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A population projection (or forecast, here synonymous) is an estimate of the 
numbers, composition, or distribution of a future population. Recent systematic 
analyses indicate that past forecasts generally failed to recognize realistically the 
extent of their own uncertainty (Henry and Gutierrez 1977; Ascher 1978; Keyfitz 
1982; Stoto and Schrier 1982; Stoto 1983; Smith 1985). 

This paper compares several methods of generating confidence intervals for 
forecasts of population size. These methods are of two main kinds: model-based 
methods, derived from an explicit demographic model; and empirical methods, 
based on the distribution of errors of forecasts. The model-based methods and one of 
the empirical methods are used here with human population data for the first time. 

Of the two model-based methods used here, the first (Heyde and Cohen 1985; 
Heyde 1985) rests on a generalization of a demographic model (Cohen 1976a) for age
structured populations. The model, a stochastic version of familiar component 
projection methods, is based on a demographic interpretation of products of random 
matrices (Furstenberg and Kesten 1960). The second model-based method uses the 
estimators of the long-term growth rate and long-term variability derived by Heyde 
and Cohen but combines these estimators differently to estimate confidence inter
vals. These two methods give both projections and confidence intervals for those 
projections. They do not give confidence intervals for projections derived from other 
models. 

The third method adapts an empirical approach of Williams and Goodman (1971) 
to constructing confidence limits for economic forecasts. It requires that population 
projections be derived from another source. A fourth method uses Stoto's (1983) 
analysis of errors of published projections. These projections were prepared by the 
traditional component method. 

In comparing the confidence intervals generated by the four methods, I forecast 
according to Heyde and Cohen in all cases. The Heyde-Cohen forecasting procedure 
boils down to fitting a simple exponential curve exactly through the first and last data 
points of a time-series of population sizes. This forecasting procedure, while familiar 
and appealing (e.g., Henry and Gutierrez 1977; Stoto and Schrier 1982; and Stoto 
1983), is not an a priori assumption of the demographic model but a maximum 
likelihood estimator derived from martingale limit theorems (Hall and Heyde 1980) 
by Heyde and Cohen (1985). This demographic model, which provides a rich 
representation of age-structured populations with fluctuating vital rates, admits such 
a simple forecasting procedure because the forecasting procedure is derived not from 
the short-term but from the asymptotic behavior of the model, which is exponential 
growth. In this respect and others, the demographic model on which the forecasts of 
Heyde and Cohen are based is a stochastic generalization of stable population 
theory. 

The model-based methods of estimating confidence intervals are not universally 

105 



106 DEMOGRAPHY, volume 23, number 1, February 1986 

applicable. They apply where the model's underlying assumptions are consistent 
with historical time-series of appropriate data, or where, in the absence of appropri
ate historical data, the underlying assumptions may be presumed relevant, pending 
data to the contrary. 

As Stoto (1983) has pointed out, demographers have analyzed the accuracy of 
population projections in one of two usually disjoint ways: either by analyzing 
mathematical models for population growth, or by empirical analysis of past 
projections. This paper is one of apparently few to compare approaches based on a 
stochastic population model and on empirical estimates of uncertainty. 

I first review the demographic model and the methods of estimating confidence 
intervals that are based on it. I test the assumptions of the model with the Swedish 
data and use appropriate portions of the data to estimate confidence intervals. I then 
adapt the method of Williams and Goodman (1971) and compare the confidence 
intervals estimated by the empirical methods of Williams and Goodman (1971) and 
Stoto (1983) with those estimated by the first two methods. Where possible, I also 
compare the confidence intervals estimated here with those based on previous 
analyses of Saboia (1974). I conclude with tentative recommendations and with 
unanswered auestions. 

MODEL-BASED APPROACHES TO ESTIMATING CONFIDENCE INTERVALS 

Theoretical background 

The classical theory of populations with age structure assumes that age-specific 
birth and death rates are constant in time (Keyfitz 1968) or change deterministically 
(Coale 1972). Various models have been developed for age-structured populations 
with age-specific vital rates that vary stochastically, i.e., with a random component 
(see Alho and Spencer 1985, and Cohen 1985, for reviews). Here, for the first time 
with human population data, I use a model of age-structured populations with 
stochastic vital rates based on products of random matrices. Various cases of this 
model have been studied by Cohen (1976a, 1977a,b, 1979a,b,c,d, 1980, 1982), Lange 
(1979), Lange and Hargrove (1980), Lange and Holmes (1981), Charlesworth (1980), 
Slade and Levenson (1982), Tuljapurkar and Orzack (1980), and Tuljapurkar (1982). 
See Tuljapurkar (in press) for a recent review. The model was first used to analyze 
population data by Cohen, Christensen and Goodyear (1983) and Goodyear, Cohen 
and Christensen (1985) in a study of time-series of striped bass numbers. Heyde and 
Cohen (1985) analyze a general form of this model, which I now describe. 

Consider a large age-structured population with stochastically fluctuating vital 
rates. As in the usual matrix formulation of the component method of population 
projection (see Keyfitz 1968), the number of individuals in each of d age classes at 
time t is represented. by a column d-vector Y(t). The age-specific rates that would 
project the population forward by one time unit from t to t + 1 , in the absence of 
immigration, are represented by ad x d matrix X(t + 1). Commonly, each element of 
the first row of X(t + 1) represents the effective fertility of the corresponding age 
class during the period from t to t + 1. The subdiagonal commonly contains the 
survival proportions. The following analysis applies not only to this standard 
interpretation of the matrix X(t + 1), but also to all linear generalizations, e.g., to 
multiregional or (linear) two-sex or parity-structured populations. 

The number of net migrants in each age class at time t + 1 is represented by a 
column d-vector V(t + 1). This vector needs to be added to the model only if net 
migration to or from the population between t and t + 1 is not a linear function of 
Y(t), the population existing at time t. Net migration that is a linear function of Y(t) 



Population Forecasts and Confidence Intervals for Sweden 107 

can be absorbed into the elements of X(t + 1) without adding any V(t + 1). 
Given an initial population Y(l) at time 1, the dynamics of the population are 

modeled by 

Y(t + 1) = X(t + 1)Y(t) + V(t + 1), t = 1, 2, ... (1) 

I assume that the projection matrices {X(t)} form a stochastically stationary 
ergodic sequence that is uniformly mixing in a sense specified by Heyde and Cohen. 
Here "stochastically stationary" means that the joint probability distribution of any 
finite number of the matrices X is invariant with respect to shifts in time. By 
contrast, "demographically stationary" refers to a population that is constant 
exactly or on average in total size and, sometimes, in age-specific vital rates. 
Roughly speaking, the sequence {X(t)} is "ergodic" if, for every event defined in 
terms of a finite number of matrices X, the average frequency of the event converges 
almost surely to the probability of the event. Qualitatively, uniform mixing means 
that the vital or other rates in the matrix X(t 1) at time t1 approach independence of 
the rates in the matrix X(t2) at time t2 as the times t 1 and t2 become farther apart. The 
sequence of projection matrices will be uniformly mixing in the sense specified if the 
matrices are independently and identically distributed or if they are finite in number 
and determined by an ergodic Markov chain of arbitrary finite order. These special 
cases probably cover most cases of practical demographic interest. 

