HEORETICAL POPULATION BIOLOGY 29, 385-306 (1986)

Life Not Lived due to Disequilibrium in
Heterogeneous Age-Structured Populations

ROBERT A. DESHARNAIS AND JOEL E. COHEN

Laboratory of Populutions, The Rockefeller Unicersity,
1230 York Avenue, Box 20, New York, New York 100214399

Received May 27, 1985

Three models of age-structured populations with demograpnically heterogencous
sudbpopuiations are analyzed. [n the first model. each suopopulation has its own
age-spectiic vital rates which are {ixed in tme. [n the second model, the vital rates
of each subpopuiation are umiformly inhibited by increasing total aumbers of
individuals. [n the third. the vital rates of groups of sudbpupuiations are innidited by
the total numbers of individuais in other groups of suopopulauons with an intensity
that depends on the interacting pair of groups. Three functions are defined to
measure disequilibrium (n the subpoouiation irequencies, subpopulation age struc-
tures, and total popuidtion size. Fur the (irst model. we show that disequiiibrium
wiil shilt the trajectory of the total numoers of individuais forward or backward in. -
time by an asymptotic constant that is proportional to the sum of the dis-
equilibrium measures. For the second model, we estaolish sufficient conditions {or
the existence of a glodally stable equilibrium and we show that disequiiibrium will
result in a finite loss or gain in life which is proportional to the sum oi the dis~
equilibrium measures. For the last model. we shaw that the loss or gain in life for
each group of suopopuiations is 2 linear combination over all groups of the sums of
the three cisequiliorium measus=s. Wetillusteate these results with aumerical exame-
ples and give possible biological interpretations of the modeis. We refate these new
results to previous work on the cost of natural selection and measures of
demographic disequilibrium. O 1986 Acdemic™Press, Ine.

I. INTRODUCTION

Heterogeneity exists in all populations of living orgzanisms. Often. large
populations can be divided into subpopulations based upcn diiferences .in
rates of reproduction and mortality. Human populations are heterogeneous
in vital rates, among other characteristics (e.g. Vaupel er af, 1979; Vaupel
and Yashin, 1985). Naturai populations of the parthenogenetic cockroach
Pycnoscelus surinamensis are composed of different genotypic clones
(Packer er al, 1977). Predicting the effects of heterogeneity is a problem
" common to demographic and evolutionary theory.

The purpose of this paper is to describe the effects of dcmographxc ,'
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386 DESHARNAIS AND COHEN

heterogeneity on total population size. Our models consider a population
that is initially composed of two or more subpopulations with different age-
specific vital rates. In Section2, we define two measures of dis-
equilibrium—one for subpopulation frequencies and one for age dis-
tributions—and we show how these measures can be used to predict the
asymptotic time lag due to disequilibrium when the population growth rate
is density independent. In Section 3, for a simple model of density depen-
dence, we show that the time-integrated number of individuals not realized
by the population (the “life not lived™) due to disequilibrium can be predic-
ted using the measures defined in Section 2. In Section 4, we extend the
results of Section 3 to several interacting populations. We illustrate our
results with numerical examples in Section 3. In Section 6, we relate our
results to the cost of natural selection and earlier measures of demographic

disequilibrium and we indicate possible examples where our models might
be applied.

2. DeNSITY-INDEPENDENT POPULATION GROWTH

2.1, Notation und Buckground

Consider a large demographically heterogeneous age-structured pop-
ulation which can be subdivided into a finite set § of demographically
homogenecous noninteracting subpopulations. Assume that each sub-
population grows independently without migration of any kind. Let the age
structure of the ith subpopulation at time  be described by a column
vector K,(r) of length n,. II the vital rates of each subpopulation remain
constant through time. and time and age are measured in the same discrete
units, then the age structure at time (+ | can be computed from the age
structure at time [ using

K, (r+1)=M,K, (1), ieS, (1)

where M, is an n; x n; projection matrix. Then K (/)= M'K{0), ieS.

Suppose each M, is nonnegative and primitive. (This assumption hoids
(or human populations if M, has the form of a Leslie matrix and age classes
Beyond the last age of reproduction are excluded.) Also suppose K,(0) #0,
i€ S. The Perron-Frobenius theorem shows that each M, has a simple real
root 4; which exceeds in modulus all other roots and that

im M. '=uv?, €S, (2
T

where u, and v, are positive right and left eigenvectors with eigenvalue 4,



HETEROGENEQUS AGE-STRUCTURED POPULATIONS 387

and v/u,=1, ieS. The superscript T indicates transposition. 4, is the
asymptotic growth rate of the ith subpopulation.

If w is a nonnegative vector, let ||wil represent the norm of w obtained by
summing all of its elements. The age distribution vecror for the ith sub-
population is defined as

q{0) =K (IK(0) =", igS. (3)
The strong ergodic theorem of demography asserts that

“rm (=g =ulul "' €S, (4)

independent of initial conditions, provided K,(0) # 0. Thus the vector u; is
propoctional to the stable age distribution q.

The vector v; measures the relative contribution of each initial age class
to the growing stable population. The jth element of v; is called the
reproductive value of an individual of age j {Fisher, 193Q). The total

reproductive value of a population grows geometrically for any initial age
distribution: that is.

vIK ) =vTK (0) 2, ies. (3)

By convention. u; and v, are scaled so that the first element of v, equals one
for every ie S.

E‘cphcu formulas for u, and v, are known (Follacd, 1973, pp. 46iT) when
the projection matrix is a Leshe matrix.

