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Three recently discovered quantitative empirical generalizations describe 
major features of the structure of community food webs. These general
izations are: (i) a species scaling law: the mean proportions of basal, 
intermediate and top species remain invariant at approximately 0.19, 
0.53, and 0.29, respectively, over the range of variation in the number 
of species in a web; (ii) a link scaling law: the mean proportions of trophic 
links in the categories basal-intermediate, basal-top, intermediate
intermediate, and intermediate-top remain invariant at approximately 
0.27, 0.08, 0.30 and 0.35, respectively, over the range of variation in the 
number of species in a web; and (iii) a link-species scaling law: the ratio 
of mean trophic links to species remains invariant at approximately 1.86, 
over the range of variation in the number of species in a web. This paper 
presents a model, the only successful one among several attempts, in 
which the first two of these empirical generalizations can be derived as 
a consequence of the third. The model assumes that species are ordered 
in a cascade or hierarchy such that a given species can prey on only those 
species below it and can be preyed on by only those species above it in 
the hierarchy. 

1. INTRODUCTION 

A food web is a set of kinds of organisms and a relation that shows which kinds 
of organisms, if any, each kind of organism in the set eats. A community food web 
is a food web obtained by picking, within a habitat or set of habitats, a set of kinds 
of organisms on the basis of taxonomy, size, location, or other criteria, without 
prior regard to the eating relations among the organisms (Cohen 1978, pp. 20-21). 
In the past hundred years, ecologists have reported many community food webs. 
Briand (1983, and unpublished data) collected and edited 62 of these, including 
13 of those assembled by Cohen (1978). Several simple empirical generalizations 
describe the major features of these community food webs, viewed as an ensemble 
(Briand & Cohen 1984; Cohen & Briand 1984). 

The purpose of this paper is to propose a simple explanation that accounts for 
these empirical generalizations in an economical way. The proposed explanation 
(the 'cascade' model of §6) is one of several attempted models. The unsuccessful 
models will also be reviewed to show why models that are simpler than the one 
we ultimately propose do not account for the major features of the data. 
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Section2 introduces our terminology and summarizes the empirical generaliza
tions that this work aims to explain. Sections3-6 describe successively more 
restricted stochastic models, based on random directed graphs, and their failures 
and successes in accounting for the observed generalizations. Section 7 reviews the 
results obtained, relates them to prior results, and points out some of their 
limitations. 

The companion to this paper (Cohen et al. I985) tests further the most successful 
model proposed here, by using disaggregated data on individual community food 
webs. 

2. TERMINOLOGY AND EMPIRICAL GENERALIZATIONS 

We shall follow the terminology and restate the major conelusions of Briand & 
Cohen (I984) and Cohen & Briand (I984). 

By a species, we mean a class of organisms that prey on the same kinds of 
organisms and are preyed on by the same kinds of organisms. A species in this sense 
may result from lumping together kinds of organisms that were identified as 
separate by a reporting ecologist but that were recorded as having the same sets 
of prey and the same sets of predators (Briand & Cohen I 984). A species in this 
sense bears no necessary relationship to a biological species. 

By a link, we mean any reported feeding or trophic relation between two species 
in a community food web. Observers use various criteria to decide how much 
feeding justifies the reporting of a link and how much failure to observe feeding 
justifies reporting the absence of a link (Cohen & Briand I984). 

A community food web graph represents a community food web as a directed 
graph or digraph. (The use of digraphs to represent food webs was proposed, 
apparently independently, by Harary (I96I) and Gallopin (I972).) The vertices of 
the digraph correspond to the set of species in the community food web, and there 
is an arrow or directed edge from vertex i to vertex j in the digraph if and only 
if species j feeds on species i, that is, food flows from species i to species j. In the 
description of the theory of digraphs by Robinson & Foulds (I98o), the 
possibility that i = j, that is, cannibalism, is excluded. As will be explained below, 
cannibalism was excluded from our data, independently of the theory of digraphs. 
Consequently the data are consistent with the assumptions of Robinson & Foulds 
(I 980 ). Henceforth we shall use the single word web to mean a digraph that 
represents a community food web. We shall sometimes use the words species and 
vertex interchangeably. 

A predator is a species that eats at least one species in the web. A prey is a species 
that is eaten by at least one species in the web. A top species is a species not eaten 
by any species in the web. Such a species is represented in the web by a vertex 
that is called a sink (Robinson & Foulds I98o, p. 20). An intermediate species is 
a species that has both at least one predator and at least one prey. A basal species 
is a species that eats no species. Such a species is represented in the web by a vertex 
that is called a source (Robinson & Foulds I98o, p. 20). 

A species that neither eats nor is eaten by any species (an isolated species) is, 
according to the definitions just given, both a top and a basal species. However, 
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either such species do not exist in reality or reports of webs, with rare exceptions, 
exclude them. In the whole collection of 62 webs that we shall analyse, only two 
or three isolated species in total were reported by the original sources, and these 
isolated species have been excluded in the editing of the data (F. Briand, personal 
>Jommunica tion). 

We now distinguish special subsets of top and basal species. A proper top species 
is a top species that is also a predator, that is, a species that is eaten by none, but 
that eats at least one other species. A proper top species is represented by a vertex 
that is a proper sink in the terminology of Robinson & Foulds (I98o, p. 20). A proper 
basal species is a basal species that is also a prey, that is, a species that eats none, 
but that is eaten by at least one other species. A proper basal species is represented 
by a vertex that is a proper source (Robinson & Foulds I98o, p. 20). 

Because isolated species are absent from our data, all reported top species are 
proper top species and all reported basal species are proper basal species. In the 
absence of isolated species, we can partition all species in a web into the sets of 
proper top, intermediate, and proper basal species. 

A basal-intermediate link is a link from a (necessarily proper) basal species to 
an intermediate species; similarly for a basal-top link, an intermediate-intermediate 
link, and an intermediate-top link. 

For a given reported web, letS denote the total number of species (vertices), 
T the number of (proper) top species, I the number of intermediate species, B the 
number of (proper) basal species, L the total number of links, LEI the number of 
basal-intermediate links, LET the number of basal-top links, Ln the number of 
intermediate-intermediate links, and LIT the number of intermediate--top links. 