I also assume that there is a uniform upper bound on the largest vital or other rates 
that can occur in the matrices X; that for some integer K any product of K matrices 
has all of its elements positive with probability 1; and that there is another constant 
C, a positive number greater than 1, such that, with probability 1, the ratio of the 
largest element of X to the smallest positive element of X is less than or equal to C. 
All three of these assumptions are plausible for the projection matrices used with 
age-structured human populations and are true for the historical projection matrices 
that have governed the Swedish population. 

The total size of the population at timet may be written Z(t) = 1' Y(t), where 1 is 
the vector with every element equal to 1. The methods to be described apply not only 
to total population size but to any age group within the population, and more 
generally to any linear function a' Y(t) of the population vector Y(t) where a is a 
nonnegative nonzero d-vector. For example, if a were the vector of labor-force 
participation rates, the methods could be applied to the size a' Y(t) of the labor force. 
For simplicity, I analyze here only the total population size. 

Let W(t) = log Z(t) be the natural logarithm of the population size at time t. (I use 
natural logarithms throughout.) In the absence of nonlinear net migration, i.e., with 
V = 0 always, if the model (1) satisfies the above assumptions, then asymptotically 
(i.e., after a long time) the population size Z(t) almost surely becomes proportional to 
'II.'. This is equivalent to saying that, with probability 1, W(t), the logarithm of 
population size, asymptotically grows linearly at a rate log 'II. per unit time. If log 'II. > 
0, then the population is increasing; if log 'II. < 0 then the population is decreasing; 
and if log 'II.= 0 then on average the population is demographically stationary in total 
size. For the stochastic model (1), log 'II. is the precise analog of the intrinsic rate of 
natural increase r for classical stable population theory. Moreover, after a long time, 
W(t) - t log 'II. becomes normally distributed with mean 0 and standard deviation 
equal to t 112a. Stable population theory might be thought of as the special case of this 
stochastic model in which a = 0. 
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Parameter estimators and point estimators for projections 

For present purposes, the two most important consequences of the model 
described above are that: (a) asymptotically (after a long time), the average growth 
rate of the logarithm of population size is a constant, log A per unit of time, and (b) 
asymptotically, the deviation between the logarithm of population size and its 
expected value given in (a) is normal, with a zero mean and a standard deviation 
equal to a times the square root of time. 

Heyde and Cohen (1985) have proposed estimators of the crucial parameters log A 
and a. To describe the estimators, I need some terminology. Three points in time, 
denoted by t, and three time intervals are involved in most population projections. If 
t = 1 is the epoch (point in time) of the earliest observed population size on which a 
projection is based, t = Tis the epoch of the last observed population size on which a 
projection is based, and t = ris the epoch that the projection is supposed to describe, 
I call t = 1 the base, Tthe launch, and rthe target. Obviously 1 ::5 T < r. I call the dif
ference T - 1 the span of the projection (like the span of a bridge, because the 
projection is supported by data at both ends). I call the difference T- Tthe gap of the 
projection, and the difference T - 1 the range of the projection. 

For the case without migration, i.e., V = 0, Heyde and Cohen have shown that the 
maximum likelihood estimator of the asymptotic average growth rate log A of 
population size is 

log L = [W(n - W(l)]I(T - 1), (2) 

where I use L for the estimator and A for the parameter that L estimates. The 
coefficient a can be estimated from the data by the estimator 

S = (1/2) ( 7T/2) 112 
X 

{[log(T- 1)]- 1 "'i.f=-/ F 3121W(1 +j) - W(l)- j log Ll (3) 

+ [log(T- 2)r 1 "'i.f=-? F 3121W(2+J) - W(l) - j log Ll}. 

This estimator is consistent, i.e., it converges in probability to the true value of a as 
T increases to infinity. The estimators is sensible only if T- 2;::: 3, so that log (T-
2) > 0, i.e., only if T;::: 5. The estimators will not give sensible numbers with fewer 
than T = 5 observations. The finite-sample properties of the estimators (2) and (3) 
remain to be investigated analytically. Heyde (1985) showed that, if the distribution 
of the net migration vector V is independent of prior and present projection matrices 
and population censuses and prior net migration vectors, the identical formulas (2) 
and (3) can be applied to the model (1) with migration. This conclusion probably 
holds under much weaker assumptions about net migration. 

As an estimator of a standard deviation a, s is unusual in two respects: it is based 
on the weighted absolute deviations (rather than the more usual square root of the 
weighted squared deviations), and its weights occur with exponent-3/2 (rather than 
the more usual exponent -1). Heyde and Cohen show that estimators with either of 
the more usual alternative deviations or weights are not consistent for a. 

The maximum likelihood estimator w( r) of the logarithm of population size W( r) at 
future time T > T implied by (2) is 

w(r) = W(n + (r- nlogL 
(4) 

= W(n + [(r- ni(T- l)][W(n - W(l)]. 

(Observe: the notation uses small w for estimates or estimators; capital W for 
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observations.) I use (4) for projections (point estimates of the logarithm of future 
total population size), in combination with all methods of estimating confidence 
intervals except Saboia's. 

M. Stoto (personal communication, 16 July, 1984) raises an important question: 
what qualifies as data? For example, given decennial censuses and intercensal 
interpolations, should the estimators (2) and (3) be applied to the census data only or 
to the interpolations as well? The answer depends on how the intercensal figures 
were computed. Linear or exponential interpolations should not be treated as data 
because they do not reflect the random vital and migratory processes presumed to be 
at work between censuses. Intercensal estimates derived from a demographic 
balance of birth, death, and migration could reasonably be used, provided that the 
vital and migratory data are independently reliable and not simply adjustments 
derived from some linear or exponential model to match the next census. 

Confidence interval estimators 

In a projection according to (4), two sources of uncertainty are, first, the 
uncertainty about the values of the future vital rates contained in the matrices X that 
will occur from the launch T to the target T, and second, the uncertainty about the 
possible difference between the past observed growth rate log L and the true 
asymptotic growth rate log A. A third source of uncertainty is model misspecifica
tion: the model (1) from which the projection formula (4) is derived may not describe 
reality. The Williams-Goodman approach below is one way of dealing with this third 
source of uncertainty. In this section, I take the model (1) as given. The confidence 
interval estimator presented by Heyde and Cohen (which I sometimes refer to as 
estimator 1) and another to be developed here (estimator 2) agree on the magnitude 
of the two sources of uncertainty and differ only in how they are combined. Both 
approaches give an approximate 100(1 - a) percent confidence interval (e.g., a 95 
percent confidence interval if a = 0.05) for w( T), where T > T, by 

w(1) + (T- 1)(T- 1)- 1(W(1)- W(l)) ± s F;(a, T- 1, T- 1), (5) 

where i = 1 or 2 according to which estimator is used. 