The number of individuals in the ith subpopulation is given by #,(t) =
K, (r\ll i€ S. and the total number of individuals in the popul.mon is
N(t) =3, .5 N,(1). The frequency of the ith subpopulation is

2= lV,(l)(iV(l). (€3 %)

We now examine the asymptotic behavior of the subpopulation (re-

quency p,(t). Let 4, =max,,s(4;). Divide the set S into (wo compiementary
subsets Y and Z, where Y= {il4,=4,, (€5} and Z=S - Y. Multiplying
the numerator and denominator of (6) by 4,7 and using (2) gives

Sm

!
,lirmc plt)=p?= llu,rvm,(o)lli-’[ Y luv7K,(0) II]

heY

=0, isZ (7)

Asis well known, the subpopulations with the largest growth rate come to
dominate the population as a whole.

In a singie-locus population genetic modei, Ginzburg (1972) defined an

653:°2943.7
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cntroby function to measure the deviation of the initial frequencies p,(0)
from equilibrium:

[,= =Y p*loglp(0)/pr]- (8)

ia Y

Let the average reproductive value of a subpopulation be defined as

Vit)y=vTg,1). At equilibrium, ¥* = v7q.*. The following function measures

the deviation of the imiual average reproductive values from equilibrium:
Hy= =73 p*log(Vi(0yV?>]. (%)

1a?
2.2 New Results -
How are the dynamics of total population size N(r) affected by initial
conditinns? ,
Define a reference population, N(t), as a population where (i) 5,(0)=p*
for ie S, (ii) §,(0)=q, for ie Y, and (iii) N(0)= N(0). The initial con-

figuration of the reference population is the equilibrium conﬁgurauon of an
evolving populauon

THEOREM 1. The trajectories N(I) and N{t) become scparaled in time by
an asympiotic time lag t, where -

lim (N(i (0] = 25" . (o)

and
=r;l[HFﬁ-HV]‘ ) (ll)
with r,, =log(4,,). A . 3

Proof. By delinition, the reference age structure for the ith sub-
population is K,(0) = N(0) p,‘q," Therefore,

N(t)=N(0) ¥ p*IiMigr| =NO0) i, (12)
ie? .

Let t be the solution to (10). Such a solution exists and is unique because

both N(t) and N(r) asymptotically grow at lhc same geometric rate 4,
Then

llm log (N (¢)/N(1) ]“llm log[z p{Q)I(M}L21) .-(0)I|}

ieS

ieY

=log [ ) P.-(O)Ilufqui(o)ll}

= —tlog(in) (13)
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From (7), using K;(0) = q,(0)p,(0)~(0) for ail i,

Y 2alO)lusvTg,(0)]
he Y

= [p{0)/p* llu;vTa,(0), ie?. (14)

Since ¥,(0)=v/q,(0) and ¥ =v]q* =v]ujlull =" =|lul =", from (13) and
(14) we have

tlog(in) = ~log[p(0)/p*] —log[V(Q) V], ie?. (15)

Multiplying (15) by p;* for each ie Y and summing over { yields (11). 1

Equation (15) provides an alternate expression for calculating =
Equation (11) facilitates a comparison of our results with those of
Ginzburg (1977) (see Subsect. 6.1). -

When a single subpopulation with index k dominates at equilibrium,
pf=1and H,= —log{p,(0)]. In this case. A, is Haldane's (1957) “cost of
natural selection”™ (ses Subsect. 6.1).

3. DeNsiTY-DePENDENT PoPuLaTION GROWTH

In this section we consider a demographically heterogeneous density-
dependent age-structured model. We could allow for density-dependent
interactions among the various age classes. However, this type of model
would be extremely complex. As a first approximation to density depen-
dence, we assume that every individual, regardless of age, contributes
equally and independently to the mortality of other individuals, regardless -
of their age. and that this extra mortality is independent of all other causes
of death. Furthermore, we assume that this extra mortality is distributed
evrnly throughout each time interval. Since the fecundity terms in the first
row of the Leslie projection matrix also include the survivorship of the
parents and offspring within each time interval (Keyfitz, 1968, p. 30), all
the elements of the projection martrix will experience the same proportional
change. This change will be modeled using a negative exponential function:

DK+ ) =MK (1) exp(—a;N(1)], 0<a;<x,ieS. (16)

The parameter a; measures the per capita density sensitivity. The solution
to (16) is

'K.»(:)=M;K,(0)exp[—a,'ilN(c')]-. ies T (M)
d=0
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As iaefore, let 4; be the dominarﬁ root of the matrix M;, i€ S, and let
r;=log(%,). Unlike the previous definition of Y, here let Y= {i|r/a;,=q«,
ieS} and Z=S5—-7Y, where a2=max, s(r;//a;). The flollowing iemma
describes the asymptotic behavior of total population size.

Levva 1. [fO<r,<2forie?, thenlim,,, N{t)=N"=1x

We prove Lemma | in the Appendix.

Let H4(0)= —log[N(Q)/N*]. The following theorem shows how initial
conditions afTect N(¢).