The adjacency matrix A of a web (or of any digraph) is an S x S matrix in which 
the element aii in row i and columnj equals 1 if species i is eaten by speciesj, and 
equals 0 if species i is not eaten by species j. Thus species j is a basal species if 
and only if column j of A is 0, because column j of A is 0 if and only if species 
j eats no species in the web. Speciesj is a proper basal species if and only if column 
j of A is 0 and row j is not 0. Similarly species i is a top species if and only if row 
i of A is 0. Species i is a proper top species if and only if row i is 0 but column 
i is not 0. Species i is isolated if both row i and column i are 0. 

As is conventional, let E(.) denote the expectation or average of the random 
variable enclosed in parentheses. Let a bar denote the sample mean of the random 
variable it covers. Thus lJ is the sample mean number of basal species, while E(B) 
is the expected number of basal species according to some model. 

The three major findings of Briand & Cohen (I 984) and Cohen & Briand (I 984) 
may be stated as 'scaling laws', that is, as summaries of how the variables just 
defined change, or scale, as the total number of species in a web increases. Each 
of these scaling laws has two parts: (i) a qualitative part that states the 
approximate form of a scaling relationship, and (ii) a quantitative part that 
estimates the numerical value of the parameter or parameters in the scaling law. 
The scaling laws are cross-sectional, not longitudinal: they describe a comparison 
of many webs at the moment of observation, not the development of a single web 
over time resulting from the sequential addition of species. 
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Species scaling (Briand & Cohen I 984) 

(i) As S varies from 3 to 33 lumped species, JJ, I and Tare all approximately 
proportional to S. Equivalently, the proportions of species that are basal, 
intermediate and top show no pronounced trend, neither increasing nor decreasing, 
as S varies from 3 to 33. 

(ii) Approximately, JJ = 0.19S, I= 0.53S, and T = 0.29S for all webs. (The sum 
0.19+0.53+0.29 exceeds 1 due to rounding. For more exact figures, see table 1.) 

TABLE 1. SUMMARY STATISTICS OF THE NUMBERS OF SPECIES AND LINKS IN 62 
COMMUNITY WEBS, BY TYPE OF WEB, TYPE OF SPECIES, AND CATEGORY OF LINK 

(FROM COHEN & BRIAND !984) 

constant webs fluctuating webst all webs 
number fraction number fraction number fraction 

webs 19 43 62 

all species 351 1.000 683 1.000 1034 1.000 
basal 66 0.188 130 0.190 196 0.190 
intermediate 177 0.504 366 0.536 543 0.525 
top 108 0.308 187 0.274 295 0.285 

all links 811 1.000 1108 1.000 1919 1.000 
basal-intermediate 198 0.244 327 0.295 525 0.274 
basal-top 92 0.113 56 0.051 148 0.077 
intermediate-intermediate 260 0.321 318 0.287 578 0.301 
intermediate-top 261 0.322 407 0.367 668 0.348 

t The environment of a web is considered to be 'fluctuating' if the original report indicates 
temporal variations of substantial magnitude in temperature, salinity, water availability or any 
other major physical parameter. Otherwise, the environment of the web is considered to be 
'constant'. 

It seems plausible (Pimm 1982) that ecologists have been more interested in 
species at the top of webs than in species at the bottom, and that the coefficient 
0.19 for the observed fraction of basal species is lower than the true fraction of 
basal species. When Briand & Cohen (1984) 'lumped' trophic species, they found 
that the ratio of basal species to top species increased relative to the ratio observed 
by Cohen (1977, 1978), as expected from Pimm's suspicions. Supposing that the 
number of top species in table 1 were correctly observed, and that the number of 
basal species were increased to equal the number of top species, as predicted by 
all of our models, the fraction of all species that are top species would decline to 
0.26 and the fraction of all species that are basal would increase to 0.26. This 
number seems a reasonable estimate of the fractions of top and basal species, 
corrected for the possible undercount of basal species. 

Link scaling (Cohen & Briand 1984) 

(i) As S varies from 3 to 33, L8 I> L8 r, Ln and LIT are all approximately 
proportional to L. Equivalently, the proportions of links that are basal-
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intermediate, basal-top, intermediate-intermediate and intermediate-top show 
no pronounced trend, neither increasing nor decreasing, asS varies from 3 to 33. 

(ii) Approximately, LEI= 0.27L, LET= 0.08L, Ln = 0.30L, and LIT= 0.35L, 
for all webs. 

Link-species scaling (Cohen & Briand 1984) 

(i} AsS varies from 3 to 33, Lis approximately proportional to S. Equivalently, 
the ratio of total links to total species in a web shows no pronounced trend, neither 
increasing nor decreasing, asS varies from 3 to 33. 

(ii} Approximately, L = 1.86S, for all webs. (More precisely, the coefficient of 
proportionality is 1.8559 with a standard deviation of0.0740.) It will be convenient 
later to have a notation for the empirically observed ratio of links to species; we 
denote this quantity by d, to suggest 'density of links per species'. Thus in our 
data d = 1.86 approximately. 

In stating these empirical generalizations, we have repeatedly emphasized that 
the range of variation in the total number of lumped species S among the webs 
collected by Briand is from 3 to 33. We cannot know whether these generalizations 
will continue to hold in webs with substantially larger S. The theory to be 
developed predicts that the scaling laws will continue to hold for larger S. 

The scaling laws just stated are all first-order laws that describe trends only. 
They neglect entirely variability with respect to the trends. We shall discuss 
variability briefly in connection with the cascade model of §6. 

A fourth empirical generalization plays a major role in attempts to explain the 
first three. Gallopin ( 1972, p. 266) observed that' directed food webs are in general 
acyclic, although exceptions are possible'. Cohen ( 1978, p. 57) found one case of 
cannibalism, but no larger cycles, in four webs. In the 62 webs of Briand, 
cannibalism was reported by very few of the original sources, and then only for 
one species in the web. Because cannibalism is widespread in nature, particularly 
among invertebrates, the original investigators must have largely, but not 
consistently, ignored cannibalism. Consequently, Briand chose to exclude all of the 
few reported cases of cannibalism (F. Briand, personal communication). 