The Heyde-Cohen confidence interval estimator 

Define z13 to be that number such that a fraction {3 of the probability density of a 
standard normal distribution is to the right of z13 • E.g., z0 .05 = 1.64 approximately. 
Heyde and Cohen (1985) derive 

Ft(a, T- 1, T- 1) = mino<q<a {(T- 1)(T- o-t/2Zq!2 

+ ( T - 1)112
Z(a-q)/[2(1-q)]} 

as follows. Consider the two events (possible states of affairs) 

Et = {I log L - log AI < s(T -1)- 112zp12 

and IW(T) - W(1)- (T-1) log Ll < s(T-1)112zq12}, 

E2 = {w(T) is in the interval W(1) + (T- 1)(T- 1)- 1 (W(1)- W(l)) 

± [s(T -. 1)(T- 1)- 112Zp!2 + S(T- 1) 112Zql2]}. 

(6) 

The lower limit of the interval in the event E2 occurs if both log L and the increments 
in population size between T and Tare low, while the upper limit occurs if both log L 
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and the increments are high. It is easy to see that whenever E1 occurs, E2 also 
occurs, but not necessarily conversely. Therefore, the probability of E2 is at least as 
big as the probability of Et. or symbolically, 

P(Ez) ~ P(Et). (7) 

Because of asymptotic normality and mixing, one has for large T and large 'T - T 
approximately · 

P(Et) = (1 - p)(l - q). (8) 

The confidence interval estimator suggested by Heyde and Cohen depends on two 
approximations: approximating the right side of (7) by the left, and approximating 
the left side of (8) by the right. Heyde and Cohen set 1 - a = (1 - p)(l - q) and 
solved for the value of p determined by each choice of q, then chose the value of q 
that minimizes the width of the interval in the event E2, giving (6). The minimization 
in (6) can be carried out numerically by scanning a grid of values of q and using a 
polynomial approximation for z13 • 

A new confidence interval estimator: estimator 2 

The confidence interval estimator which I now propose, 

Fz (a, T- 1, 'T- n = [(T-n2(T-1)- 1 + 'T -11 112
Zai2• (9) 

uses only the approximation (8) but not (7). Since the inequality (7) is bypassed, the 
confidence intervals based on estimator 2 should be narrower, i.e., include less 
probability density, than those based on estimator 1, the Heyde-Cohen estimator. 

To derive (9), let z< 0 and z<2
> be two independent standard (mean zero, variance 

one) normal random variables. Then an equivalent formulation of (8) is 

w(T) = W(n + (T-n log A + (T-n(T-1)- 112sz< 0 + (T-n 112sz<2>. (10) 

The term ('T- n(T- 1)- 112sz<0 represents the variation in w(T) contributed by the 
possible deviation between log A and log L, while the term ( T - n 112 sz<2

> represents 
the variation in w( T) contributed by the increments to population size between the 
launch and the target. The mixing hypothesis stands behind the assumption that 
asymptotically these two terms are independent. Now for any real numbers a and b, 
az< 0 + bz<2> has the same distribution as the random variable (a2 + b2

)
112Z, where Z 

is also a standard normal random variable. The estimator (9) follows. 

EMPIRICAL APPROACHES TO ESTIMATING CONFIDENCE INTERVALS 

The Williams-Goodman confidence interval estimator 

Williams and Goodman (1971) had long time-series of economic data (the gain in 
number of telephones at main telephone stations). They fitted a parametric forecast
ing model to the first 24 points of the series, forecasted 18 months ahead, and called 
the absolute value of the difference between the forecast and the corresponding 
observed value of the series the absolute forecast error. They then dropped the first 
point in the series, added the 25th point, re-estimated the parameters of the 
forecasting model, computed another forecast 18 months ahead, and from compari
son with the corresponding observation found another absolute forecast error. 
Continuing in this way, they obtained a series of absolute forecast errors. 

To analyze the distribution of absolute forecast errors, Williams and Goodman 
(1971) computed the confidence intervals in the conventional way prescribed by the 
statistical theory of the forecasting model. The computed confidence intervals were 
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too narrow in comparison with the empirical distribution of absolute forecast errors. 
(This means, e.g., that the computed 80 percent confidence interval covered only 
about 70 percent of the forecast errors.) Williams and Goodman (1971) then 
estimated empirical confidence intervals by fitting a parametric error model (a 
gamma distribution) to the distribution of absolute forecast errors and computing 
empirical confidence intervals from the fitted error model. 

In adapting the idea of Williams and Goodman (1971), I shall omit the fitting of a 
parametric error model because my time-series has far fewer points than theirs. I 
shall show instead that, for the Swedish data, it is reasonable to describe the 
distribution of signed (i.e., positive or negative) forecast errors by a summary 
statistic, the standard deviation. Also, while Williams and Goodman considered only 
a single gap (corresponding to the gap required to install additional telephone 
switching capacity), I shall consider a variety of gaps. 

In the absence of guiding theory, I have considered two ways of determining the 
span to be used in obtaining empirical forecast errors according to the Williams
Goodman approach: maximal spans andfixed spans. Let 8equal the length (number 
of observations) of the time-series. To compute empirical forecast errors using 
maximal spans, I set span = 8- 8 - gap, so that the span is as large as possible to 
permit 8 forecasts for the chosen gap. To compute empirical forecast errors using 
fixed spans, I set span = 8. This seems a reasonable number of censuses to expect 
many countries to have. With fixed spans, the number of empirical errors that can be 
computed depends on the gap. 

The model (1) of Heyde and Cohen (1985) assumes stationarity in the process that 
generates the vital rates {X(t)}. The empirical approaches of Williams and Goodman 
(1971) and of Stoto (1983) rest on a different assumption of stationarity, namely, that 
a time-homogeneous process generated past forecast errors and will continue to 
generate future forecast errors. Whereas the confidence interval estimators 1 and 2 
can only be applied when the assumptions underlying the model (1) are plausible, the 
Williams-Goodman approach to estimating confidence intervals can be used in 
combination with a wide range of projection techniques, including cohort-compo
nent methods. 

Stoto' s confidence interval estimator 

Stoto (1983: 17-18) analyzed the errors in the growth rate implied by past 
population projections. He suggested that for projections w( -r) made according to (4), 
approximate 68.3 percent confidence intervals could be computed (in my notation) 
as 

W(1) + ( T - 1) log L ± ( T - ns' (11) 

where Stoto's optimistic estimate of S for developed countries is Sopt = 5 x 0.003 
and his pessimistic estimate of S for developed countries is Spes = 5 x 0.005. I 
inserted a factor of 5 to transform Stoto's time unit of one year to my time unit offive 
years. For confidence intervals other than 68.3 percent, Stoto suggests multiplying S 
by a coefficient derived from normal theory. 