THEOREM 2. [fQ<r, <2 for i in the set Y such that r;ju, =2, then
lim p{t)y=p*>0, ieY,
1l

=0, iEZ, (18)

and

5 [M* =N =(a*)"'[H, + B+ H D, (19)

twy
where a* =3, .y pra,

Proof. By definition,

S p )= [NVOYN()] pOIMIZ") q,(0)
= ' ’
X €exp [r,{-—a,— ) N(;’)}, ieS. (20)
$=0 .
Lemma | implies lim,;, =" Y47} M) =2 We consider two cases.
Case 1: ieZ. From (2) and (20), putting b,= N(0)p(0)[¥V(0)/ V]
gives

li_rp p;(1)= (b,/a] exp[(r, —a;2) lirm t]. (21)

Since r;/a; <2, lim,;,, p;=0 for ie Z.

Case 2: ieY. Let d(r)=a~—N(r) and L(t)=3.7} 6(¢). Using (20)

S(y=a =3 p{t) N(1)

ieZ

- ¥ N(0) p(0)I (M4 ") g0l expla,L(1)]. (22)

is?
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Consider the function f(x)})=3,,r b:exp(a;x). Since Lemma | implies
lim,;, 6(¢)=0 and lim,; , p,()=0 for ie Z, (2) and (22) imply

lirm SIL()) == (23)

Since f(x) is a continuous monotonic increasing function, (23) implies
lim,; L(t)=L* where f(L*) =2 Using this fact in (20), we get

lirm pty=pr=[b;/z]expla,L*], eV (24)

Solving this for L* gives
a; L™= —log(p(0)p] —log[( V(0N V"] —log(VN(OYN*], ieY.(25)

Multiplying (23} by p.* and summing over ie Y gives (19). ]

Equation (25) provides an alternate expression for the cumulative dif-
fercnce between N(¢) and V*.

The equilibrium frequencies depend upon the initial conditions and can
be computed easily. The unique real solution x of f{x)==2 equals the
curnulative difference L*. One can then compute p# from (24).--— -

Consider the special case when a,=a for ie Y. Using (24), V' =p 2=
b;exp(aLl*] forie Y which implies p;* =5,/3, ¢ rb4- Since b; = [u,vJK,(0)ll,
(7) provides an exact expression {or p*, i€ S.

Let N(t) be a reference population as defined in the previous section and
assume g, =a for i€ Y. Since 5(0) =0 for ie Z, the exponential factor can-
cels in (3) and {8) yielding §,(¢)=p}* and §,(t)=q," for i€ S and all ¢ >0.
The dynamics of ¥(¢) are given by ' :

Fe+ )= N(¢) explr—a¥(0)], (26)

where r=ax. This difference equation is a discrete-time analog of the
logistic model of population growth. The following coroilary relates the
dynamics of ¥(¢) and N(¢).

CoroLLARY |, Ifa,=a forie Y and 0 <r<?2. then

f [1‘7(()—N(1)]=a;‘[H,+H.,]. o @n

IE

Proof. From the definition of a reference population, A, =7, =0 and
N(0)=N(0)., From Lemmal, Hy=H,. Applying Theorem2 to the
reference population and subtracting the cumulative difference from (19)
yields (27). | :
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In particular, when a single subpopulation survives at equilibrium, the
set Y is a singleton and Corollary 1 is applicable.

Desharnais and Costantino (1982) applied Ginzburg's entropy A, to the
continuous-time logistic model of density-dependent natural selection.
Their “selective difference area” is analogous to the sum in (27) (see Sub-
sect. 6.1).

The cumulative differences in (19) and (27) have several interesting
properties. First, they are independent of the vital rates of those sub-
populations which go extinct at equilibrium (p* =0). Thus the magnitude
of the differences between the dominant roots of the projection matrices for
i€ Y and ie Z has no eflect on the cumulative differences in life lived. To
illustrate, let $=(1,2) and a, =4a,=4a. If q,{0)=q} and q.(0)=q?, then
H, =0 and from Corollary |, .-

*

Y (N =N()]= =a~"icg[p,(0)] when 4i,> i,

t=Q

=0 when 4,=/,.

~a~'log[p,(0)] when /i, <i,. (2%)

As this example shows. the magnitude of |4, — 4,] has no effect. A second
property of the cumulative differences in life lived is that they are indepen-
dent of the initial age distributions of the subpopulations which goe extinct.
This is because X, in (3) depends on q,(0) for ie Y only. Third, the relative
[requencies among the subpopulations which belong to set Z are unimpor-
tant since these are also ciiminated (rom the calculation of #,. These

results are surprising, since every subp@pulation contributes to the total
population size.

4, SEVERAL INTERACTING POPULATIONS

In this section, we extend the analysis to a community of several
interacting populations. We define a population as a group of individuals
with the same sensitivity in mortality rates to the numbers of individuals in
the same and every other population. We assume that each population is
composed of one or more demographically heterogeneous subpopulations. .
All other assumptions concerning the way in which the total size of a pop-
ulation affects mortality are the same as in (16).