To be precise in describing trophic cycles other than cannibalism, we now define 
(Robinson & Foulds 1980, pp. 24-25, 70) a walk in a digraph to be a finite sequence, 
consisting of vertices and edges alternately, beginning and ending with vertices, 
in which each edge goes from the vertex written on its left to the vertex written 
on its right. For example a, (a, b), b, (b, c), cis a walk from vertex a to vertex c 
through the edges (a, b) and (b, c). A walk in which the first vertex is the same as 
the last vertex is a closed walk. The length of a walk is the number of edges it 
contains, each counted as often as it occurs. A cycle is a closed walk in which all 
vertices are distinct except the first and last. If two cycles pass through the same 
set of vertices in the same order, differing only in the vertex that is written down 
first, the two cycles are considered to be identical. A k-cycle is a cycle of length 
k > 0. (If cannibalism is excluded, then 1-cycles are impossible. However, it will 
sometimes be convenient later to consider the possibility of a directed edge from 
a vertex to itself, that is, an 1-cycle or loop.) Fork> 0, a digraph is k-acyclic if 
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it contains no h-cycles, for h = 1, ... , k. A digraph is acyclic if it contains no k-cycles, 
for any k > 0. 

Ifwe use this language, all62 of Briand's webs are acyclic except cases 21 and 
30 (in the numbering of Briand (1983) where the unlumped matrices are given). 
Webs 21 and 30 each contain a single cycle of length 2, and no longer cycles 
(F. Briand, personal communication). We summarize the distribution of cycles in 
the webs assembled by Briand with a fourth empirical generalization: acyclicity. 

A cyclicity ( Gallopin 1 972) 

Nearly all webs are acyclic. 
It seems nearly certain that decomposers feed on what appear as top species and 

are food for what appear as basal species. The absence of cycles of length greater 
than 2 implies that the reporters of webs ignore the decomposers. Therefore we 
cannot examine the ecological role of decomposers with these data. 

3. MODEL 0: ANARCHY 

We shall say that a random variable Y is Bernoulli with parameter p, and shall 
write Y ~ B(p), for 0 ~ p ~ 1, if Y = 1 with probability p and Y = 0 with 
probability q = 1-p. (In our notation, ~means 'has the distribution of' or 
'distributed as' rather than 'asymptotically or approximately equals'.) We shall 
say that a random matrix X is independently and identically distributed (i.i.d.) 
Bernoulli with parameter p, and shall write X~ i.i.d. B(p), if every element Xij 
of X is~ B(p), and all elements of X are i.i.d. (Since p is assumed constant for 
all elements of the matrix, the additional requirement that they be identically 
distributed is redundant, but is retained to accord with convention.) 

Suppose A, the S x S adjacency matrix of a model web, were ~ i.i.d. B(p ). Then 
E(L) = pS2 • However, according to the link-species scaling law, L = dS. These two 
equations are simultaneously satisfied (with E(L) = L) if p = djS. To avoid 
confusing the empirical estimate of density d with a model parameter, we shall 
specify pin all of our models as cjS. The relation between the model parameter 
c and the sample statistic d will vary from model to model. 

Suppose that each species in a web of S species has an identical and independent 
chance p of eating any species, including itself, in the web, where, as the number 
S of species increases, the probability p decreases according to cj S, that is, let 
A~ i.i.d. B(cjS) for S ~c. 

We now analyse the properties of model 0 and compare them with the empirical 
generalizations above, using d = 1.86 as an estimator for c. 

Species scaling 

The probability that a species is a top species is q8 , and this is also the probability 
that a species is a basal species. Thus 

E(T)jS = E(B)jS = q8 = (1-cjS) 8 (3.1) 

is the expected fraction of species that are top species in a web of S species, and 
also the expected fraction of species that are basal species. Thus model 0 predicts 
that the fractions of top and basal species should be equal. 

Similarly, the probability that a species is a proper top species is q8 (1-q8 --1 ), 
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and this is also the probability that a species is a proper basal species. Thus model 
0 predicts that the fractions of proper top and proper basal species should be equal. 

This prediction is only roughly consistent with the empirical observation that 
0.19 of species are basal and 0.29 of species are top. However, like Pimm (1982), 
we believe that ecologists often are more interested in species at the top of food 
chains than in species at the bottom. If other predictions of the model turned out 
to be correct, we would be prepared to accept the model's prediction that in 
properly collected data, the expected fractions of top and of basal species are equal. 

The right member of (3.1) increases monotonically and becomes close to the 
limiting value 

lim8 _..
00 

E(T)/S = lim8 _..
00 

E(B)jS = e-c (3.2) 

even for moderate values of S. For example, (1-d/10)1° = 0.13 and (1-d/20)20 = 
0.14 while e-a = 0.16. Thus model 0 predicts that the fractions of top, basal and 
intermediate species should be very nearly independent of the numberS of species 
in the web. The same conclusion applies to the asymptotic fractions of proper top 
and proper basal species, which are both equal to e-a_e-2a. The predicted change 
in these proportions for S between 3 and 33 would probably be undetectably small, 
given the variation among webs in the observed proportions (Briand & Cohen 
1984)-

While model 0 explains the qualitative part of the species scaling law, its 
predicted asymptotic fractions of top and basal species seem too low to explain 
the quantitative part of the species scaling law. The predicted asymptotic fraction 
0.16 is substantially lower than the fraction 0.26 estimated above. The predicted 
asymptotic ratio of the expected number of proper top or proper basal species to 
the expected number of non-isolated species, given by [e-c- e-2c]/[1-e-2c], is 0.14, 
further still from the estimated fraction 0.26. 

In going from the proportions of top or basal species to the proportions of proper 
top or proper basal species, the term involved in the corrections, e-2c = 0.024, is 
small compared with the terms being corrected, given the observed ratio 1.86 of 
links to species, and appears in both numerator and denominator. When the 
proportions of top and basal species are corrected to the proportions of proper top 
and proper basal species, they decrease slightly. This slight decrease holds in the 
remaining models as well. For this reason, we shall not discuss proper top or proper 
basal species further until we come to model 3. 

Link scaling 

We skip the analysis of link scaling because model 0 will be evaluated on other 
grounds. 

