (as in sections I. 2 (i.e. section 2 of paper I), II. 1 and III. 3). 

A food web is a set of kinds of organism and a relation that shows which, if any, 
kinds of organism each kind of organism in the set eats. A community food web is 
a food web whose vertices are obtained by picking, within a habitat or set of 
habitats, a set of kinds of organisms (hereafter called species) on the basis of 
taxonomy, size, location, or other criteria, without prior regard to the eating 
relations (specified by trophic links) among the organisms (Cohen 1978, pp. 2Q-21). 
Hereafter 'web' means 'community food web.' A basal species is a species that 
eats no other species, and a top species is a species that is eaten by no other species. 

In the representation of a web by a directed graph or digraph (see section I. 2), 
each vertex corresponds to a (lumped trophic) species. An edge (always directed) 
(a, b) from vertex a to vertex b corresponds to a link from species a to species b, 
meaning that species b eats species a. An example of a walk in a digraph is the 
sequence a, (a, b), b, (b, c), c of alternating vertices and edges. The length of a walk 
is the number of edges in it. Ann-walk is a walk of length n. The digraph of any 
web generated by the cascade model is acyclic, so no vertex (or species) can figure 
more than once in a walk in such a web. A chain is a walk from a basal species 
to a top species. An n-chain is a chain of length n, i.e. a chain with n links or 
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equivalently n + 1 species. The height of a web is the length of the longest chain 
in it. 

LetS be the number of species in a web, and let On be the number of n-chains 
in an acyclic web, n = 1, 2, ... , S-1. The frequency distribution of chain length is 
the vector (01 , ••• , 0 8 _ 1) =C. The total number of chains in the web will be 
denoted 

As usual, E(.) and var (.) denote the expectation (or mean) and variance, 
respectively, of the random variable enclosed in parentheses. For any function f 
of any real or integer variable t, we write f(t) = O(t) if f(t)jt stays less than some 
fixed finite positive constant as t--'J-00, andf(t) = o(t) iflimt-+oof(t)jt = 0. 

The cascade model assumes that the S ~ 2 species of a web may be labelled from 
1 (at the bottom, subject to predation by all other species) to S (at the top, subject 
to predation by no other species). The probability that species j feeds on species 
i is 0 if j ~ i. If i < j, then j feeds on i with probability p = p(S), i.e., with a 
probability between 0 and 1 that depends on S, and does not feed on i with 
probability q = 1-p, independently for all 1 ~ i < j ~ S. Unless a contrary 
assumption is explicitly given, it will be assumed that, for some finite positive real 
number c < S, p = cfS, where c is a constant independent of S. (Some results 
below require only the weaker assumption that Sp(S)--'J-y, for some constant y, as 
8--'J-00.) 

According to the cascade model with probability p of a random link, the 
expected number of n-chains in a web with S species is (paper III): 

E(On) = pnqS-1 S~1 (S-k)(k=11)q-k, n = 1, 2, ... , S-1. 
k=n n 

3. MOMENTS OF THE FREQUENCY DISTRIBUTION OF CHAIN LENGTH IN 

FINITE WEBS 

To find an average chain length predicted by the cascade model, we need to 
compute 1:n nfn, where fn is the probability density of n-chains according to the 
cascade model. There are two, not one, natural candidates for fn· The first 
corresponds to 'expected relative frequency', and the second corresponds to 
'relative expected frequency'. To compute the first, which we denote un, find, for 
each random web, the fraction of all chains that are n-chains, and then average 
over aU webs. The expected relative frequency of chain length n is 

Un = E(OnfO), n = 1, ... , S-1. 

To make this well defined, OnfO may be set to zero whenever 0 = 0. For typical 
Sand p, the probability that 0 = 0 is very small. To compute the second candidate 
for fn, find the expected number of n-chains, averaged over all webs, and then 
express that average as a proportion of the sum of the averages of all lengths. The 
relative expected frequency of chain length n is 

Vn = E(On)/E(O), n = 1, ... , S-1. 
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Bothun and vn depend on S. A random variable, H 8 , with probability density {un} 
can be obtained by taking a random web and measuring the length of a single 
chain chosen at random, with all of the web's chains equally likely. A random 
variable L 8 with probability density {vn} can be obtained by taking (in the limit) 
a very large collection of webs and picking a single chain randomly from the pooled 
chains of all the webs, each chain again being equally likely. 

We shall compute E(L8 ) = ~n nvn and higher moments of L 8 by means of a 
generating function, defined as 

S-1 

fs(t) = ~ E(Cn/S)tn, 0 < t < 00. 
n-1 

According to the cascade model, 

fs(t) = tSpq8 - 2{[1 + (pjq) (1 +t)]8 -1- (Spjq) (1 +t)}j{(Spjq) (1 +t)}2. 

Proof. Using first the formula for E(Cn) and then the identity 

S-1 S-1 S-1 k 

~ ~ = ~ ~' 
n-1k-n k-1n-1 

we compute 

and letting 

r = (1 +pt)jq, 

fs(t) = ptqs-2 (~: rk-1-s-1 :~: krk-1) 

= ptq8 - 2[(1-r8 - 1)/(1-r) -S-1(d/dr) {(1-r8 )/(1- r)}] 

which, upon further elementary calculation, becomes 

= ptq8 - 2 s-1[r8 -1-S(r-1 )]/ (r-1 )2 ' 

which eventually simplifies, with r = (1+pt)jq, to the formula given. • 
It follows from the generating functionf8 (t) that, setting z = 2Spjq, 

E(L8 ) = (z/2)[(1 +z/8)8 - 1 -1]/[(1 +z/8)8 -1-z], 

or 
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and 
L _ i{[(S-1)/S] z2(1 +z/S)8 - 2 -4z(1 +z/8)8 - 1 +6(1 +zjS)8 -6-2z} 

var( s)- (1+z/S) 8 -1-z 

- [E(L8 )]2 + 3E(L8 )- 2. 