Let C represent the set of indices ¢ for populations in the community and
let S, represent the set of indices i for subpopulations within the population
¢ (ceC). K,(r) is the (nonzero) age structure vector for the ith sub-
population within population ¢ and M, is its (primitive) projection mat’rix_.
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For each matrix M, 4., is the dominant eigenvalue, and u,, and v, are the
right and left eigenvectors, respectively, associated with 4.,. For cach pop-
ulation ¢ceC, A =max;es({is) Ye={ildi,=4,, €S}, and Z =
S.— Y. We also have ¥ (1) = K. (0)l, qa(t) =K ()/N,(¢), and p,(1) =
N ()N (t), where NV (¢) is the total number of individuals in the cth pop-
ulation. The difference equations are given by

K (e + D)=M_K_(1)exp [- Z a‘q-Nj(l):l, ieS., ceC, (29)
jeC

where a,; > 0 measures the per capita effect of population j on the mortality

rate of population ¢ (¢, j& C). This model has the solution

t=1

K,,(l):WI:,,K,',(O)e:(p[—- Y a, % N,(é)}. ieS.,ceC. (30
jeC ¢w=Q

Now we introduce some matrix notation. Let N(¢). be the vector
obtained by catenating the variables V() for ce C. Let the vector r,, have
elements r, =log(4.,), ceC, and let A={(a,), ¢, jeC. For each sub-
population i€ S. and ce C, the age distribution vector q,,(¢) and the [re-

quency p.(t) go through the same sequence as they wouid in the density-. -

independent model with identical initial conditions. Therefore. p,(t) = p2
and q,(t) —q25, ieS,, ce C. For each population ceC, the entropies A,
and H,, are computed using (3) and (9), respectively, with p* replaced by
24, Vi0) by v7q,(0), and ¥* by v7q;. Let H = —log(V(0)/N?]. The
scalars &, &, and H_, are the elements of vectors H,, H,,.and H,,
respectively. i -

THEOREM 3. Suppose lim,, . N(1)=N*, where .every element of N* is
positive, and det(A)#0. Then N* = A ~'r_, and

i (N*=N()]=A"'(H, +H, +H,]. 1)

tmQ

~ Proof. The difference equations for total population size can be written
in the form

N+ )=N ()l =—w. ()] exp [r,,,, -3 aer/[’):lv ceC. (37-).

jeC

where

i€S,

wc(;)=1_ Y PaIMq () AZN, ceC (33
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Sincc, for i.ESc and CEC' pci(l)_'P:i’ qci(l)_'q:n Mriq:::)'uq:i’ and
p2=0 when i, #i.., lim,, o @ (1)=0 for every ceC. If N* is strictly
positive, then it is obvious from (32) that lim,;, N(¢)=N* implies
r,,—AN=*=0. I[ det(A) #0, then N*=A"'r

Let 8(1)=N*-N(s) and L(1)=3,75 8($). Using (30) with /(,,,—
exp [rrm’] =exp EE/GC ay Z:‘::) IVI'.]:

h1m N(t)—hm N O)C‘P[Z a, ,(!):I Y aO(M, 250 q.(0)
= J ieS,

eC

=N (0) exp [h'm Z aqL “):I Z pri(o)"urivg;qci(o)” = 1\,:. (34)

jeC i€y,

Substituting into (34) from (14), multiplying by p2. and snmming over all
ie S, gives

lim 3 a,L()=H,+H.,.+Hy  ceC. (35)
= 1eC
Hence lim,, . A 2474 (N*=N(#)]J=H,+H,+H,.
Now we examine Lhe rate of convergence of 8() Lo zero. Let Q(t)=%, . ¢

o)l and d(t) =2, (c 18.{0)|. Expanding the cxponenual term of (.»") to
second order in a Taylor series gives - -

5, (1+1)=8,)=N* Y a,6,0)+Nrw.ll)

jaC

+0lw ) d()]+0(d%1)].  ceC. (36)

Let J%I—diag(N‘)A. where [ is the identity matrix and diag(N*) is a
diagonal matrix. In matrix notation, (36) gives, after dropping the last two
terms,

S+ )= +0[QuYd()})d(r). (37)
Since each M, is primitive, as ( — oc,

M =/luvI+00m6.], ieS.,ceC. (38)
Here 8., < A, is the largest modulus of the subdominant eigenvalues of M.,

and m, is one less than the greatest multiplicity of the eigenvalues with
moduius &, (Seneta, 1981, p.9). If q,(0) #q%, then, as ¢t —~ <0,

qci(l) = q:: + O[l'"d(aci/)'ci)’]v ie ch cE C' (39)
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Let =N (O)Pc.(o)[Vc.(O)/V'] Usmg (38).

btl4r|+ OEtﬂ'ne:l]
Zh-S. (bch"-g/. + 0[:1"«‘9 ])

Palt)= ieS, ceC. (40)

Mutliplying the numerator and denominator of (40) by 1.,

Pult)=p2+0(B'] for ie¥..ceC,
=0(f] for ieZ., ceC, (41)

where f. = Max,q z (A./4m). Substituting (39) and (41) into (33) gives

w()=l=F (p2+ 00BN +OC™(0ufiom)])

ieY,

- 2 o[BI +0(rm™(8,/4)])=O(B.]. (42)
ie Z,
Therefore, as (—c., Q()=0(f"], " where B=max. (B)<l. I
d(1)=0(f') as t — =, then |lim,, o L(¢)| <= for ce C. Otherwise, 4(¢)
decays slower than §', and by (42), lim,; o (Q(¢)/d(¢)]=0. From (37), for .

large ¢, 5(¢) = O(u’], where g is the largest modulus of the eigenvaiues of J.

By assumption of the theorem. lim,;. 8(¢)=0, which implies u<I.
Therefore, |lim,; . L.(t)]| <= for every ce C. This allows us to take the

limit on the left-hand side of (35) inside the summation, yielding the
desired result (31). ]

Finding the necessary and sulli¢ient conditions for the vector N(r) to
approach a finite positive limit remains an open problem.