Species-link scaling 

The assumed behaviour of p as a function of S is chosen to reproduce the 
observed species-link scaling. 

A cyclicity 

Although model 0 predicts that about 84% (that is, a fraction 1-e-d) of webs 
will display cannibalism, model 0 should not be rejected on this basis because 
cannibalism has been suppressed from the data. However, according to theorem 1 
below, model 0 also predicts that about 82% (that is, a fraction 1-e-a•;2 ) of webs 
will have one or more 2-cycles, which is grossly contrary to observation. 
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Effect of lumping 

According to model 0, it could happen that, for some i < j, column i is identical 
to column j and row i is identical to row j. In this case, if the simulated matrix 
were to be treated in the same way as the real data were treated, species i and 
j should be lumped. Our analysis so far has ignored the possible need to lump 
species in the simulated webs. We now show that the probability of needing to 
lump two non-isolated simulated species according to model 0 is so small that it 
is perfectly reasonable to ignore lumping, given the observed ratio 1.86 of links 
to (lumped) species. 

Choose i < j. Define P (lump i and j) to be the probability that, in a matrix A 
with entries ahk generated by model 0, column i equals columnj and row i equals 
row j. Similarly, define P (lump non-isolated i and j) to be the probability that, 
in a matrix A generated by model 0, column i equals columnj, row i equals row 
j, and column i or row i or both are not all zero. The 48-4 entries in the two 
columns and rows consist of 2(8-2) pairs of entries and one quartet of entries 
(aii, aii• aii• a11 ). To lump species i andj, we require that the two entries of each 
pair be equal and the four entries in the quartet be equal. Hence P (lump i and 
j) = (p2+q2)2S-4(p4+q4), and P (lump non-isolated i and j) = P (lump i and 
j)- P (i andj are isolated)= (p2 +q2)28- 4(p4 +q4 ) -q48- 4 • The expected fraction of 
species that are non-isolated but lost by lumping is then less than or equal to 

s j 

(1/8) I; I; P (lump non-isolated i andj) 
j=2 i=l 

which, as 8 increases, approaches c2e-4c = 0.002 when c = 1.86. Thus the expected 
fraction of non-isolated vertices of a random web generated according to model 0 
that should be lumped is negligible, so we do not correct the previous calculations 
for lumping. 

Effect of disconnected weak components 

All reported webs are weakly connected in the sense that the set of species cannot 
be divided into two non-empty subsets with no link between the two subsets. (The 
adjective 'weak' allows for the possibility that the linkage might be in one 
direction only.) A weak component is a maximal set of vertices (species) that is 
weakly connected. Thus all reported webs have only a single weak component. We 
now show that the expected fraction of non-isolated species that belong to a single 
weak component according to model 0 is asymptotically so close to 1 that it is 
reasonable to ignore the effect of disconnected weak components, given d = 1.86. 

According to Erdos & Renyi (I g6o, p. 56, theorem 9 b), the fraction of all species 
(including isolated species) that belong to the largest weak component of a web 
is asymptotically 

00 

1- (2c)-1 I; kk-1(2ce--2c)k /k l. 
k=l 

(3.4) 
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Hence the fraction of all species that are not isolated and do not belong to the 
largest weak component is 

00 00 

(2ct1 I; kk-1(2ce-2c)k/k!-e-2c = (2c)-1 I; kk-1(2ce- 2c)kjk! (3.5) 
k-1 k=2 

which is approximately 0.002 when c = 1.86. Thus 99.8% of the non-isolated 
species of a random web generated according to model 0 belong to a single weak 
component, so we do not correct the previous calculations for disconnected 
components. 

In summary, model 0 can explain roughly the observed scale-invariance in the 
proportion of top, intermediate and basal species and the numerical similarity in 
the proportions of top and basal species. But it predicts fractions of top and basal 
species that are too low and fractions of food webs with cycles that are far too high. 

4. MODEL 1: FINITELY ACYCLIC DEMOCRACY 

The most straightforward way to eliminate the problem of too many cycles is 
by assumption. We start with the weakest assumption that is a priori plausible. 

Suppose there is a finite positive integer k and a finite positive real number c 
such that, for S ;;::: c, the adjacency matrix A of a web with S species is ,..., i.i.d. 
B(c/S), conditional on A being k-acyclic. 

Biologically, this model assumes that any species can eat any species with equal 
probability c/ S provided that, in the resulting feeding relations, it never happens 
that species X eats species X (no 1-cycles), nor that species X eats species Y and 
species Yeats species X (no 2-cycles), nor that species X eats species Y, species 
Yeats species Z and species Z eats species X (no 3-cycles), nor that there are any 
cycles of length up to and including k, which is fixed and independent of S. 

One way to simulate this model would be to generate Bernoulli matrices 
according to model 0 and then throw away those matrices A in which the trace (sum 
of the diagonal elements) of A +A 2 + ... + A k exceeds 0. 

Before considering general k, we consider the special case of 1-acyclic democracy. 

1-acyclic democracy 

To generate an S x S Bernoulli matrix A with parameter cjS, conditional on no 
cannibalism (no 1-cycles), set the diagonal elements of A equal to 0 with 
probability 1. The off-diagonal elements of A are to be filled with independent 
random variables,..., B(cjS) as before. Then E(L) = (c/S)S(S-1). Since the species
link scaling law gives L = dS, we can estimate c by c = dS / (S -1 ), which approaches 
d for large S but is larger than d for finite S. 

The probability that a species is a top species is q8 -1, where q = 1-cjS, and this 
is also the probability that a species is a basal species. Thus 

E(T)/S = E(B)jS = q8 - 1 = (1-dj[S-1])s-1 (4.1) 

is the expected fraction of species that are top species in a web of S species, and 
also the fraction of species that are basal species. This model predicts that the 
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fractions of top and basal species should be equal. The asymptotic behaviour of 
E(T)/ S andE(B)/S for large Sis identical to that in (3.2) for model 0. The predicted 
asymptotic fractions of top and basal species are too low to accord well with 
observation. 