SWEDISH POPULATION SIZES 

The data to be analyzed (Appendix) are the 41 (estimated) total population sizes of 
Sweden at five-year intervals from 1780 to 1980 inclusive. The estimates from 1780 to 
1965 are taken from Keyfitz and Flieger (1968:36). The estimates for 1970 and 1975 
are taken from United Nations (1979:168). The estimate for 1980 is taken from 
United Nations (1983:186). 
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The data I shall use differ from those available from some other sources. Hofsten 
(1972:92) reviews the corrections that G. Sundbarg made at the beginning of the 
twentieth century to the official total population sizes from 1750 to 1810. Neither the 
official nor the estimated figures of Sundbarg, as quoted by Hofsten, coincide with 
those of Keyfitz and Flieger ( 1968) for the corresponding dates but the biggest 
differences are 1.2 percent of the figures I use. The United Nations' (1979) 
population estimate for 1970, namely, 8,043,000, differs from that used by Saboia 
(1974), namely, 8,046,000, which was taken from Keyfitz and Flieger (1971). I treat 
the data as exact and ignore any possible errors in them. If errors are identified, the 
methods should be reapplied to corrected figures (as suggested by N. Bennett, 
personal communication, 5 May 1984). 

Testing the model based on products of random matrices 

Before using estimators 1 and 2 with the Swedish data, I use the Swedish data to 
test assumptions of the demographic model (1 ). First, if the model is approximately 
correct, then over a long span, W(t), the logarithm of total population size, plotted 
against time t, should fluctuate around a straight line. A plot (not shown) of W(t) 
against t, t = 1780, ... , 1980, appears roughly linear. The slope of the straight line 
through the first and last logarithms of population size is used in (2) to estimate the 
asymptotic growth rate of population size. The average growth rate log X. from 1780 
to 1980 has been 0.0343 per 5 years, or roughly 0.7 percent per year. Over the same 
span, the estimate of u from (3) is 0.0236 (taking five years as the unit of time). 

A graph that is more sensitive to possible changes in the growth rate of the 
Swedish population plots the forward first differences W(t + 1) - W(t) = log (Z(t + 
1)/Z(t)) against t (figure 1). (The unit of time here being 5 years, t + 1 refers to the ep
och of observation 5 years after the epoch t .) Since Z(t + 1)/Z(t) never differs greatly 
from 1 for the Swedish population, log (Z(t + 1)/Z(t)) is very close to (Z(t + 1)/Z(t)) -
1, the fractional change per 5 years. Figure 1 shows no pronounced increasing or 
decreasing trend in the first differences, especially over the last century. This 
absence of trends is consistent with the stationarity assumed in the model. However, 
M. Stoto suggests (personal communication, 16 July 1984) that if one ignores the 
point for 1805, there may be a downward trend, as is also suggested by figure 2. 

In figure 2, I fix 1980 as the launch (T = 41) and compute log Lands for spans of 4 
(with base 1960) to 40 (with base 1780). The values oflog L suggest declining growth. 
If the peak on the right with base 1940 is viewed as a temporary interruption of the 
downward trend from around 1815 to around 1925, then figure 2 displays evidence 
against the stationarity assumed in the model (1). This evidence against stationarity 
is not conclusive in the absence of a formal statistical test justified by adequate 
theory. Nevertheless, it hardly seems reasonable to assume that the growth rate of 
total Swedish population size has been constant since 1780, and the model (1) should 
therefore not be applied to the Swedish data over this entire span. At the level of 
intuitive judgment to which I must now resort, it seems more reasonable to apply the 
model separately, for example, to the data from 1780 to 1875 and to the data since 
1880. 

Figure 2 suggests the possibility of a downward trend in s with more recent bases, 
but the scatter in s for bases in this century is so great that this conclusion is far from 
definite. If the underlying model (1) were correct, there would be no clear trend ins. 
As M. Stoto (personal communication, 16 July 1984) suggests, s may be generally 
higher for bases prior to 1860 and lower for bases after 1860. Such a difference would 
provide an additional rationale for dividing the data into two roughly equal pieces. 

I offer no formal statistical tests of stationarity because I know of none that does 
not rest on a parametric stochastic model such as, e.g., an autoregressive moving 
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average process. Here I need formal inferential methods that assume only stationar
ity and mixing. 

So far I infer that the model (1), which assumes stationarity, probably does not 
apply to the whole history of Swedish total population sizes since 1780. The model 
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Figure 2. -Estimated growth rates (log L) and coefficients of dispersion(s) for 
Swedish population projections with a launch of 1980 and various base years. 

NOTE: Log L from equation (2); s from equation (3). Population in thousands, 
observed at quinquennial intervals. 

(I) may provide a reasonable approximation to the history of Swedish population 
sizes from 1780 to 1875 and separately since 1880. 

I now examine whether the data display the predicted normality of deviations from 
strictly exponential growth. For each span and for each gap, the number of forecasts 
w( r) and forecast errors W( r) - w( r) that can be computed using the 41 Swedish 
observations is 41 -span- gap. Figure 3 shows that the frequency distribution of the 
37 errors of the forecasts with span 3 and gap I is bell-shaped, roughly symmetrical 
with a center near 0. I used the forecast errors over the whole two centuries of 
Swedish data because the change in the true parameters log A. and u over any range 
of four quinquennia is likely to be very small. The frequency distributions (not shown 
here) of the errors of the forecasts with larger spans ap.d larger gaps are more 
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irregular, being based on fewer forecasts, but still look roughly normal. Hence the 
standard deviation seems a reasonable empirical measure of the spread of forecast 
errors (on a logarithmic scale). · · 

COMPARISON OF CONFIDENCE INTERVALS 

I now compare confidence intervals using three subsets of the Swedish population 
data. First, I use the data from 1780 to 1875 to make projections and confidence 
intervals from one to ten quinquennia forward, for targets from 1880 to 1925 (table 1). 

Table I. - Comparison of observed population and various confidence intervals" for the projected 
populationb of Sweden, 1880-1925, based on observed population, 1780-1875. 