S. NusmericaL EXaMPLES

We illustrate our results using the census data and demographic projec-
tion matrices of Keyfitz and Flieger (1963) for Mexico, the United States.
and Canada in the year 1962. We imagine that all females under the age of
45 in these three nations form a single population and -each nation

represents a subpopulation. Mexico, the U.S.,. and Canada are labeled as o

_subpopulations 1, 2, and 3, respectively. To simplify matters, we collapse
the census data into age classes of 0~14, 15-29, and 30— years. Using
1962 as time zero, the initial age structures of each subpopulation are given
by the vectors K,(0) =(8.646, 4913, 3.003)7 x 10%, K,(0)=(28.592, 13.775,
18.382)7 x 10%, and K;(0)=(2.929, 1.845, 1.788) x 10®. We condensed the
Lestie matrices from the S-year time unit adopted by Keyfitz and Flieger
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into a 15-year time unit, using the method described by K'cyﬁtz (1968,

pp. 37-4Q). We obtained the following primitive projection matrices:

0.5433 1.6225 0.5299
M,=109627 0 o |,
0 09470 0
0.5022 1.0126 0.1472
M,=|09923 0 o |,
0 09829 0
04425 1.1336 02235
M,=| 09928 0 0

0 0.9870 0

The dominant eigenvalues of these matrices are /, = 1.6398, 4, =1.3353,
and i, = 1.3760, respectively. The corresponding left eigenvectors are v, =
(1, 1.1597,0.3193)7, v.=(1,0.8395,0.1103)", and vy = (1, 0.9403, 0.1624)7.
The corresponding right eigenvectors are u, = (0.5623, 0.3262, 0.1861)7,
u, =(0.5934.0.4413,0.3248)7, and u;=(0.5674,0.4094, 0.2936)". The
logarithms of the eigenvalues give r, = 0.5067, ry =0.2891, and r; =0.3192
for the intrinsic rates of increase. From the initial census vectors we. have
q,(0) = (0.5221. 0.2966, 0.1813)7, q.(0) = (0.4349, 0.2855,0.2796)7, q,(0) =
(0.4463, 0.2812, 0.2725)7, p,(0) = 0.1864, p,(0) =0.7398, p,(0) = 0.0738, and
N(0)=38.8737 x 10°

Assume (contrary to reality) that all vital rates remain constant through
time. The solid curve in Fig. | gives a projection of the total population size
for 20 time units (300 years) using thé observed initial conditions. Since
4y > 4y> 4., subpopulation | comes to dominate the population as a
whole. Using (7) with ¥Y={1} and Z={2,3}, we have p{ =1 and p¥ =
p7 =0. From (4), the stable age distribution for subpopulation | is q;" =
(0.5233, 0.3035. 0.1732)".

To evaluate the efects of the initial disequilibrium. we compare the tra-
jectory of total population size with the observed initial conditions to the
trajectory that would occur if the subpopuiation frequencies and age dis-
tributions were equal to their equilibrium values at time zero. This
reference trajectory is- given by the dashed line in Fig. 1. As Fig. !
illustrates, the two trajectories become separated in time by a constant
asymptotic value 1. Theorem 1 allows us to calculate t from the initial con-
ditions. From (8), H,= —log{p,(0)]=1.680l. From (%), H,=
—log{V,(0)/V}]=0007163, where ¥ (0)=v]q,(0)=0.9239 and V=
vIq® =0.9306. With r,, =r;, (11) gives T =3.33. The effect of disequilibrium
is to delay the growth of the population by 3.33 time units, or
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FiG. I. A hypotheucal numerical example of the density-independent model. Total pop-
uiation size is plotted as a (unction of time. The solid line is the trajectory (or the observed
noneyuilibnal initial conditions. The dashed line is the trajectory of the equilibrial reference
population, The asympiotic time lag between these two trajectories equals ¢ (sec the text for

detauls).

approximately 50 years. Il the vital rates and age distributions of females in
the U.S. and Canada had,.in 1962, matched those of Mexico i 1962, then
the total census projections of these three nations would have been advan-
ced asymptotically by 50 years.

An dlustration of the densxty-depcndcnt model requires values of the
density-sensitivity parameters a,, ay, and a,. As an artificial example. we
will fix a at 250x10° and set g, =r/a=2027x107° a,=r,fa=
1.157% 107%, and ay =0.5(r;/a) = 2.554 x 10~°. In this case ¥ ={I,2} and
Z={3}. The solid curve in Fig. 2 is a projection of the total population
size for the model (16). In this simulation, the subpopulation frequencies
approached llmxung values p{" =0.3477, p¥ =0.6523, and p; =0 and total

population size approached «.
Theorem 2 can be used to predict the lec not lived due to disequilibrium.

From (8), H,= —p; log{p,(0)p] - p: log[p,(0)/p2]=0.13471. From
(9% Hy= —prlog(V,(0)/V¥] — p?log[V:(0)/V>]=00296, where
V(0)=0.9239, ¥ =09306, V,(0)=0.7054, and V}=07354. Hy=
—log{M0)/N*]=1.0342 and a* = pa, + pfa, = 1.459 x 10~ Using (19),
220 [V* = N{(r)] =821.49 x 10¢ individual-time units. Since one time unit
equals 15 years, the population fails to realize 12,322 million female-years
of life due to disequilibrium. This “life not lived” is represented by the total -
area lying between the solid curve and the dashed line in the upper left.cor-

ner of Fig. .
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Fic. 1 A hypothetical numerical example of the density-dependent model. Total pop-
ulation size is piotted as a {unction of time. The solid line is the trajectory for the observed
noneyuilibrial initial conditions. The dashed line is the equilibrial constant ¥*, The total area
between these two lines is the life not lived due to disequilibrium (see the text for details).