Proof. E(L8 ) = f~(1)/f8(1). The two versions of E(L8 ) are equivalent because 
1 +z/S = (1 +p)/(1-p). The formula for var (L8 ) follows from a very long, but 
elementary, simplification of the result of substituting 

E(tLs) = fs(t)ffs(1) 
into 

Figure 1 plots the mean of L 8 and the mean plus or minus one standard 
deviation (corresponding roughly to a two-thirds confidence interval) for values 
of p = cjS and S typical of the observed webs analysed in papers I and II. With 
increasing S and fixed c, the mean and confidence interval stabilize for webs with 
more than 30 species, but change noticeably for smaller webs. 
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FIGURE 1. Mean (--), and mean plus (-----) or minus (---) one standard deviation, of chain 
length, L 8 , as a function of the number of species, S, according to the cascade model with 
c = 3.71. 
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4. LIMITING FREQUENCY DISTRIBUTION OF CHAIN LENGTH IN LARGE 

WEBS 

We now describe the behaviour of OnfS, predicted according to the cascade 
model, as 8 gets large, assuming that, for large S, p(S) declines like y / S or more 
precisely that lims-+oo Sp(S) = y. When p(S) = cj 8, then y = c. 

Define the generating function (which does not depend on 8) for 0 < y < oo: 

g(t) = tye-Y{eY<1+t>-1-y(1+t)}/{y(1+t)}2. 

The coefficients Kn_1 , n = 1, 2, ... of the (convergent) power series expansion 

have the meaning 

lim E(On)/8 = Kn-v n = 1, 2, ... , 
S-+oo 

provided 0 < y < oo. Kn_1 may be computed explicitly from 

Kn_1 = (djdt)ng(t)it~ofn! 
or from 

Kn_1 = [yn e-Y /(n-1) !] (d/dy)n-1 [(eY -1-y) y-2]. 

The limit of the mean total number, E(O), of chains satisfies 

00 

lim E(0)/8 = g(1) = 2: Kn_1 • 
S-+oo n~1 

Hence 

lim vn = lim E(On)/ E(C) 
S-+oo S-+oo 

00 

= Kn-1/ 2: Kh-1 
h~1 

= {yn-1(d/dy)n-1[(eY -1-y) y- 2]}/[(n-1)! (e 2Y -1- 2y) (2y)- 2]. 

The moments and factorial moments of the length of chains, according to the 
random variable L 8 with probability density {vn}f-1 , approach the limits 

lim E(L8 (L8 -1) ... (L8 - (k-1))) = g<k>(1)/g(1), k = 1, 2, ... 
S---:.-oo 

lim E(L~) = (d/du)k [g(eu)Jiu~o/g(1), k = 1, 2, ... 
S-+oo 

In particular, 

lim E(L8 ) = y(e2Y-1)/(e2Y-1-2y) 
S-+oo 

and, letting 
h(t)=(et-1 t)jt2 , 

lim var (L 8 ) = y-!+ [4h(2y)]- 1 [3-2y-1/h(2y)]. 
S-+oo 
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It follows that 

lim [lim E(L8 )-y] = 0 
y-+oo S-+oo 

lim [lim var(L8 )-(y-!)] = 0. 
y-+oo S-+oo 

Proof. To establish all the above limits, it suffices to prove that J8 (t) and its 
derivatives converge to g(t) and its corresponding derivatives fortE [0, 1]. Because 
Sp--+ y, q8 --+ e -y and so on, f s converges to g on (- oo, + oo). To show that the 
derivatives ofj8 converge to those of g, it suffices, by standard arguments in the 
theory of analytic functions, to show that J8 (w) is uniformly bounded in some 
neighbourhood of [0, 1] in the complex plane, asS--+ oo. But that follows because, 
for complex w, 