Year 
Entry I~~!l I~~~ l~~!l ~~~s H!l!l I~!l~ I~I!l HB H~!l n~s 

Exponential point estimate 4533 4710 4894 5086 5285 5491 5706 592~ 6161 6402 

Heyde-Cohen 
Upper bound 4776 5114 5453 5802 6164 6542 6938 7352 7786 8243 
Lower bound 4302 4338 4393 4458 4530 4609 4693 4782 4875 4973 

Estimator 2 
Upper bound 4694 4956 5216 5483 5759 6045 6343 6654 6978 7317 
Lower bound 4376 4477 4592 4717 4850 4988 5133 5284 5440 5602 

Williams-Goodman max. span 
Upper bound 4607 4823 5034 5303 5579 5857 6225 6759 7385 8216 
Lower bound 4460 4600 4758 4877 5006 5148 5230 5201 5141 4989 

Williams-Goodman fixed span 
Upper bound 4614 4835 5034 5265 5500 5678 5903 6243 . 6630 6761 
,Lower bound 4453 4588 4758 4912 5078 5311 5516 5631 5726 6Q63 

Stoto optimistic 
Upper bound 4601 4853 5119 5400 5696 6008 6338 6685 7052 7438 
Lower bound 4465 4571 4679 4789 4903 5019 5137 5259 5383 5511 

Stoto pessimistic 
Upper bound 4647 4951 5275 5621 5988 6380 6797 7242 7716 8221 
Lower bound 4421 4480 4541 4602 4664 4726 4790 4855 4920 4986 

Observed population sizes 4572 4664 4780 4896 5117 5278 5499 5696 5876 6045 

a 68.3 percent confidence intervals 

b In thojlsanda 



116 DEMOGRAPHY, volume 23, number 1, February 1986 

If 1880 approximates the date of significant changes in Swedish demographic 
processes, as figure 2 suggests, it is of interest to see how well point and interval 
estimates based on one set of demographic parameters describe population growth 
generated under changed demographic parameters. For the population sizes from 
1780 to 1875, (2) and (3) yield log L = 0.0384 (corresponding to average annual 
growth of roughly 0.8 percent per year) and s = 0.0342. 

Second, I use the data from 1880 to 1960 to make projections and confidence 
intervals from one to five quinquennia forward, for targets from 1965 to 1985 (table 
2). For the population sizes from 1880 to 1960, (2) and (3) yield log L = 0.0308 
(corresponding to average annual growth of roughly 0.6 percent per year) and s = 
0.0100. Between 1780-1875 and 1880-1960, while the average growth rate of 
population size declined by nearly one-quarter, the variability of increments in 
population size declined much more dramatically, by more than two-thirds, as is 
suggested by figure 2. 

If the underlying parameters of demographic growth (not age-specific vital rates, 
which varied markedly,. but log >.. and a) varied little from 1880 to 1980, it is of 
interest to compare the success of the forecasts in table 2 with those in table 1. For a 
given gap, the absolute errors of the exponential point estimates in table 1 are 
comparable to those in table 2: for gaps of 5, 10, 15 and 20 years, the absolute errors 
in table 1 (vs. those in table 2 in parentheses) are, in thousands, 39 (vs. 20), 46 (vs. 
88), 114 (vs. 10), 190 (vs. 150). However, the relative errors (table 5) of the 
exponential point estimates are larger in the earlier period; for gaps of20 years, more 

Table 2. - Comparison of observed population and various confidence intervals" for 
the projected populationb of Sweden, 1965-1985, based on observed population, 

1880-1960. 

Year 
Entry 1§6S 1§75 197S 1§8o 198S 

Exponential point estimate 7714 7955 '8203 8460 8724 

Heyde-Cohen 
Upper bound 7835 8154 8475 8803 9140 
Lower bound 7594 7760 7940 8129 8327 

Estimator 2 
Upper bound 7794 8075 8359 8651 8950 
Lower bound 7635 7837 8050 8273 8504 

Williams-Goodman max. span 
Upper bound 7832 8193 8564 8916 9238 
Lower bound 7598 7724 7858 8027 8238 

Williams-Goodman fixed span 
Upper bound 7834 8194 8539 8833 8976 
Lower bound 7595 7723 7881 8102 8479 

Stoto optimistic 
Upper bound 7830 8197 8581 8983 9403 
Lower bound 7599 7720 7842 7967 8094 

Stoto pessimistic 
Upper bound 7909 8363 8842 9349 9886 
Lower bound 7523 7567 7611 7655 7699 

Observed population sizes 7734 8043 8193 8310 n.a. 

a 68.3 percent confidence intervals 

b In thousands 
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than twice as large (1895 vs. 1980). This decline in relative errors over time suggests 
that the absolute errors may be comparable for the earlier and later exponential point 
estimates because the earlier population size was smaller. 

Though the observed population sizes exceed the exponential point estimates for a 
gap of 5 years in table 1 and for gaps of 5 and 10 years in table 2, for larger gaps the 
observed population sizes consistently fall below the point estimates. It is hardly 
surprising that exponential extrapolation fails to capture the long-term trend of 
declining rates of growth in Sweden's population size. 

Of greater interest is the ability of the confidence intervals to contain the realized 
population sizes. In tables 1 and 2, the observed population sizes strayed outside the 
estimated 68.3 percent confidence intervals only once: in 1925, the observed 
population size of 6,045 thousanp fell slightly below the lower bound of 6,063 
thousand estimated using the Williams-Goodman method with fixed spans. The 
target 1925 is 50 years after the launch 1875. I conclude that none of the methods 
generates confidence intervals that are, for these data, unreasonably narrow. 

By picking a launch of 1960 for table 2, I can also compare my projections and 
confidence intervals with those of Saboia (1974). Saboia fitted two time-series 
models to Swedish data (identical to those used here) from 1780 to 1960. For 1965 
and 1970 his ARIMA(1,1,0) model gives point estimates of 7,666 and 7,835 
thousands, while his ARIMA(0,2,1) model gives point estimates of7,716 and 7,953 
thousands, respectively. The absolute errors of the ARIMA(1,1,0) model, 68 and 208 
thousands, are substantially larger than the corresponding absolute errors of the 
exponential point estimates, namely 20 and 88 thousands. The absolute errors of the 

Table 3.- Comparison of observed population and various confidence intervals• for 
the projected populationb of Sweden, 1985-2005, based on observed population, 

1880-1980. 

Year 
Entry 198!) 1990 199!; ~000 ~50!) 

Exponential point estimate 8562 8822 9089 9365 9649 

Heyde-Cohen 
Upper bound 8685 9022 9362 9708 10063 
Lower bound 8440 8625 8824 9033 9251 

Estimator 2 
Upper bound 8645 8946 9250 9560 9879 
Lower bound 8480 8699 8931 9173 9424 

Williams-Goodman max. span 
Upper bound 8680 9023 9347 9687 10053 
Lower bound 8446 8624 8838 9053 9260 

Williams-Goodman fixed span 
Upper bound 8688 9052 9375 9687 9977 
Lower bound 8438 8598 8812 9053 9331 

Stoto optimistic 
Upper bound 8691 9090 9508 9944 10400 
Lower bound 8435 8561 8689 8819 8952 

Stoto pessimistic 
Upper bound 8779 9274 9797 10350 10934 
Lower bound 8351 8391 8432 8474 8515 

a 68.3 percent confidence intervals 

b In thousands 
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ARIMA(0,2, 1) model, 18 and 90 thousand, are practically the same as those of the 
exponential point estimates. In these cases, the computational complexity of the 
time-series methods did not yield better predictive accuracy than exponential 
extrapolation. This confirms a general finding of Stoto (1983). 