6. DISCUSSION

We have analyzed three models of age-structured populations with
demographically heterogeneous subpopulations. All three models ignore
nonlinear interactions between sexes. The models are therefore most’
naturally interpreted as applying to a single sex, or to a two-sex population
in which the sex not described is present in abundance. In the first model, .
each ‘subpopulation has its own age-specific vital rates, fixed in time, and
grows independently of all others. In the second, each subpopulation has
its own age-specific vital rates, and these are all uniformly inhibited by
increasing total numbers of individuals. In the third, each subpopulation
has its own age-specific vital rates. but the vital rates of groups of these
subpopulations are inhibited by the total numbers of individuals in other
groups of subpapulations with an intensity that depends on the interacting
pair of groups of subpopulations. .

We have described how disequilibrium affects total population size. We .
defined three functions, H,, H,, and H, which measure disequilibrium in
the subpopulation [requencies, subpopulation age structures, and total
population size, respectively. For the first model, we showed that dis-
equilibrium will shift the trajectory of the total aumbers of individuals
forward or backward in time by an amount that is asymptotically constant
and that this constant is proportional to the sum of the disequilibrium -
measures H, and H,. For the second model, we established suflicient con-
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ditions for the existence of a globally stable equilibrium and we showed
that disequilibrium will result in a-finite loss or gain in life, which can be
measured in units of individual-time {e.2.. person-years or animal-hours).
This “life not lived™ or “extra life lived” is also proportional to the sum of
the disequilibrium measures A, and A, plus the disequilibrium measure
H,. For the last model, we extended the results of the second model to two
cr more interacting populations. In this case the life not lived for each pop-
ulation is a linear combination over all populations of the sums of the three
disequilibrium measures. In all three models, A4,, A, and A, partition the
effects of disequilibrium into three components: heterogeneity in vital rates,
deviations from a stable age structure, and a nonequilibrium total pop-
ulation size, respectively.

6.1. H, as a Measure of Genetic Disequilibrium

In an age-structured population of asexually reproducing organisms,
natural selection occurs through the differential survival and reproduction
of genotypic clones. Each clone can be viewed as a subpopulation and 4,
measures genetic disequilibrium. [n populatioa geneties, the overall effect of
genetic disequilibrium has been called the “cost of natural selection™
(Haldane, 1957; Crow, 1970) Thls secuon rcia[cs our rcsults to prevxous
work in this area. I

Haldane (1957) consxdcrcd a populauon in an enviconment subjected to
a sudden change, for example, by pollution or migration. The population is
less adapted to the new environment and its reproductive capacity becomes
lowered. Initially rare genotypes now become favored. Haldane defined the
cost of selection as the total reduction in reproductive capacity that occurs
as the population adapts to the environmental change. For an asexual pop-
ulation with two genotypes, he showed that the cost of selection is
—log( pg), where pq is the initial [requency of the newly favored genotype.
Haldane assumed that generations are discrete and that the total pop-
ulation size remains constant. His cost of selection is measured in units of
total population size.

In the diploid single-locus continuous-time model of natural selection
with constant genotype fitnesses and no age structure, Ginzburg
(1977, 1983) included total population size as a dynamic variable. He also
considered the effects of genetic disequilibrium and introduced H,. into
population genetics. Ginzburg showed that H,= W*z, where W* is the
asymptotic exponential rate of population growth and t is the asymptotic
.time lag separating a reference population in genetic equilibrium [rom an
evolving population with nonequilibrium initial allele frequencies. Our
Theorem | extends his rcsuit to age-structured populations with asexual
reproduction. .

-Desharnais and Costantino (1982) also consxdered the dxploxd smgle-
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locus continuous-time model of natural selection without age structure.
They allowed the genotypic fitnesses to decrease linearly with population
size, ie, WyN)=r;—aN, where W is the genotypic fitness, r; is the
intrinsic rate of increase, and a measures density sensitivity. Defining N(¢)
as the trajectory of a reference population which is in genetic equilibrium at
time zero, Desharnais and Costantino showed that [& (N(1)~N(t)] dt =
a~'H,. Our Corollary | extends their result to age-structured pcpulations
with asexual reproduction.

6.2. H, as a Measure of Disequilibrium in Age Structure

Keyfitz (1968) and Keyfitz and Flieger (1968) measured the dissimilarity
between an observed age distribution q and its limiting stable age dis-
tribution q* by

4=50 3 1g;=g;\

j=i

where g; is the jth element of the a vector q. For a given q, 4 is the same for
any two projection matrices with the same stable age distribution q*.

Cohen (1979) showed that, for any nonnegative primitive projection
matrix M and observed age distribution g, if Z is the dominant eigenvalue
of M, B=uv", u and v are the right and left cigenvectors of M
corresponding to X and [ is the identity matrix,

Y. (A~'M'=B)g=(Z-B)g,

t=Q

whcx"c
Z=(1+B-=-M/I)"1

The n vector {Z —B)q represents the cumulative distance between the
observed q and its stable age distribution g*. As an aiternative measure of
demographic disequilibrium, Cohen (1979) suggested using

Dy=50 3 I([Z-Bla)l
Jj=1

where ([Z —B] q); is the jth element of the # vector [Z —B] q. The advan-
tage of D, over 4 is that D, takes into account the trajectory of the pop-
ulation as it approaches stability.