This last inequality may be established by comparing the power series expansions 
of both sides term by term. Given convergence of the generating function 
and its derivatives, limE(L8 ) = g'(1)lg(1) and limvar(L8 ) = g"(1)1g(1)+ 
g' ( 1) I g( 1)- [g' ( 1) I g( 1) ] 2 • The formulae given then follow by long but elementary 
~~~~. . 

Figure 2 plots lim8 _,. 00 vn, the limiting relative expected frequency of chains of 
length n, as a function of n, for y = 3.71, a value suggested by the data of papers 
I and II, and for y = 10. The graph for y = 3.71 is very similar in shape to the 
theoretical and simulated graphs for y = c = 3.75 and finiteS= 17 given in figure 
III. 1. In effect, for this value of y, S = 17 is 'large'. The graph in figure 2 for 

/ 

/ 

0 4 

/ 

I 
I 

I 

I 
I 

I 

/ 
/ \ 

\ 
\ 

\ 
\ 

12 

chain length 

\ 
\ 

\ 

' 

16 

FIGURE 2. Asymptotic relative expected frequency of chains of each length, in webs with an 
arbitrarily large number of species, according to the cascade model withy= 3.71 (--) 
and withy= 10 (---).When p(S) = cjS, then y =c. 
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y = 10 illustrates the general numerical observation that, for large values of y, 
lims-+oo vn increases monotonically up to a value of n very near y and then 
decreases very nearly symmetrically, in a shape closely resembling a normal 
distribution. We conjecture that lim8 _. 00 vn is maximal for n equal to the largest 
integer less than y or one less than the largest integer less than y. We have 
numerical examples in which either of these two values of n makes lim8 __,. 00 vn 
maximal. The approximate normality, for large y, of this limiting distribution 
(with mean approximately y and varianee approximately y-!) can be proved 
mathematically. We do not present the proof, since typical values of y (e.g. 3.71 
or 4) are too small for the approximate normality to hold, and we have no 
significant application of the result for larger values of y. 

Figure 3 plots lim8 _, 00 E(L8 ) and lims-+oo E(L8 ) plus or minus [lims-+oo var (L8 )]~ 
(corresponding roughly to a two-thirds confidence interval) as a function of y, for 
a range of y likely to include that suggested by the largest observed webs in papers 
I and II. Figure 3 shows that lim8 -+oo E(L8 ) approaches the asymptotic (for large 
y) limit y quite rapidly, even within the range estimated from the data in papers 
I and II. The cascade model thus implies a simple rule of thumb: in webs with 
a large number of species, the mean length of a chain roughly equals the mean of 
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FIGURE 3. Asymptotic mean (--), and asymptotic mean plus (-----) or minus (---) one 
asymptotic standard deviation, of chain length, L 8 , as a function of y, according to the 
cascade model. When p(S) = c/ S, then y =c. 
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the numbers of predators and prey of any species in the web (i.e. the mean total 
number of links that enter and leave any vertex or, in graph theoretic jargon, the 
mean in-degree plus the mean out-degree). 

For any fixed length n, the standard deviation of the number en of n-chains 
vanishes relative to SasS gets large. Equivalently, for fixed length n in large webs 
the variance of enfS vanishes asS gets large. That is, for fixed n ~ 1, 

lim var (enfS) = 0 if lim Sp(S) = '}' < 00. 
S->-oo S->-oo 

Proof. For 1 ~ i0 < i1 < ... <in~ S, let W; denote the indicator random 
variable of the event that i = i0 , (i0 , i 1}, i1 , ••• , (in-v in}, in is a chain. Thus ~ = 1 
if i is a chain, and W; = 0 if not. Then en= I:; W;, where the summation covers 
all possible n-chains. Then 

var(en) = var(~ ~) 
i 

= ~ ~ cov (W;, flj), 
' J 

where the covariances are summed over all n-chains i and j. If the chains i and 
j share exactly m links, 0 ~ m ~ n, then 

cov (W;, flj) ~ P(~ = 1, Uj = 1) ~ pmp2(n-m) = p2n-m. 

If m = 0, i.e. i andj share no links, and if in addition none of i 0 , ••• ,in coincides 
with any of j 0 , ••• , jn, then W; and Uj are independent so cov ( ~' Uj) = 0. Let Qm 
be the number of ordered pairs (i,j) such that i andj share exactly m links. Let 
Q be the number of pairs (i,j) such that at least one species (vertex) of the chain 
i is a vertex of the chainj. Then 

n 
var(en) ~ ~ Qmp2n-m+Qp2n. 

m=l 

Now Qn is just the number of n-chains, so 

Qn = (n! 1) ~ sn+~. 
Form < n, if i andj share m links, they will share at least m + 1 species; but i and 
j could share m + 1 species without necessarily sharing m + 1 links; so Qm does not 
exceed the number of pairs (i,j) in which i andj have m+ 1 species in common. 
Therefore Q m ~ sm+~ 8 2< n+I-<m+~» = S 2n+l-m. Similarly Q ~ S 2n+l. Therefore 

n 
var(en) ~ ~ S2n+l-mp2n-m 

m-o 
n 

= ~ O(S2n+l-ms-<2n-m>) = O(S) 
m-o 

and thus var ( e nl S) = 0( 1/ S), which tends to zero as S tends to oo. • 
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It follows that, for any fixed n = 1, 2, ... , 

CnfC-o-Kn-1 / h~1 Kh_ 1 = g<n>(O)/[n!g(l)] in probability as 8-+ oo, 

00 

lim E(Cn/C)-+Kn_ 1j L: Kh_1. 
S-+oo h~1 

As in §3, CnfC is set to zero when C = 0. 
Proof. We have already proved that E(Cn/S)-+Kn_1 and var(Cn/S)-o-0. It 

follows that, for each fixed n, CnfS-+Kn_1 in mean square (i.e. in £2) and hence 
in probability, and therefore that, for any fixed positive integer M, 