Using the parameter estimates given by Saboia (1974), I computed 68.3 percent 
confidence intervals. For the ARIMA(l, 1 ,0) model, the confidence intervals are (in 
thousands) for 1965 from 7,598 to 7,734 and for 1970 from 7,739 to 7,931. These 
confidence intervals are narrower than the confidence intervals for corresponding 
dates given by any method in table 2. The observed population size in 1965 was just 
at the upper bound of the given interval and in 1970 was outside it. For the 
ARIMA(0,2,1) model, the confidence intervals are from 7,640 to 7,792 for 1965 and 
from 7,818 to 8,088 for 1970, both of which coqtain the observed population sizes. 
These confidence intervals are about as wide as those based on estimator 2, which 
are the narrowest of the intervals in table 2. The comparison with the results of 

Table 4. - Swedish population projections•: Upper half-width of confidence intervalsb and errore of 
exponential point estimates. 

Target Heyde- Estim- WG max. WG fixed Stoto Stoto 
year Cohen ator 2 span span optim. pessim. Error 

Based on observed populations, 1780-1875 

1880 243 162 74 81 69 115 39 
1885 404 246 113 125 143 241 -46 
1890 559 322 140 140 225 381 -114 
1895 717 397 218 179 314 535 -190 
1900 880 474 294 215 412 704 -168 
1905 1051 554 366 187 517 889 -213 
1910 1231 637 519 197 632 1091 -207 
1915 1423 724 830 314 756 1313 -233 
1920 1625 817 1224 468 891 1555 -285 
1925 1840 915 1814 359 1036 1818 -357 

Based on observed populations, 1880-1960 

1965 122 80 118 120 117 195 20 
1970 199 120 238 239 242 408 88 
1975 272 156 360 335 378 639 -10 
1980 344 191 456 374 523 890 -150 
1985 416 226 514 252 679 1162 n.a. 

Based on observed populations, 1880-1980 

1985 123 83 118 126 129 217 n.a. 
1990 201 124 202 230 269 452 n.a. 
1995 273 161 258 286 418 708 n.a. 
2000 344 196 323 323 579 985 n.a. 
2005 414 230 405 328 751 1285 n.a. 

a In thousands 

b Equals upper bound of 68.3 percent confidence intervals, minus 
exponential point estimate. 

c Equals observed population size minus exponential point estimate. 
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Saboia shows that while the time-series methods are not more accurate than simple 
exponential extrapolation, and are sometimes less accurate, the confidence intervals 
derived from time-series methods are not wider than those derived from the other 
methods considered here and may be too narrow to contain the observed population 
sizes. 

Third and finally, I use the data from 1880 to 1980 to make projections and 
confidence intervals from one to five quinquennia forward, for targets from 1985 to 
2005 (table 3). Planners may find the results of interest now. Future scholars will be 
able to compare them with subsequent observations. For the population sizes from 
1880 to 1980, (2) and (3) yield log L = 0.0299 (corresponding to average annual 
growth of roughly 0.6 percent per year) and s = 0.0094. 

To facilitate comparison of the width of the confidence intervals generated by 
different methods, table 4 shows the difference between each upper bound of a 
confidence interval and the corresponding exponential point estimate. I shall refer to 

Table 5. - Swedish population projections": Upper half-width of confidence intervalsb and error of 
exponential point estimates as a percent of the exponential point estimate. 

Target Heyde- Estim- WG max. WG fixed Stoto Stoto 
year Cohen ator 2 span span optim. pessim. Error 

Based on observed populations, 1780-1875 

1880 5 4 2 2 2 3 1 
1885 9 5 2 3 3 5 -1 
1890 11 7 3 3 5 8 -2 
1895 14 8 4 4 6 11 -4 
1900 17 9 6 4 8 13 -3 
1905 19 10 7 3 9 16 -4 
1910 22 11 9 3 11 19 -4 
1915 24 12 14 5 13 22 -4 
1920 26 13 20 8 14 25 -5 
1925 29 14 28 6 16 28 -6 

Based on observed populations, 1880-1960 

1965 2 1 2 2 2 3 0 
1970 3 2 3 3 3 5 1 
1975 3 2 4 4 5 8 0 
1980 4 2 5 4 6 11 -2 
1985 5 3 6 3 8 13 n.a. 

Based on observed populations, 1880-1980 

1985 1 1 1 1 2 3 n.a. 
1990 2 1 2 3 3 5 n.a. 
1995 3 2 3 3 5 8 n.a. 
2000 4 2 3 3 6 11 n.a. 
2005 4 2 4 3 8 13 n.a. 

a In thousands 

b Equals upper bound of 68.3 percent confidence intervals, minus 
exponential point estimate. 

c Equals observed population size minus exponential point estimate. 
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this difference as a half-width. Since these are 68.3 percent confidence interV.tlS, t~te 
half-width would correspond to one standard deviation on the logarithmic scale if the 
logarithm of population size were normally distributed. To illustrate, for 1900 the 
projected total Swedish population size is 5,285 thousand and the upper bound of the 
Heyde-Cohen confidence interval is 6,164 thousand, according to table 1. For 1900, 
table 4 shows 880 thousand (instead of 879 = 6164 - 5285) as the half-width for the 
Heyde-Cohen confidence interval for 1900 because the half-width in table 4 was 
computed before rounding. Where the data are available, table 4 also shows each 
observed population size minus the corresponding point estimate. 

The half-widths and errors, expressed in table 4 in thousands of people, are 
expressed in table 5 as a percent of the corresponding exponential point estimates 
from tables 1, 2 and 3. For example, the exponential point estimate for 1985 is 
8,562,000 (from table 3) and the upper half-width of the Heyde-Cohen 68.3 percent 
confidence interval is 123,000 (from table 4). Under the Heyde-Cohen column in 
table 5 the entry for 1985 is 123/8562 = 1 percent to the nearest whole percent. 

Before making comparisons between methods, I compare variants of the Williams
Goodman approach. The half-widths of the confidence intervals generated using 
maximum spans and using fixed spans differ from one another by approximately 10 
percent for gaps up to 15 years. I consider this an acceptably low level of difference. 
Beyond gaps of25 years (i.e., for the targets 1905 to 1925), the half-widths generated 
by the two variants differ by a factor of two or more. Even for a gap of25 years, the 
half-widths of the two variants may differ markedly (as for the target year 1985 in the 
middle of table 4 or table 5). I consider this difference too large to be acceptable. I 
conclude that whichever variant is used, the Williams-Goodman approach should be 
considered reliable for gaps of up to 15 to 25 years with demographic time-series 
comparable to these Swedish data. 