Demetrius (1974) introduced the use of entropy measures in studying
age-structured populations [for recent developments, see Demetrius and
Ziehe (1984) and Goldman and Lord (1986)].
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We now {:roposc H,, defined in (9), as another measure of demographic
disequilibrium. Our theorems suggest that. A, may be more appropriate
than 4 or D, for assessing the effects of age-structure disequilibcium on the
future trajectory of the total population size. As an example, consider a
single homogeneous age-structured popuiation, so that &, =0 in our first
model. Using the 1962 data for the United States from Section 5 of this
paper, we have q=(0.4349, 0.2853, 0.2796)” and q* =(0.4366, 0.3245,
0.2389)". The three measures of demographic disequilibrium are d =4.07,
D,=13.29, and H,=0.0416. As a hypothetical age structure consider q' =
(0.1831, 0.6338,0.1831)™. Now we have 4’ =30.94, D} =21.66, and A, =0.
Although q’ looks less similar to q* than the observed q, Theorem | tells us
that, since A, =0, the trajectory of the hypothetical population starting
from q' will be asymptotically indistinguishable from the stable reference
population (t'=0), whereas the projection for the observed population
lags behind the reference population by 2.16 years (r =0.144). For measur-
ing deviations of the age structure from stability at a given time or over
time, 4 or D, appears to be more appropriate.

8.3. Possible Examples

We are not aware of any field studies that would make it possible to
estimate all the parameters of any of these models. The purpaose of this sec-
tion is to indicate some demographic and biological examples that might
be investigated quantitatively in terms of these models. Whether any of the
models actually descrives any of the examples remains to be determined.

A first example is national populations of humans witis. different age-
specific vital rates and negligible migration among countries. Our use, as a
numerical example, of the United States, Canada.- and Mexico ignores
international migration. In applying any of our models to such pop-
ulations, either males or (emales are ignored and assumed to be availabie in
excess, as is usual in demographic applications of single-sex models.

A second example is populations of asexuaily reproducing clones. Such
populations arise among vertebrates and invertebrates.

Cole (1979) estimates that about 30 of the world’s 3000 species of lizards
have all-femaie populations that reproduce by true parthenogenesis (that
is, without any physiological or genetic contribution from male gametes).
He and colleagues (e.g., Cole, 1975; Cole and Townsend, 1977; Hardy and
Cole, 1981) have investigated in detail the New World whiptail lizard
Cnemidophorus exsanguis and established parthenogenesis in  the
laboratory. Vrijenhoek and colleagues (e.g., Vrijenhoek, 1984) have
established ecologicai differences among clones of all-female populations of
the fish Poeciliopsis monacha, which reproduce gynogenetically (that is,
with a physiological but no genetic contribution from male gametes). Since
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these clones differ genetically and ecologically, they may also differ
demographically. Other examples of naturally occurring unisexual ver-
tebrates include the salamanders (e.g., Uzzell, 1970).

Among invertebrates, examples of populations of asexually reproducing
clones include such medicaily important parasites as the protozoa of the
genera Leishmania and Trypanosoma. Here the parasites of each human
host that is infected by a single clone might be interpreted as one sub-
population, with demographic parameters determined by the interaction of
the parasite’s genotype and the host's defenses. These and other examples
are described by Allee er al. (1949, p. 628).

A third and {inal.example includes “cyclomorphic™ populations (Allee er
al., 1949, pp.685-686) in which the form of the population varies
periodically among two or more alternate states. For example, human
malarial parasites (genus Plasmodium) reproduce asexually in humans,
passing through a number of different forms. The parasites switch to sexual
reproduction and still other forms when ingested along with blood by a
mosquito. Our models may apply to the often prolonged phase of asexual
reproduction. The primitive matrices M, in our models would not have
Leslie form but would describe the asexual life stages of malarial parasites.

These examples give a diversity of possible applications of our models.
Some of these applications have potential practical interest. -__

7. APPENDIX

Praaf of Lemma 1. Using (17) to compute the age distribution vectsr
q,(¢) defined by (3), the exponential factor cancels. As a result, the vector
q,(t) goes through the same sequence as it would in the density-indepen-
dent model (1) with identical initial conditions. Therefore, (4) still holds.

Now we show that N(r) is bounded. It is obvious from (17) that
Ni(1)=0for ieS. Let c,{t)=M,q,(0)ll. Since lim,, o c,(t) =%, for ie S, the
sequence ¢,(¢) has a least upper bound ¢; 2 4,. Hence,

N+ D =ce) N{t)exp[—a;N(r)]
e N(t)exp[ ~a,N(1)}<ci(ae)”", ieS. (A1)

The last inequality comes from the fact that the function xe ™%, x>0, has a
maximum when x= 1/a.

Let d(1) = N(O)I{M, A7) q{0)]l and n(s)=¢=' Ti7h N(r). From (Al),
we can choose a constant y, which is an upper bound of N(¢), i€ S. For
>0,

N)=d{t)exp(i(ri=am(0)] <70 €S, (A2)
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implies

n(t) = (ri/a)) + (a,0)~ " log[di(t)/y,],  ieS. (A3)
Since lim, ;o di(¢) = N (0)[¥,(0)/V}], the sequence d(¢) has a least upper '
bound 4} = N,(Q)[V.(Q)/V*]. If we choose 7,>d], then for any §>0 and
every i€S, n(t)>(r./a))—¢ whenever ¢>(%(e)=(a,e)"" log[y./d}]. Let
t°(e) = max, ¢ s[(%(e)] and a = max,qs(7;/a,). Clearly, n(t)>z—¢ for (> °.
This implies .