Awebwillhavea2-cycleifthereexistindicesi,j =I isuch thataij = 1 andaji = 1. 
For a given i and j, the probability that there is a 2-cycle through i and j is p 2, 
so the probability that there is no 2-cycle through i andj is 1-p2 • The probability 
that there is no 2-cycle in the entire web is 

(1-p2)S(S-1)/2 = (1-{dj[S-1]}2)S(S-1)/2_..e-d2/2 = 0.18 (4.2) 

so that about 82% of such model webs would have at least one 2-cycle. This 
proportion is grossly too high and we are forced to abandon 1-acyclic democracy 
as unrealistic. 

The calculated asymptotic fraction e-c of webs under model 0 (anarchy) that 
have no 1-cycles may be multiplied by the calculated asymptotic fraction e-c'/2 

of webs under 1-acyclic democracy that have no 2-cycles to give the predicted 
asymptotic fraction e-c-c'f2 of webs under model 0 that are 2-acyclic, that is, have 
neither 1-cycles nor 2-cycles, because under model 0 the diagonal elements of the 
adjacency matrix are independent of the off-diagonal elements. 

k-Acyclic democracy: the general case 

From the perhaps surprising finding that the predicted asymptotic fraction of 
top or basal species is e-c under the anarchy model as under the model of 1-acyclic 
democracy, one might conjecture that the proportion is the same under the k-acyclic 
democracy model, for any finite k > 0. From the formula e-c-c'/2 for the asymptotic 
fraction of webs under model 0 that are 2-acyclic, and from the analogous formulas 
for undirected graphs of Erdos & Renyi (r96o), one might conjecture that the 
asymptotic proportion of k-acyclic digraphs under model 0 is exp (- '5:.~_ 1 ch jh). 
The following theorem and corollary establish that both of these conjectures are 
correct. 

THEOREM 1. Suppose that for some c ~ 0 and for S ~ c, the adjacency matrix A 
of a web with S species is "'i.i.d. B(cjS). (This is model 0.) Let Mk(S) be the number 
of distinct k-cycles in the web, k = 1, 2, ... , S, and let Y(S) be the number of prey 
species of species 1, that is, the sum of column 1 of A. Let M(S) = L.~ _1 Mh (S) be 
the total number of distinct cycles in A. Then for any k ~ 0, the random vector ( Y(S), 
M 1(S), ... , Mk(S)) (which is interpreted as the scalar Y(S) if k = 0) converges in 
distribution as S-+ oo to a random vector with independent Poisson-distributed 
components with mean (c, c, c2/2, c3/3, ... , ckjk), that is, for any non-negative 
integers y, m 1 , •.• , mk, 

lim8 __, 00 P(Y(S) = y, M 1(S) = m 1 , •• • , Mk(S) = mk) 
k 

=e-c[cYjy!]IT {e-<ch/hl[(chjh)mh]jmh!}. (4.3) 
h-1 

For 0 ~ c < 1, (Y(S), M(S)) converges in distribution asS-+ oo to a bivariate random 
vector with independent Poisson-distributed components with mean ( c, -ln ( 1 -c)). 
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CoROLLARY. Under the above assumptions ,for any c ~ 0 and any k ~ 1, asS-+ oo 

(4.4) 

The left member of (4.4) is the probability that species 1 has y prey in the model of 
k-acyclic democracy. For 0 .:::;; c < 1, the asymptotic probability that species 1 has y prey 
in an acyclic web is also Poisson, that is, 

P( Y(S) = yJM(S) = 0)-+e-c[cY jy!]. (4.5) 

The corollary follows immediately from theorem 1 and the definition of condi
tional probability. The proof of theorem 1 is deferred to appendix 1. 

The corollary (withy= 0) implies that, in the model of k-acyclic democracy, the 
fraction of species with no predators, and the fraction of species with no prey, both 
approach e-c as 8-+ oo. The mean number of species on which a given species preys, 
and the mean number of species that prey on a given species, both approach c. 

In summary, for fixed finite k, the model of k-acyclic democracy predicts that 
the expected fractions of top and basal species are equal and, asymptotically for 
large num hers S of species in a web, independent of S. These predictions are roughly 
consistent with the data. The model also predicts that the numerical value of this 
asymptotic fraction should be lower than that observed. However, in concluding 
that this discrepancy exists, we are assuming that it is appropriate to use the ratio 
d = 1.86 oflinks to species, observed in the finite range of S from 3 to 33, to estimate 
the asymptotic effective density of links c. 

5. MODEL 2: ACYCLIC DEMOCRACY 

Excluding cycles up to any fixed finite order k, as in model1, might be 
qualitatively different, in the limit of large S, from excluding cycles of all lengths 
in the limit of large S. To investigate this possibility, we have partly analysed the 
next model. 

Suppose there is a finite positive real number c such that, for S ~ c, the adjacency 
matrix A of a web with S species is "'i.i.d. B(cj S), conditional on A being acyclic. 

Biologically, this model assumes that any species can eat any species with equal 
probability cj S, provided that, in the resulting feeding relations, it never happens 
that species X eats species X (no 1-cycles), nor that species X eats species Y and 
species Yeats species X (no 2-cycles), nor that species X eats species Y, species 
Yeats species Z and species Z eats species X (no 3-cycles), and so on, excluding 
all cycles of length up to and including S. 

The theoretical results available to us so far require us to discuss separately two 
cases: 0 .:::;; c < 1, and 1 .:::;; c. 

In the first case, (4.5) implies that the fractions of top and basal species are equal 
and, asymptotically for large S, independent of S. These predictions are roughly 
consistent with the data. However, since the expected value of the observed 
density d must be no larger than the model parameter c, and since d > 1, this first 
case is not of empirical interest, given our data. 

In the second case, 1 .:::;; c, we have so far no exact results concerning the 
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asymptotic proportions of top and of basal species. By symmetry these proportions 
must be equal. The results of our numerical investigations, which we will now 
describe, can be interpreted to be consistent with the conjecture that, for S ~ c, 
the fraction of top species and the fraction of basal species both approach e-a•, 
where d* is the asymptotic (large S) effective density of links. We know that this 
is also the case when c < 1 since then d* =c. However, when c > 1, we have no 
theory so far that permits us to compute c from d* or vice versa. 