M M 
L: CnfS-+ L: Kn_1 in probability. 

n-1 n~1 

Our next goal is to prove that this implies 

Since 

we have 

00 

CjS-+ L: Kn_1 in probability. 
n~1 

S-1 

~ C 1 L: E(Cn)/S 
n~M+1 

00 

-+e- 1 L: Kn_1 as S-+ 00, 
n~M+1 

P(lc;s- n~ 1 Kn_11 ~ 3e) ~ P(lc;s-n~1 CnfSI ~e) 

+P(I n~ 1 CnfS- n~ 1 Kn-1 1 ~e) 

+P(I n~ 1 Kn-1- n~ 1 Kn-11 ~e)· 
Taking lim sup8 -+oo of this last inequality and choosing M large enough, we have 

lim sup P(lc;s- ~ Kn_11 ~ 3e) ~ C 1 ~ Kn_1 +0+0. 
S·-+OO n~1 n~M+1 

Letting {VI-+ oo establishes that 
00 

CjS-+ L: Kn_1 in probability. 
n~1 

Hence 
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Since IOn/01 ~ 1, all moments of On/0 converge. In particular, 

E(On/0)-+Kn-1/ h~1 Kh-1· 

365 

Since un and vn converge to the same limit for large S, it makes no difference, 
for large enough S, which probability density is used to describe typical chain 
lengths. Of course, for finite S (and all observed webs have finite S), the two 
probability densities {un} and {vn} are different; we have obtained exact formulae 
only for the latter. 

5. THE LONGEST CHAIN IN FINITE WEBS 

We now show that the cascade model explains remarkably well the qualitative 
observation, frequently made (see, for example, Hutchinson 1959), that the length 
of the longest chain, and hence the height, of a web is small compared to the 
number of species in the web. 

In a web with S species, define M 8 to be the height. For random webs generated 
by the cascade model, M 8 is a random variable. For brevity, we henceforth drop 
the subscriptS, bearing in mind that the distribution of M does depend on S. 

To investigate the distribution of M, givenS and p = cj S, we find, for a positive 
integer m, upper bounds for P(M ~ m) and P(M < m). 

First, for any positive integer m ~ S -1 with p = cj S, 

P(M~ m) ~ L 1(S, m) = 1-(1-pm)<m~•>. 
~ L 2(S, m) = (m! 1)pm 
~ L 3 (S, m) = cmS/(m+1)!. 

Proof. Let Bn be the number of n-walks, n = 1, 2, ... , S-1. Such walks may or 
may not be chains, which are walks from basal to top species. For 
1 ~ i 0 < i 1 < ... < in ~ S, let V; denote the indicator random variable of the event 
that there is a walk i = i0 , (i0 , i 1 }, iv ... , (in-1> in}, in. Then Bn = 1:; V;, where the 
summation covers all possible n-walks. The V;'s are non-decreasing functions of 
the independent random variables that determine whether individual links are 
present and hence are associated random variables (Harris 1960; Esary et al. 
1967). This justifies the inequality in the computation (where we set n = m) 

P(M ~ m) = P(Bm > 0)= 1-P(Bm = 0) 

= 1-P (for every i of length m, V; = 0) 

~ 1-IlP(V;=O) 
i 

[the product taken over all m-walks rl 
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The last step holds because there are exactly (m! 1) possible m-walks in the 

cascade model. 
For any positive integer nand any xE (0, 1), 1- (1-x)n ~ nx, as is easy to show 

by comparing derivatives with respect to x. Setting x = pm and n = (m! 1) gives 

L 1 ~ L 2 • Finally, 

(m! 1)(c/S)m = [cmS/(m+1)!][(S-1)!/{(S-1-m)!Sm}] ~ cmSj(m+1)! • 

On the other side of M, 

P(M < m) ~ U1(S, m) = (m! 1r1 [k~1 (m-k+1)(S:~~ 1)(p-k-1) 
+ mi2 (m)(S-_k-_2) (p-k_ 1)] 

k= 1 k m k 1 

~ U2(S, m) =: [(m! 1)pm r1 [k~o (m-k+ 1) (Sp)m-kj(m-k)! 

+ ~ (m) sm-k-1 pm-k] 
k-0 k 

~ U3(S, m) =[em S(1-1jS) ... (1-mjS)j(m+ 1) lr1 

X [ ~ (j + 1) (Sp)i jj! +S-1 ~ (~) (Sp)i]' 
i=o j-o J 

and if im(m+ 1) < S, 

~ U4 (S, m) = [cmS(1-m(m+1)/(2S))/(m+1)!]-1 

X [e8 P+Spe8 P+S-1(1 +Sp)m] 

= 2(m+ 1)! [(1 +c) ec+ (1 +c)m jS]j[cm(2S-m(m+ 1))] 

Proof. In the notation used in the previous proof, 

P(M < m) = P(Bm = 0) ~ P[IBm-E(Bm)l ~ E(Bm)], 

and now, from Chebychev's inequality, 

~ var (Bm)/[E(Bm)J2 • 

We now seek an upper bound for var (Bm) = :E;:Ejcov (V;, lj), where the sum
mations cover all m-walks. If i andj have exactly k links in common, then 

cov (V;, lj) = P(V; = 1 and lj = 1)-P(V; = 1)P(lj = 1) 

= p2m-k _ p2m. 

Let Qic be the number of ordered pairs (i,j) of m-walks (not chains now) i, j such 
that i andj have exactly k links in common. Then 

m 
var(Bm) = ~ Qk(p2m-k_p2m) 

k-o 
m 

= ~ Qk(p2m-k_p2m). 
k=1 
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Define Q'k to be the number of ordered pairs (i,j) of m-walks with exactly k links 
in common in which the k common links form a k-walk. Define Q~ to be the number 
of ordered pairs (i,j) of m-walks with exactly k links in common in which the k 
common links do not form a single k-walk. Clearly, Q1n = Q1n_1 = 0 and 

Qk = Q'k+Qf 

Q'k ~ (m! 1)(m-k+1)(8:~~ 1 ), k = 1, ... ,m 

Moreover, 

because there are( S ).ways to choose them-walk i, there are (m-k+ 1) ways 
m+1 

to choose a sub walk of i of length k, the links of which will be the links in common 
withj, and since each common subwalk of length k determines k+ 1 vertices of 

j, there are not more than = ways to choose the ( S- (k+ 1) ) (S-k-1) 
(m+ 1)- (k+ 1) m-k 

remaining (m+ 1)- (k+ 1) vertices ofj. Also, 

( S )(m)(S-k-2) Q~ ~ m+1 k m-k-1 ' k = 1, ... , m-2, 

because (again) there are(m! 1)ways to choose i, there are at most(:) ways to 

choose the k links of i that will be the links in common withj, and since these links 
form at least two subwalks which determine not less thank+ 2 vertices ofj, leaving 
at most (m+1)-(k-2) = m-k-1 vertices to be determined, there are at most 