Comparison of Stoto's optimistic and pessimistic confidence intervals shows, as 
expected, that the pessimistic intervals are wider than the optimistic by a factor that 
increases with increasing gaps, starting from 5/3 for a 5-year gap. 

To compare the two empirical methods, that of Williams-Goodman and that of 
Stoto, I use only gaps of 5 to 15 years to avoid unreliable results from the variants of 
the Williams-Goodman method. For gaps of 5 years, Stoto's optimistic half-widths 
correspond remarkably well with the Williams-Goodman half-widths, but the 
pessimistic half-widths are larger by the expected factor of 5/3. For gaps of 10 or 15 
years, all of the Stoto half-widths are larger than those of the Williams-Goodman 
methods, and in some cases dramatically larger. For example, for the target 1995, the 
Stoto optimistic half-width is 418 thousand (5 percent of the exponential point 
estimate), while the larger half-width of the two Williams-Goodman variants is 286 
thousand (3 percent of the exponential point estimate). 

I now compare the model-based confidence intervals based on (6) and (9). In every 
case, the confidence intervals given by the new estimator 2 are between two-thirds 
and one-half as wide as those given by the Heyde-Cohen estimator. The half-widths 
according to estimator 2 become relatively narrower as the gap increases. That the 
half-widths according to estimator 2 would be narrower than those according to 
estimator 1 was anticipated theoretically above. 

To summarize for gaps of 5 to 15 years, the half-widths of the empirical methods 
may be ranked as: Williams-Goodman ::::; Stoto optimistic < Stoto pessimistic. (For 
larger gaps, the estimated half-widths of different variants of the Williams-Goodman 
approach are too divergent to be reliable.) The half-widths of the model-based 
methods may be ranked as: estimator 2 < Heyde-Cohen. 

When the half-widths of the empirical and model-based methods are compared, 
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the importance of using data from different historical periods emerges, because the 
results of comparisons depend on which data are used. In the confidence intervals 
for 1880-1900, the Williams-Goodman half-widths are substantially smaller than 
those of estimator 2, and Stoto's pessimistic half-widths are substantially smaller 
than those of Heyde-Cohen. In the confidence intervals for the twentieth century, 
the reverse holds for both comparisons. The present analysis does not permit me to 
rank the half-widths of the empirical and model-based methods independently of the 
data to w~hich the methods are applied. 

Since Stoto (1983) analyzed only data and projections from the twentieth century, 
perhaps I should not apply his method to the Swedish data from 1780 to 1875. Then 
for targets from 1880 to 1900, the half-widths of the remaining methods are ranked 
as: Williams-Goodman < estimator 2 < Heyde-Cohen, roughly in the ratios 1:2:3. 

In the twentieth-century confidence intervals, the half-widths given by the Heyde
Cohen, Williams-Goodman, and Stoto optimistic methods are all remarkably close 
for a gap of five years. For larger gaps, these three methods rapidly diverge, but none 
yields confidence intervals nearly as wide as the Stoto pessimistic estimates. Ifl had 
to pick one method to discard in analyzing modern data for a developed country, 
such as Sweden, I would discard Stoto's pessimistic method as giving intervals that 
are too wide. 

A perspicacious referee (undoubtedly M. Stoto) argues, on the contrary, that 
Stoto's pessimistic method gives confidence intervals of reasonable width, and that 
the other methods give intervals that are too narrow. Just as the regime of 
demographic growth appears to have changed in Sweden in the second half of the 
nineteenth century, so the regime of demographic growth could change again 
between the launch and the target, the referee argues. By fitting my model to a 
period of more or less homogeneous growth (1880-1980) chosen after the fact, the 
referee says, I have left its projections vulnerable to surprise-an unexpected change 
in demographic regime. While the model-based and Williams-Goodman methods 
assume no change in regime between the base and the target, says the referee, 
Stoto's pessimistic confidence intervals allow for the historically experienced 
amount of surprise. 

In response, I think that Stoto's optimistic and pessimistic intervals are just as 
vulnerable to surprise as are the intervals derived from other methods because 
Stoto's method assumes that whatever generated past forecast errors will also 
generate future forecast errors. If a new kind of demographic forecasting or a new 
kind of demographic change or both arise, whatever generated past forecast errors 
will no longer generate future forecast errors. The relative merits of Stoto's vs. other 
methods can only be resolved quantitatively, I believe: do the 68.3 percent 
confidence intervals, no matter how derived, contain the actual population size 
neither more or less than 68.3 percent of the time? My case against Stoto's 
pessimistic intervals, based in part on the predictions for 1880-1925 that use data 
from the different regime of 1780-1875, is that Stoto's pessimistic intervals appear to 
contain the actual population sizes (at least for Sweden-perhaps not in general) 
more than 68.3 percent of the time. However, I also think the referee's argument is 
worth stating here to show that reasonable and informed people have yet to reach 
complete agreement. 

The optimistic intervals of Stoto grow wider much more rapidly than those of 
Heyde-Cohen, estimator 2, or Williams-Goodman. In the very limited experience 
provided by table 4, the narrower confidence intervals of the latter three methods are 
wide enough to contain the realized population sizes. Estimator 2, which gives the 
narrowest confidence intervals, is valuable in suggesting a minimum level of 
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uncertainty associated with exponential point estimates: for 1985, for example, given 
the data up to 1980, there is at least one chance in three that the Swedish population 
will number more than 8,950,000 or less than 8,504,000, according to table 2. 

To evaluate the confidence intervals for future population sizes, I assess their 
demographic plausibility. The upper bounds for the year 2005 of the Heyde-Cohen, 
estimator 2, Williams-Goodman fixed span, and Stoto optimistic confidence inter
vals imply average annual growth rates of 0.8 percent, 0.7 percent, 0.7 percent and 
0.9 percent, respectively, while the lower bounds of the corresponding intervals 
imply average annual growth rates of 0.4 percent, 0.5 percent, 0.5 percent and 0.3 
percent. As noted above, from 1880 to 1980, the average annual growth rate was 
roughly 0.6 percent. Over all possible 25-year spans between 1880 and 1980 (i.e., 
1880-1905, 1885-1910, and so on up to 1955-1980), the maximum and minimum 
average annual growth rates were 0.78 percent and 0.44 percent. Roughly one in 
three independent observations should fall outside a 68.3 percent confidence 
interval, but all possible 25-year spans are hardly independent. This analysis of 
implied growth rates therefore suggests, but does not prove, that the Heyde-Cohen 
and Stoto optimistic confidence intervals seem unnecessarily wide, and that the 
estimator 2 and Williams-Goodman fixed span confidence intervals seem about right. 