To estimate the fractions of zero rows and of zero columns according to model 2, 
we have resorted to simulation, settling at last on the third of three approaches 
described in appendix 2. This approach to simulation, which is actually a slight 
modification of model 2, guarantees that the model parameter c equals the 
asymptotic ratio d* of links to species. For S = 10 and S = 20, and for each value 
of c = 0.5(0.5)4.0 (an abbreviation for the sequence of numbers 0.5, 1.0, 1.5, ... , 
4.0), table 2 compares the simulated mean fractions of zero rows and of zero 
columns in 100 acyclic matrices with the conjectured asymptotic fraction e-c. For 
the lower values of c, the agreement between the sampled fractions of zero rows 
or columns and e-c is excellent. For the larger values of c, e-c falls more rapidly 
than the sampled fractions of zero rows or columns. For large c, the difference 
between e-c and the sampled fraction of zero rows or columns is slightly smaller 
for S = 20 than for S = 10. 

TABLE 2. THE SIMULATED MEAN FRACTIONS OF ZERO ROWS OR ZERO COLUMNS IN 

100 ACYCLIC S X S MATRICES WITH EXACTLY Sc POSITIVE ELEMENTS, GENER

ATED BY THE THIRD APPROACH (APPENDIX 2) TO SIMULATING MODEL 2, AND THE 

FRACTIONS PREDICTED BY THE ASYMPTOTIC FUNCTION e-·d• CON;JECTURED IN 

(5.1) AND BY THE FUNCTION (6.2a) (WITH C REPLACED BY 2c) DERIVED FOR 

MOD.EL 3, THE CASCADE MODJ<JL 

8= 10 predictions 8 = 20 
c rows columns exp(-c) model3 rows columns 

0.5 0.5854 0.5974 0.6065 0.6321 0.5959 0.5962 
1.0 0.3500 0.3494 0.3679 0.4323 0.3644 0.3600 
1.5 0.2313 0.2445 0.2231 0.3167 0.2341 0.2470 
2.0 0.1669 0.1769 0.1353 0.2454 0.1585 0.1642 
2.5 0.1620 0.1232 0.0821 0.1987 0.1522 0.1332 
3.0 0.1318 0.1042 0.0498 0.1663 0.1121 0.1142 
3.5 0.1147 0.1056 0.0302 0.1427 0.0959 0.1133 
4.0 0.1032 0.1000 0.0183 0.1250 0.0859 0.0820 

For S = 10, the standard deviation (computed from the numerical simulation) 
of the proportion of zero rows (in a single matrix, not in the mean proportion) at 
first increases with increasing c and then declines slowly from a maximum of 
approximately 0.09 when c = 1 to a minimum of approximately 0.02 when c = 4. 
Since 100 matrices were generated, the standard deviation of the simulated mean 
proportions given in table 2 is one-tenth as large, that is, not exceeding 0.01. The 
standard deviations when S = 20 are similar, and the same conclusion applies. 
Thus the difference in table 2 between the sampled proportion of zero columns or 
rows and e-c = e-a• for the larger values of c appears to be real. 
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If this difference approaches 0 as S--+ oo, then we may conjecture, pending 
further theoretical progress, that in model 2, 

lim8 _,.
00 

E(T)j 8 = lim8 _,.
00 

E(B)j S = e-a•. (5.1) 

If this is so, then, like models 0 and 1, model2 can explain roughly the observed 
scale-in variance in the proportion of top, intermediate and basal species and the 
numerical similarity in the proportions of top and basal species. But it predicts 
fractions of top and basal species that are too low according to the conjecture (5.1), 
and that are too low (according to our simulations) even for S = 10 (in table 2, 
c = 2.0 gives a fraction of 0 rows near 0.17, lower than the estimate from data of 
0.26). 

6. MODEL 3: CASCADE 

Many biologists might be reassured by the failure of the models considered so 
far because these models make the biologically implausible assumption that any 
species is capable, in principle, of eating any other species. These models assume 
that it is only a matter of chance that the grass does not eat the cow, nor the lamb 
the wolf. Yet it is not absurd to consider such models. It is a healthy discipline 
to require that they be rejected by quantitative data and not by 'intuitions' that 
are often wrong. 

Now that the previous models have been rejected for their quantitative failures, 
we must abandon the assumption that each species could potentially eat any other, 
while imposing the least possible additional structure. We shall do so by noticing 
an important feature of acyclic matrices. 

An S x S matrix A is called strictly upper triangular if aij = 0 whenever i ?: j. This 
means that the main diagonal and all matrix elements below the main diagonal 
are zero; the non-zero elements of A, if any, lie strictly above the main diagonal. 
For brevity, we shall henceforth call such a matrix triangular. 

If the adjacency matrix of a web with S species is triangular, the species labelled 
1 can potentially be eaten by any species other than itself, but can eat none. The 
second species can potentially be eaten by the species labelled 3 to S, but can eat 
only species 1. And so on: the species labelled S can potentially eat all the other 
species, but can be eaten by none of them. Thus a triangular adjacency matrix 
describes a strict trophic hierarchy or cascade. 

A digraph is acyclic if and only if its vertices can be numbered in such a way 
that its adjacency matrix is triangular (for example, Robinson & Foulds 1980, 
p. 176). Thus the adjacency matrix A of a web is acyclic if and only if some 
permutation, applied to both rows and columns of A, changes the matrix to 
triangular form. Model 2 can be interpreted as saying that the luck of the draw 
determines which species eat which others, provided that, when all is done, the 
species can be arranged in a cascade. The order of species in the cascade is 
determined (non-uniquely) after the trophic links are chosen. 

We now suppose that the order of species in the cascade is determined before 
the trophic links are chosen. 

Suppose there is a finite positive real number c such that, for S ?: c, the elements 
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above the main diagonal of the adjacency matrix A are~ i.i.d. B(ciS), while the 
elements on or below the main diagonal are fixed with probability 1 at 0. 

THEOREM 2. Suppose that for some c ~ 0 and for S ~ c, the adjacency matrix A of 
a web with S species is triangular, with the elements above the main diagonal ~ i.i.d. 
B(ciS). (This is model 3.) Let T be the number of zero rows (top species) and B be 
the number of zero columns (basal species) in A. Then, with p =ciS, q = 1-p, 

Asymptotically, 

E(T) = E(B) = [1-q8 Jip, 

var (T) = var (B)= (1-q8 )1p- (1-q2S)I(1-q2). 

lim8 _'"'XJ E(T)IS = lim8 _,_ 00 E(B)IS = (1lc) (1-e-c), 

lim8 _,_ 00 var (TIS) = lims-+oo var (B IS) = 0. 