( S- k- 2) ways to choose the remaining vertices of j. This last step depends on 
m-k-1 

the observation that ( S-h ) is a non-increasing function of h = 0, ... , m+ 1. 
m+1-h 

Since E(Bm) = ( S )pm, collecting all the inequalities gives 
m+1 

P(M < m) ~ ~ (Q'k+Q~) (p2m-k_p2m)/[( S )Pm]2 
k-1 m+ 1 

( s )-1 [ m (S k 1) ~ m+ 1 k~1 (m-k+ 1) =-~ (p-k -1) 

+ mi:2 (m)(S-k-2)(p-k_ 1)]. 
k- 1 k m-k-1 

This establishes P(M < m) ~ U1(S, m). The remaining approximations follow by 
elementary calculations. • 

These inequalities imply bounds on any quantile of the distribution of the height 
M. For example, to bound the median of M, we determine numerically m1 , the 
smallest integer m such that L 2 (S, m) < i, and m2, the largest integer m such that 
U1(S, m) < i· Then m2 ~ median of M ~ m1 - 1. 

(Why do we use £ 2(8, m) to determine m1 rather than L 1 (S, m), which is a sharper 
bound? For moderately large values of Sand m, when pm becomes very small, e.g. 
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less than 10-15 , a computer approximates 1-pm by 1 and the results become 
nonsense. ~(S, m) and L 3 (S, m) avoid the problem of subtracting numbers of very 
different or'ders of magnitude.) 

For a fixed value of c typical of observed webs and a broad range of values of 
S, table 1 gives the lower and upper bounds on the median height. In other 
examples, in a web of20 species with c = 3.71, the median height is between 2 and 
7 links. In a web with 250 times as many, or 5000, species, the median height is 
between 8 and 13links. The upper bound on the median has increased by less than 
a factor of two. 

TABLE 1. THE LENGTH OF THE LONGEST CHAIN IN LARGE WEBS ACCORDING TO 

THE CASCADE MODEL 

(c = 3.71.) 

number bounds on the median limiting asymptotic 
of value, value 

species lower upper m* In S fin (In S) 

102 4 10 11 3.0 
104 8 14 14 4.1 
106 12 17 17 5.3 
108 15 19 20 6.3 
1010 18 22 22 7.3 
1012 21 24 25 8.3 

6. ASYMPTOTIC BEHAVIOUR OF THE LENGTH OF THE LONGEST CHAIN 

IN LARGE WEBS 

In the cascade model with a fixed c > 0, as the number of species, S, gets very 
large (as we shall see, far larger than the number of species on Earth), the limiting 
behaviour of the height, the length of the longest chain, is simple. For each S, there 
is a positive integer m* (which depends on S, but we drop the subscript S for 
brevity), such that the probability that the height ism* or m * -1 approaches one 
asS gets large. Thus in a web generated by the cascade model the height is either 
m* or m*-1, with probability approaching one for large S. 

A qualitatively similar phenomenon has been observed elsewhere in the theory 
of random graphs. Bollobas & Erdos (1976) and, according to them, D. W .. Matula 
independently proved that the size of the maximal complete subgraph (clique) in 
a random graph takes one of at most two values (that depend on the size of the 
random graph) with a probability that approaches 1 as the random graph gets 
large, when the edge probability is held fixed, independent of the number of 
vertices. 

For very, very large numbers, S, of species, m* grows at a rate that is essentially 
independent of corp = cj S (provided c > 0) and depends only on S. For extremely 
largeS, m* is approximately In Sjln (InS) in the sensethattheirratio approaches 1. 
By contrast, according to Bollobas & Erdos (1976), the asymptotic behaviour 
of the (at most two) possible values for the size of the largest clique does depend 
on the fixed probability that there is an edge between any two given vertices. 
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We now describe more precisely the height Min very large webs according to 
the cascade model. Define m* to be the smallest positive integer m such that 

cm+lSj(m+2)! :( (m+2)-!. 

Then, for large enough S, m* is a non-decreasing sequence such that 

lim m */[In Sjln (InS)] = 1 
8-+oo 

and 

lim P(M = m* or M = m*-1) = 1. 
S-+oo 

However, the estimated rate of convergence of P(M = m* or M = m*-1) to 1 
is very slow, namely, 

1-P(M = m* or M = m*-1) = O(m*-!). 

Proof. We begin by establishing that, for every positive integerS and every 
c>O, there is a positive integer m such that cm+1 S(m+2)!<(m+2)-! or 
equivalently (m+2)icm+1Sj(m+2)! :( 1. (Ifm exists, then m* exists.) Sterling's 
approximation may be written 

n! = (2n)!nn+! e-n(1 +O(n-1 )). 

Substituting into (m+ 2)! cm+l Sj(m+2)! shows that this quantity approaches 0 as 
m--HX), so the desired m exists. The least such m, namely m*, satisfies 
S:((m*+2)!/[cm*+l(m*+2)i] and must not decrease asS increases. The next 
question is: how fast does m * increase? 

Pick any e > 0. If 

then 

so 

m(S),.., (1 +e) lnSjln (InS), 

In m(S) = In (InS) -In (In (InS))+ 0(1) 

,.., In (InS) 

-m(S) In m(S),..,- (1 +e) InS. 

Now, by using Sterling's formula and dropping ineffectual constants, 

ln[m(S)!cm<S>Sjm(S)!],.., m(S) lnc+lnS-ln[m(S)!J+llnm(S) 

,.., lnS-m(S) In m(S) 

,.., lnS-(1+e) InS 

,.., -e lnS-7- oo as S-7- 00. 

Consequently 
m(S)! cm<S) S / m(S) ! -7 0 as S -+ 00, 

so m* < (1 +e) InS/In (InS) for large enough S. On the other hand, if 

m(S),.., (1-e) InS/In (InS), 
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then the same argument shows that 

m(S)lcm<S) Sjm(S)!-+oo as 8-+oo, 

so m* > (1-e) lnSfln (InS) for large S. This establishes that 

m* "'ln Sfln (ln S). 