DISCUSSION AND RECOMMENDATIONS 

Nearly 30 years ago, Hajnal (1957) wrote an eloquent and profoundly skeptical 
review of mathematical models in demography that still merits reading. He indicated 
that the practical achievements of models at that time were quite modest and gave 
reasons why. In consonance with Hajnal and many others, Siegel (1972:51) ob
served: "Elaboration of projection methodology has not resulted in any great 
increase in the precision of the projections, largely because birth rates have 
fluctuated widely, and the fluctuations have proven difficult, if not impossible, to 
predict.'' 

More recently, the forecasting errors of projections and extrapolations have been 
analyzed quantitatively in several studies (Henry and Gutierrez 1977; Keyfitz 1982; 
Stoto 1983; Stoto and Schrier 1982; Ascher 1978; Smith 1985). While limited space 
does not permit me to review the details of these studies here, I draw three simple 
lessons from them. 

1. The longer the gap of a population forecast, the lower its accuracy. When they 
are accurate at all, population forecasts are usefully accurate for less than a 
generation. 

2. For short-term forecasts, simple projection methods, such as assuming con
stant geometric growth, are at least as good as complicated ones. 

3. Forecasters generally underestimate both the uncertainty of the forecasts they 
produce and the instability of the core assumptions from which those forecasts are 
derived. 

This paper compares two kinds of techniques for estimating confidence intervals 
of population forecasts. The first is derived from the application of martingale limit 
theory to a stochastically explicit demographic model for age-structured popula
tions, and is appropriate for populations with an exponential trend of increase over 
the range from the earliest datum to the furthest target of projection. The second 
kind of technique rests on the empirical distribution of forecast errors. 

Numerous other techniques for estimating confidence intervals of population 
forecasts have been proposed (Alho and Spencer 1985). Lee (1974) emphasized that 
different forecasting models imply dramatically different confidence intervals. My 
results confirm Lee's observation. 



Population Forecasts and Confidence Intervals for Sweden 123 

To prepare a population forecast and confidence intervals based on a time-series 
of population sizes (or time-series of sizes of any linear combination of age-classes, 
e.g., a time-s~ries of numbers of children or of labor fdrce sizes), I tentatively 
recommend several steps. Because the theoretical and empirical underpinnings of 
these recommendations need much further development, I expect these recommen
dations to evolve. 

1. Examine the data graphically, and especially the first differences of the 
logarithms of the popufation sizes, to see whether a trend (with possible fluctuations) 
of exponential growth is plausible for the entire span of the data or for a recent 
portion of the span. If exponential growth is not plausible over at least a recent 
portion of the span, the two methods based on model (1) should not be us~d. The 
empirical methods ofthi~ paper m~y still be used. Other, e.g., time-series methods 
(Lee 1974; Alho and Spencer 1985; and those reviewed by Cohen 1985) may be 
appropriate. 

2. Using that portion of the recent data for which exponential growth is plausible 
(at a minimum, the last two observations), prepare exponential point estimates 'for 
future population sizes, but nbt more than 25 years ahead. 

3. Estimate log A and u using the Heyde-Cohen estimators (2) and (3) above, and 
compute confidence intervals according to estimator 2, using (5) and (9). 

4. Also compute confidence intervals using fixed spans' and maximal spans in the 
Williams-Goodman procedure and discard any confidence intervals for which the 
two variants diverge markedly. 

5. If the population of interest is a developed country, compute Stoto's optimistic 
confidence intervals for developed countries. 

6. Evaluate the demographic plausibility of the average population growth rates 
implied by .the upper and lower bounds of the 1confidence intervals that result from 
steps 3, 4, and 5 and retain those confidence intervals with plausible implied growth 
rates. Realistic confidence intervals probably fall within the range of confidence · 
intervals that survive. 

Given the substantial practical stakes in reliable· projections and confidence 
intervals, each of these steps needs to be justified and made more specific by future 
research. 1. What graphical methods can best distinguish exponential from nonex
ponential trends over varying spans of past data? 2. How far ahead should 
projections be computed for any desired l~vel of reliability, and how much of the 
past is an optimal span? 3. Are. there better crstimators of log A and of u and are there 
better ways of combining them to get confidence intervals for the model (1)? 4. What 
are the theoretical underpinnings of the Williams-Goodman procedure and which 
variant (fixed spans vs. maximal spans) is preferable under what conditions? 5. Can 
Stoto's optimistic confidence intervals be refined for a particular develop~d co~ntry 
that lacks many prior population projections? 6. What other tests of demographic 
plausibility should be applied to confidence intervals? How reliable is the test of 
demogr~phic plausibility described here? 1 

If it is disappointiJ;tg that the above recommendations do not lead to unique 
confidence intervals, in that disappointment lies a major lesson of this analysis. I 
sought confidence intervals for population projections in the first place because 
finitely many observations of the past and incomplete theoretical understanding of 
the present and future can justify at best interval, not point, estimates of future 
population sizes. It is impossible to kn~w precisely what the future population will 
be. Having compared four or more methods of making interval'estimates of future 
population sizes, I now recognize that the same two limitations (finite knowledge of 
the past, and less than perfect theory of the present and future) make it impossible to 



124 DEMOGRAPHY, volume 23, number 1, February 1986 

specify a unique population model with unique parameter values from which unique 
interval estimates of future· population sizes (or compositions or distributions) could 
be derived. Consequently I must be satisfied with a range of confidence intervals for 
population projections. Uncertainty attaches not only to the point forecasts offuture 
population but also to the estimates of those forecasts' uncertainty. Progress in 
research, through improved population theories, improved data and improved 
statistical estimators, can aim to reduce the uncertainty of interval estimates but 
cannot eliminate it. 

This uncertainty of interval estimates is one of several limits on the accuracy. of 
population forecasts (Land 1985). Collectively these limits are one of several kinds of 
limits on the possible precision and certainty of demographic knowledge (Cohen 
1976b, 1983, in press). 

Most papers on confidence intervals for population projections (unlike Lee 1974) 
advocate a single method without testing that method against the merits of others. 
Since confidence intervals do vary, as Lee first and now I have observed, real 
progress in measuring the uncertainty of population forecasts requires the direct 
comparison of competing approaches, empirically and theoretically. In the convic
tion that real progress is possible, I may exemplify a remark of Hajnal (1957: 103): 
" ... perhaps, in this as in other fields, it is a good idea to have a few people engaged 
in striving for the unattainable." 

Appendix: Swedish Population Size Estimates 1780-1980 

The estimated total size (in thousands) of the Swedish population at 5-year intervals 
from 1780 to and including 1980 is listed below, reading from left to right within each 
row, and by rows from top to bottom. E.g., the estimated total population of Sweden 
in 1790 is 2,161,000. 

2104 2147 2161 2274 
2352 2418 2380 2450 
2573 2749 2876 3004 
3123 3296 3462 3625 
3824 4092 4164 4362 
4572 4664 4780 4896 
5117 5278 5499 5696 
5876 6045 6131 6242 
6356 6636 7017 7262 
7480 7734 8043 8193 
8310 
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