(6.1a) 

(6.1b) 

(6.2a) 

(6.2b) 

If Tp is the number of proper top species, Bp is the number of proper basal species, 
N is the number of not isolated species, and I is the number of intermediate species, 
then 

and asymptotically 

E(Tp) = E(Bp) = 8[(1-qs)lc-qS-1], 

E(I) = S[1-2(1-q8 )1c+qs-1], 

E(N) = S(1-q8 - 1), 

lims-+oo E(T p)l E(N) = lims-+oo E(Bp)l E(N) = {[1-e-c]lc-e-c}l[1-e-c], 

lim8 _,_
00 

E(I)I E(N) = {1- (2lc) [ 1-e-c] + e-c}l[l- e-c]. 

(6.3a) 

(6.3b) 

(6.3c) 

(6.4a) 

(6.4b) 

For large c, e-c is nearly zero so the asymptotic fraction of top or proper top or basal 
or proper basal species approaches 11c. Also, the total number L of trophic links is 
binomially distributed with mean and variance 

E(L) = pS(S-1)12 = c(S-1)12, } 

var (L) = pqS(S-1)12 = c(S-c) (S-1)1(28), 

and the numbers of links of each kind have means 

E(LBI) = E(LIT) = (S-1) (1 +q8 - 1)-(1+q) (1-qS-1)Ip, 

E(LBT) = (1-qS-1)Ip-(S-1)qS-1, 

E(L11 ) = pS(S-1)12- (S-1) (2+q8 - 1) + (1-q8 - 1) (1 +2q)lp. 

Asymptotically, as S-+ oo, 

E(LB1 )1 E(L), E(LIT)I E(L) -+2[c(1 +e-c) -2(1-e-c)]lc2 , 

E(LBT)I E(L)-+2[1-e-c -ce-c]lc2 , 

E(Lu )I E(L)-+ 1-2[c(2 +e-c)- 3(1-e-c)Jic2 • 

(6.5) 

(6.6a) 

(6.6b) 

(6.6c) 

(6.7a) 

(6.7b) 

(6.7c) 

Proof. Only elementary calculations are required, noting that the probability that 
species i is basal is qi- 1 , the probability that species i is top is q8 -i, the probability 
that species i is proper top is qS-i- q8 - 1, the probability that species i is 
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proper basal is qi-1 - q8 - 1, the probability that species i is intermediate is 
1-qi-1-q8-i+q8-\ and the probability that species i is not isolated is 1-q8 - 1. 

Also, s 1-1 
E(LBI) = p ~ ~ qi-1(1-qS-1), 

1-2i-1 

s 1-1 
E(LBT) = p ~ ~ qi-1qS-1, 

J-2 i-1 

s 1-1 
E(LrT) = p ~ ~ (1-qi-1)qs-1, 

j-2 i-1 

s 1-1 
E(Lu) = p ~ ~ (1-qi-1 ) (1-qS-1). 

1-2 i-1 

(6.8) 

• 
When (6.5) is solved for p and E(L) is replaced by the observed number of links, 

it becomes apparent that p is what ecologists call the (lower) connectance (F. 
Briand, personal communication). 

To compare the predictions of model 3 with observation requires an estimate 
of c. From (6.5), 

c = 2E(L)/(S-1). (6.9) 

For a single finiteS, replacing E(L) by the total number of links, we estimate c 
as twice the total number of links divided by S-1. However, for a single value 
of c common to all webs, we use an asymptotic estimate. Asymptotically, asS~ oo, 
the link scaling law indicates that Lis dS, and S / (S -1) ~ 1 as S ~ oo, so that c 
is estimated as 2d = 3. 72. We now examine the macroscopic predictions of model 3, 
using this single estimate of c = 3.72. We shall review the scaling laws stated in 
section 2. 

Species scaling 

Figure 1 shows the predicted mean proportion of top species and a confidence 
interval of± 2 standard deviations as a function of S, using (6.1) with a single value 
of c = 3.72, superimposed on the data of Briand & Cohen (1984). Figure 2 shows 
the same for basal species. 

The predicted mean proportion of top or of basal species changes so slowly in 
the observed range of S as to defy discrimination from constancy. According to 
(6.1) with c = 3.72, model 3 predicts the mean and variance in the proportion of 
top species to be (with identical results for basal species) as shown in table 3. Thus 
model 3 reproduces qualitatively the species scaling law. 

Quantitatively, model 3 predicts asymptotic proportions of basal, intermediate 
and top species equal to 0.26, 0.48, and 0.26. (By using the remark after (6.4), we 
can easily see why the predicted proportion of top species is near one quarter. 
Because e-3 ·72 = 0.024, the fraction of top species is predicted to be slightly greater 
than one quarter.) The observed proportions are 0.19, 0.53, and 0.29. As we 
suggested above, if observer bias has lowered the fraction of basal species, a 
plausible estimate of the proportion of top and of basal species is 0.26, exactly as 
predicted by model 3. Thus the quantitative agreement between the predicted 
asymptotic mean and the observed mean is good. The model predicts a decrease 
in the standard deviation that is suggested by the data on basal species but that 
is not observed in the data on top species. 
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FIGURE 1. The predicted mea.n proportion of top species (middle line) and a. confidence interval 
of± 2 standard deviations (upper and lower lines) as a function of total species S, according 
to the cascade model. In this figure and figure 2, x is constant environment, o is fluctuating 
environment. The symbols x and o have been perturbed from their exact locations by 
a small random amount to indicate when several food webs have exactly the same 
coordinate. The data are replotted from Briand & Cohen (1984). 

In summary, model 3 predicts the form and the parameter value of the species 
scaling law. It is only partly successful in explaining the variation with respect 
to the species scaling law. 