So m* increases without bound (but very slowly) as 8-+oo. 
We can now prove lim8 _H0 P(M= m* or m*-1) = 1. By the inequalities 

established for P(M ~ m) and P(M < m) for finiteS, with S large enough that 
m*(m* + 1)/2 < S, 

P(M ~ m*+1) ~ cm*+1Sj(m*+2)! ~ (m*+2ri-+O as 8-+oo, 

P(M < m*-1) ~2m*! [(1 +c)ec+ (1 +c)m*-1/S]f[cm*-1(28-m*(m*-1))] 

"'(1 +c) ecm*!j[Scm*-1 ] = (1 +c) ec[cm* Sj(m*+ 1) Jr1 c/(m*+ 1). 

But m* is the smallest m such that cm+1Sj(m+2)! < (m+2)-i. Therefore 
em* Sj(m* + 1)! > (m* + 1)-l, and hence [em• Sf(m*+ 1) !]-1 < (m* + 1)!. AsS-+ oo, 
P(M < m*-1) is therefore of order of magnitude not greater than 
(1 +c) cec(m*+ 1)-l, which approaches 0 as O(m*-i). • 

For each value, m, of m *, there is a range of values of S such that m * for that 
Sis m. When Sis large and at the upper end of this range of values, then the height 
equals m* with a probability that approaches 1. When Sis large and at the lower 
end of this range of values, the height equals m* -1 with a probability that 
approaches 1. When S is in the middle of this range, it can happen that both the 
event that the height equals m * and the event that the height equals m * -1 occur 
with non-negligible probabilities. 

Proof. For any positive integer m, let S~ be the greatest integer less than or 
equal to (m+2)!/[cm+I(m+2)l] and let S;:;,=S~_1 +1 (with St=O). Then 
s~ - ml( m + 1)! 1 cm+l, s;:;,; s~ - c 1m and the range of values of s such that 
m* = m is precisely {S;:;,, S;:;, + 1, ... , S~}. Suppose Sm is a sequence satisfying 
Sm ~ S~ and mlSmfS~-+oo; then with S = Sm, we find by using U4 (S, m) that 

P(M = m-1) ~ P(M < m) = O[(m+ 1) !/(em Sm)J 

= O[S~/(miSm)J-+0 as m-+00, 

so that P(M = m *)-+ 1 for such a sequence Sm. Similarly if Sm satisfies Sm ~ S;, 
and Smf(miS;:;,)-+0, or equivalently miSmfS~-+0, then with S = Sm, we find, by 
using L 3(S, m), that 

P(M = m) ~ P(M ~ m) = O[cmSmf(m+ 1)!] 

= O[Sm/(miS;:;,)]-+0 as m-+ oo, 

so that P(M = m * -1)-+ 1 for such a sequence Sm. 
We now consider S~ in the middle of the range from S;:;,_ to S~. Define S~ to 
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be the greatest integer less than or equal to 2(1 +c) ec(m+ 1) !jcm. Then for large 
m, s; < S~ < S~ and for S = S~, we have m* = m. In this case, 

P(M = m-1):;::; P(M < m) 

and L 1 (S, m) gives 

:;::; [em S(1 +o(1))/(m+ 1) W1 [(1 +c) ec+o(1)] 

-:.[2(1+c)ecr1 (1+c)ec = ~ as m->-oo, 

P(M = m):;::; P(M?: m):;::; 1-(1- (cjS)m)<m'1.1> 

-+1-exp[-2(1+c)ccl < 1 as m-'i>OO. 

Since P(M = m or m -1)-+ 1 as m and S = S~ increase without bound, we 
conclude that 

lim inf P(M = m-1) > 0, 
m~oo 

lim inf P(M = m) > 0 
m~oo 

for S = S~. • 
To find m* numerically for various numbers, S, of species, we find the smallest 

integer m such that 

S:;::; (m+2) !j[cm+l (m+2)i]. 

For a range of values of S, table 1 gives the calculated values of m* as well as the 
values of the asymptotic expression form*, lnSjln (InS). For three values of S 
(102 , 108 , 1012 ), the calculated value of m* exceeds the upper bound given for the 
median height. This is consistent with the understanding that the height will be 
concentrated on m* or m*-1 only in the limit asS becomes extremely large. In 
table 1, for finiteS as large as 1012 , evidently m * is larger than the range of possible 
values for the median height. Simulations described below for (for example) 
S = 1000 give an estimated median height of9links; this height falls between the 
lower and upper bounds of 6 and 12, respectively, although the calculated value 
of m* is 13 (see table 2). 

The values ofln Sjln (InS), which fall far below m*, emphasize further that m* 
is dependent on c and converges (in ratio) to the c-independent quantity In Sj 
In (InS) only for very large S. For values of S in the range considered in table 1, 
second and higher order terms in the asymptotic expansion form* are evidently 
influential in addition to the leading term ln8jln (InS). Calculations similar to 
those used above to prove that 

m* = [lnSjln (InS)] (1 +o(1)) 

establish that, to second order, 

m* =[InS/In (lnS)]{1 +[In (In (lnS))/ln (InS)] (1 +o(1))}. 



372 C. M. Newman and J. E. Cohen 

For S = 1012 , In (In (lnS))/ln (InS)= 0.36, a non-negligible correction. It is inter
esting that even the second -order term in the expansion of m *, like the first, 
depends only on S and is independent of c. 

7. SENSITIVITY ANALYSIS: ANISOTROPIC CASCADE MODELS 

If the assumptions of the cascade model are relaxed, what happens? This 
question arises first from the scepticism that Cohen et al. (1985) express about the 
exact truth of these assumptions. For example, woulc the ability of the cascade 
model to explain, qualitatively, the slow growth of the height be destroyed by a 
small change in the parameter c? No, because for very large webs the height grows 
very slowly regardless of the value of the parameter c. 

If one retained the assumption that the probability Pij of a random link from 
species i to species j were 0 for j ~ i (this is the 'cascade' assumption) but 
permitted values for Pij to depend on i and j when i < j (we propose to call all 
such models anisotropic cascade models), the webs can be qualitatively different 
from those generated by the (isotropic) cascade model (with Pij = p > 0, for all 
i < j). Consider three examples. 