0 Ny(t)=d (1) exp[e(ri=an(1))]
<djexp(t(r;=a(a—2e))] (A4)

whenever ¢ > t% For ie Z, we can choose ¢ <z — (r;/a;). Therefore,

lirm N(t)=0, iel. (AS)

Let Np(t) =2, o r Nit), N2(t) =3, ¢z N{1), and p, (1) = N,(t)/Ny(¢t) for
ie Y. We can write '

Nt+ 1) =N Y pdt)explri=a Ny (t)+w,(t)], (A6)

iel
where
o(t)=Nz(t)—a> " log[IM;q,(1) 4711, ie?. (A7)
Equations (4) and (AS) impiy
im w(t)=0, ieY? (A8)
’t” . .
We employ a Liapunov function used by Fisher and Goh (1980) for the
digcrate-time anaiug of the logistic equation.
Let K(¢) represent a catenation of the vectors K, () for ieS. Let

VIK(O] = V(1) = [Ny(t)=2]? g [Ki6)] = g.(t) = exp(ri—a (N () +
w{t], and g[K(1)] = g(t) =Y.y 2:{t) g.(t). We have

AVK()]=daVt)=V(t+1)= V1)
= (V1) ge) =2]* = [Ny(1)=a]?
= Ny () g{t) = 1] A2), - (A9)
where A(t) = h[K(1)] = Z.q r pi¢) A(t) and A(e) = 1, [K(0)] =N (1) g:(0) +

Ny{t) —22. We would like to know the sign of (A9) as a function of ¥ (/).

653/2973-3
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First consider the function g/¢). Since r,/a,=a for ie Y,

gi()<l when Ny {(t)>a+|a(t)l,

(A10)
>1 when Ny{1)<a—|w/lf).

Now consider the function A(t). For i€ Y, h,(t)<Q when N ,(t)=0 and
h(t)>0 when N (t) =22 U NAt)e (0, 2z), then h,(l) =0 implics
ri=a,(N )+ w(t)]=log[(22)/N(1)=1], ieY. (Al1)

Let x(t) =1 =¥ (t)/a]~" for Ny(t)€(0,a). Substituting into (All), we
get .

ri—a;x{t) w,(t)=x(t) log([! +¥(r)“J/El =x(0)"'])

-2 3 ) Y[+1]>2 ie¥ (A12)

n=Q

(cf. Fisher and Goh, 1980). From (A12), we get
(ri=2)[1 =Ny (0)a]>awlt), ieY. © (AL3)
Ifr,<2for ie Y, then i(t) =0 implies

N >a=lollrf2=r))  ieY. © (Al14)
Similarly, il we let x(¢) = [N (t)/a— 11" for N,&(x, 22), then (All) gives

ri+ax{(tyolt)=2 E (x()=»)(2n+1])>2 ie? (AlS)

n=Q

Ifr,<2forie?, then A1) =0 also implies

Ny <a+laf0llr/(2=r)], i€t (A16)

Let r,, = max,,, (r;) and

w(t)=max,q y l@() il ro<t, (ALT)
=(r /(2=r )] max; plo(e)] if ra>1

It followS from (A8) that lim,; o w(¢) =0. Let [,(¢) denote the closed inter-
val {a—w(t), a+w(r)]. Since p(£)>0 and T,er 2:(t) =1, (A9), (AL0),
(A1'4). and (Al6) imply -

4v(1)<0 whenever Ny{t) &1, (1) (A18)
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Let T= {t|Ny(t)el(2), t=0, |, 2,..}. We consider two possibilities for
the set T.

Case 1: T is finite. Let t,=max(7). From (Al8), V(1) is a strictly
decreasing sequence for ¢>¢,. Since W{(¢)20, V(r) is a convergent
sequence. This implies lim,;, 4V{t)=0. Let K* be any of the
accumulation points of the bounded vector sequence K(¢), and let ¥} and
w* be computed from K*. Since 4V [K(¢)] is a continuous function of the
elements of K(¢), every K* is a solution to 4V[K*]=0. From (AI8),
4V[K*]=0 implies ¥} 2[2—w* 2 +w*]. Since lim,; , w(t)=0, w*=0
and N} =z for every possible K*, or, equivalently, lim,; 4, Ny{t)=1z

Case 2: T is infinite. Let a,, = max,, ({(a,). Since [N (t) — 2| S w(t) when
te T, and |w, () Sw(:) for ig Y,

exp[ =22 w(t)] Sexpl=a(N ft) =2+ ()]
gexp(la, ()], ieV, (A19)

whenever e T. Multiplying (A19) by V() and summmg over i€ Y gives,
from (A6),

N ()exp{=2a, w(t)] SNV, (t+]1)
SN,(:) exp[la,w(r)], teT.  (A20)
Replacing V,{(¢) in (A"O) with thc endpomts of the mxerval L(2),
(e —w()] exp{ =2, w()] SV Ac+1)
£ [a+w(r)] exp(2a.w(t)], teT.  (A2])

Since lim,; », w(¢)=0 and T is infinite, for any ¢>0Q there exists a time
Maye T, such that [Ny {t+1)—ai<g for all t>%e), provided teT.
However, when «(¢7, (Al8) implies [N, e+ 1)=al<|N{)=xl
Therefore, |V, (t+ 1) =2} <z for all > (°(e), whether or not t& T, proving
lim, o Ny(t)=2 |}
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