First, suppose that the web were partitioned into what some ecologists call 
'compartments', meaning that the adjacency matrix of the web is block diagonal 
(see Pimm [1982, ch. 8] for a review). Suppose that each compartment or block 
contained at most S* species, where S* is some fixed finite positive integer. As the 
total number, S, of species in the web increased, suppose that more and more 
blocks of size at most S* were added. Obviously the height will not exceed S*-1, 
regardless of S. 

Second, consider an anisotropic cascade model with block diagonal (strictly 
upper) triangular matrix {pij} of edge probabilities and blocks (or compartments) 
of size Sv ... , Sn, where S 1 + ... +Sn = S. Suppose in block h, of size Sh, that 
Pij = chj Sh > 0 fori < j. Then the height, M, satisfies 

n Sh 
P(M ~ m) ~ 1- IJ (1- (chjSh)m)<m+,) 

h-l 
~ ( sup ch)m Sj(m+ 1)!. 

l~h~n 

Proof. Let M(h) be the maximum chain length in the hth block. Then, since 
different blocks are independent and M = suph M(h), it follows, by using L 1 (Sh, m) 
for each block, that 

P(M ~ m) = 1-P(M < m) 
n 

= 1- 11 P(M(h) < m) 
h-l 

n ( Sh) 
~ 1- TI (1- (chjSh)m) m+I ! 

h-l 

~ h~l (mS~ 1) (chjSh)m ~ h~l (ch)m Shj(m+ 1)! 

where the next to last inequality follows from IIi ( 1-xi) ~ 1-~i xi. • 
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Now if S 1 = ... =Sn -InS so that the number, n, of blocks grows as SjlnS 
whilech = cindependentofSforh = 1, ... , n, then, within each block,pii,..., cjlnS. 
The expected number of links to and from each species, i.e. the expected number 
of predators plus the expected number of prey, is asymptotically c = Shpii,..., 
InS(cjlnS). Since here P(M;?:: m) ~em Sj(m+ 1) !, exactly as in the isotropic 
cascade model, M cannot grow asymptotically faster than In Sjln (InS). 

Third and finally, consider an anisotropic cascade model chosen, not for its 
realism, but to illustrate that without some special structure in the matrix {pi1} 

of edge probabilities the height could be asymptotically proportional to S (even 
when the expected number of links per species is kept fixed), contrary to 
observation. This example is taken from a study of one-dimensional percolation 
by Newman & Schulman (1985) and incidentally illustrates that there are 
interesting connections between percolation models and cascade models. 

Suppose, for j = 2, 3, ... , that {y1} is a fixed sequence of probabilities, indepen
dent of S, such that, for some 8 < 2, 

lim inf py1 > 0, 
j-HXJ 

e.g. suppose y1 ,..., Kj- 8 as j ~ oo, for some K > 0 and 8 < 2. For any p such that 
0 < p < 1, there is an e, 0 < e < 1, such that if 

Pi, i+l ;?:: 1 - e for all S and i = 1, ... , S- 1, 

Pii;?:: Yi-t' for i+2 :::;,j ~ S, 

Pii = 0 for j ~ i, 
then 

lim P(M;?:: pS) = 1. 
S-HXJ 

To give a concrete instance of this example, pick some c > 2 and define {pi1} by 

Pii = (c-2)/[2(~2 k-t)(j-i)~], j;;::: i+2, 

= 1-e,j = i+1 

= O,j ~ i. 

Taking, say, p = 0.999, there is a small enough e that 

lim P(M;?:: 0.999S) = 1 
S-+oo 

even though 

sup E (number of predators and prey of species i) 
1.;; i.;;; s 

(
i-1 s ) 

= sup ~ Pki+ ~ Pii 
1 .;;; i .;;; s k = 1 j = i+l 

~ 2(1-e)+2 h~2 (c-2)/[2(~2 k-~)ht] 
= 2(1-e)+c-2 < c, for all S. 



374 C. M. Newman and J. E. Cohen 

The example demonstrates that even when the expected number of links per 
species is kept below a fixed c, not every anisotropic cascade model will explain 
the observed slow increase in the height of real webs. 

8. SIMULATIONS OF THE CASCADE MODEL 

The preceding analysis leaves open the question: how good are our theoretical 
bounds for the median height? We set c = 3. 71 based on the sample of 62 webs, 
then generated webs according to the cascade model for each of S =50, 100, 150 
and 1000 and found the height of each simulated web (by using an algorithm 
described in the appendix of paper III). Table 2 presents the simulated frequency 
distributions of height, and beneath each simulated distribution the numerical 
values of our theoretical bounds on the median height. Evidently the bounds on 
the median do contain the sample median height. The concentration of height on 
at most two values established above in the limit of unrealistically large S does 
not occur for the values of S used in these simulations. There is however a 
suggestion of more concentration for S = 1000 than for S =50. 

TABLE 2. FREQUENCY DISTRIBUTIONS OF THE LENGTH OF THE LONGEST CHAINS 

IN WEBS OF VARIOUS SIZES, AND THEORETICAL ESTIMATES OF THE MEDIAN 

(Web sizes were simulated according to the cascade model with c = 3.71.) 

number of species 

longest 50 100 150 1000 
chain relative frequency 

4 0.03 0.00 0.01 0.00 
5 0.17 0.24 O.D7 0.00 
6 0.32 0.31 0.27 0.00 
7 0.24 0.24 0.33 0.05 
8 0.15 0.14 0.18 0.25 
9 0.08 0.05 0.08 0.40 

10 0.02 0.02 0.05 0.20 
11 O.ol 0.00 0.01 0.10 

number of simulations 

200 100 100 20 

theoretical estimates 
of median longest chain 

lower bound 3 4 4 6 
upper bound 9 10 10 12 
m* 10 11 11 13 
In S /In (In S) 2.87 3.02 3.11 3.57 

9. ACHIEVEMENTS OF THIS THEORY 

This paper presents the first, to our knowledge, exactly derived theory of the 
length of food chains in webs with a large number of species. This theory suggests 
for the first time a (simple) quantitative relation between the mean length of 
chains and the mean number of predators plus prey per species. The analysis also 
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provides the first quantitative explanation, derived from an explicit model that 
is not invented ad hoc for the purpose, of why the longest chains are very short 
relative to the number of species in a web even when the number of species is large. 

From a generating function for the expected num hers of chains of each length, 
we derive the mean and variance of the length of chains by using the relative 
expected frequency as the probability density function of chain length. For webs 
in which S becomes arbitrarily large, we show that the limiting relative expected 
frequency and the limiting expected relative frequency of chain lengths are the 
same, so that either may be used to describe the distribution of chain lengths. We 
compute the asymptotic distribution and all moments of chain length, giving 
explicit closed-form formulas for the asymptotic mean and variance. We show that 
the relative frequency of chains of any given length converges in probability to 
its expectation asS gets large. The cascade model implies a simple 'rule of thumb' 
for large webs: the mean length of chains equals the mean number of predators 
plus prey of any species in the web. 

We also derive, from the cascade model, upper bounds on the upper and lower 
tails of the probability distribution of the height, or length of the longest chain, 
of a web. From these, we compute bounds on the median height in webs with a 
finite number of species. 'l'hese bounds show that the median height is a very 
slowly increasing function of the number of species in a web, remaining below 20 
up to 108 species. For webs in which S becomes unrealistically large, the height 
equals one of two adjacent integers (that depend on S) with a probability that 
approaches 1. For very large S, these integers approximate lnSjln (ln S), a 
function that grows very slowly with 8. 

By considering variations on the assumptions of the cascade model, we show 
that the ability of the cascade model to explain the slow growth of the height is 
robust with respect to changes in the probability that one species eats another. 
However, if the probability that one species eats another is permitted to depend 
on the pair of species concerned, then the height may increase either not at all 
or linearly with the total number of species. Hence not every variation on the 
cascade model will explain the observed short height, relative to the number of 
species, of real webs. 

Simulations of the cascade model show that the concentration of the height on 
just two integer values, predicted by the asymptotic theory, occurs only in webs 
with an unrealistically large number of species. 

10. SOME REMAINING TASKS 

Although the cascade model yields to mathematical analysis, the acyclic model 
(model 2 in paper I) resists analysis. We do not know, for example, whether the 
median height in the acyclic model grows slowly with S, as demonstrated here for 
the cascade model. A solution to this problem might reveal whether the asymptotic 
behaviour of the height could be used to discriminate between different models of 
webs. 

The cascade model and its kin are static models. They describe data that are 
snapshots, sketches of webs at a single moment. Static models and static data 



376 C. M. Newman and J. E. Cohen 

ignore the reality that the species and links of webs may change with the seasons 
and over longer intervals. It would be highly desirable to develop and test dynamic 
models of communities that are consistent with the static empirical regularities 
on which the cascade model is based. 

The cascade model and the data it is intended to interpret ignore the numbers 
of individuals or biomass of each species and the quantities of flows in each link. 
Far fewer observed webs give quantitative measurements than give, like the webs 
studied here, ali-or-none information about species and links. Thus the whole line 
of work from Cohen (1978) to this paper is only a first step towards a real 
understanding of webs, because it deals entirely with combinatorial structure 
rather than with quantities of stocks and flows in webs. However, gross anatomy 
precedes physiology. This line of work at least offers a coherent theoretical and 
empirical approach to some aspects of the gross anatomy of webs. 

What might be offered by better data and models that will, we hope, replace 
those we analyse here 1 Quantitative, predictive models of webs could assist in 
foreseeing the paths and concentrations of natural and artificial toxins in the 
environment, and the consequences of the removal and introduction of species. 
Such models could assist in the design of nature reserves on Earth and closed 
regenerative ecosystems for supporting humans during prolonged stays in space; 
the cascade model suggests already that certain proportions of top, intermediate 
and basal species (or physico-chemical equivalents) need to be provided or else will 
evolve. Finally, since the webs containing the species man are not notably 
different in structure from those without man, such models may provide some 
understanding of man's place in nature. These grand opportunities are an 
incentive to pursue the hard scientific work that may bring them within reach. 
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