We now show that models 0 and 1, and perhaps 2 (if conjecture (5.1) is valid), 
predict asymptotic fractions of top or basal species that are lower than those 
predicted by model 3. From (3.2), (4.4) and (6.2a), we must establish that for any 
non-negative c (for example, c = 1.86), e-c ~ (1-e-2c)/(2c). We use 2c in place of 
con the right of (6.2a) so that, asymptotically, models 0, 1 and 3 will all have the 
same effective density d* of links. The inequality is equivalent to the inequality 
c ~ (ec-e-c)/2, which is easily proved by noting that both sides approach 0 when 
c ~ 0 and by comparing derivatives of both sides with respect to c. 

This inequality raises a question. In table 2, the simulated fractions of top and 
basal speciesexceedse-c. We have just shown that (1-e-2c)/(2c) exceedse-c. Might 
not (1-e-2c)/(2c), shown in table 2 under the column headed 'predictions, 
model 3 ', be a better description of the simulated fractions of top and basal species 
in model 2 than e-d*? Table 2 gives a weak hint that this may not be the case. 
Though, for c = 4.0, the simulated fractions of top and basal species are near those 
predicted by model 3, asS increases from 10 to 20 the simulated fractions move 
slightly away from (1-e-2c)/(2c) and towards e-c. 
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FIGURE 2. The predicted mean proportion of basal species (middle line) and a confidence interval 
of ± 2 standard deviations (upper and lower lines) as a function of total species S, according 
to the cascade model. The symbols and source of data are as in figure 1. 

TABLE 3. PREDICTED MEAN AND VARIANCE IN THE PROPORTION OF TOP SPECIES, 

ACCORDING TO MODEL 3 

s E(T)/S [var(T/S)]i 

5 0.269 0.104 
15 0.265 0.086 
25 0.264 0.069 
35 0.264 0.059 
00 0.262 0 

Link scaling 

Figure 3 shows the ratio of the expected number of links of each kind to the 
expected totalnumberoflinks, based on (6.5) and (6.6) withe= 3.72, forSbetween 
4 and 40. For S > 10, the ratios are effectively constant. For S,;:; 10, the predicted 
curves for E(LBI)/ E(L) and E(LIT)/ E(L) reproduce the suggestion of a decline in 
the observed values of LBI/ Lin figure 2a of Cohen & Briand (1984) and in the 
observed values of LIT/Lin figure 2d of Cohen & Briand (1984). The predicted 
increase in E(LIT)/E(L) might even be reflected in the data of their figure 2c. 
However, few of the real webs had 10 or fewer species, so these suggestions from 
the data are very weak. Overall, the qualitative predictions of model 3 are 
consistent with the qualitative link scaling law. 

Quantitatively, model 3 predicts the asymptotic proportions of each kind of 
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FIGURE 3. The predicted ratio of the expected number of links of each kind to the expected total 
number oflinks, according to the cascade model with c = 3.72, for total numbers of species 
S = 4(2)40. For S > 10, the ratios change little. 

TABLE 4. OBSERVED PROPORTIONS OF EACH KIND OF LINK, AND ASYMPTOTIC 

PREDICTED PROPORTIONS ACCORDING TO MODEL 3 

type of link 

basal-intermediate 
basal-top 
intermediate-intermediate 
intermediate-top 

observed 
proportion 

0.27 
0.08 
0.30 
0.35 

predicted proportion from 
(6.7) with c = 3.72 

0.27 
0.13 
0.33 
0.27 

link shown in table 4. The principal discrepancy between the data and the model 
is that fewer basal-top links and more intermediate-top links are observed than 
predicted. 

Link-species scaling 

That model 3 correctly predicts the qualitative relation between total links and 
total species follows from (6.5). Quantitative agreement is guaranteed by the choice 
of c = 3.72. 

A cyclicity 

Acyclicity is guaranteed by making the adjacency matrices triangular. 
In summary, model 3 correctly predicts the qualitative species scaling and link 

scaling laws in webs with more than a handful of species. Quantitatively, model3 
also predicts, to a first approximation, the observed proportions of basal, 
intermediate and top species and the observed proportions of each kind of link. 
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Sensitivity analysis 

We are sceptical about the completeness of observation of trophic links, 
especially those that involve what are currently described as basal species. If 
moderately more trophic links were observed, would our quantitative predictions 
be radically altered? If so, the present quantitative estimates of model 3 are 
approximately right for the wrong reason, namely, that the effective density of 
links happened to be low. Thus it is important to know how the predicted 
asymptotic proportions of species and of links of each kind vary as c varies in the 
neighbourhood of its estimated value 3.72. 

Figure 4 plots the predicted asymptotic proportions of basal, top, proper basal, 
proper top, and intermediate species among all non-isolated species, based on (6.2) 
and (6.4), as a function of c = 0.5(0.5)10. As c increases from 3.5 to 4.5, the 
predicted asymptotic proportions of proper basal or proper top species declines 
from 0.25 to 0.21 while the predicted asymptotic proportion of intermediate species 
among non-isolated species increases from 0.49 to 0.58. Neither range of variation 
seems incompatible with the data. 

Figure 5 plots the predicted asymptotic proportions of links of each kind, based 
on (6.7), as a function of c = 0.5(0.5)10. As c increases from 3.5 to 4.5, the predicted 
asymptotic proportions of basal-intermediate or intermediate-top links declines 
from 0.27 to 0.25, the proportion of basal-top links declines from 0.14 to 0.09, and 

0.8 

intermediate species 

0.6 

0.2 

0 2 4 c 
6 8 10 

FIGURE 4. The predicted asymptotic proportions of basal, proper basal, top, proper top, and 
intermediate species, as a fraction of non-isolated species, according to the cascade model, 
fore= 0.5(0.5)10. Because basal and top species are plotted here as a fraction of non-isolated 
species, the sU:m of proportions (basal+ intermediate+ top) exceeds 1. The excess over 1 is 
small once c > 3. The sum of proportions (proper basal+ intermediate+ proper top) equals 1. 
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FIGURE 5. The predicted asymptotic proportions of links of each kind, according to the cascade 
model, for c = 0.5(0.5)10. 

the proportion of intermediate-intermediate links increases from 0.31 to 0.40. Such 
changes improve the agreement between the observed and predicted proportions 
of basal-top links but worsen the agreement between the observed and the 
predicted proportions of the remaining classes of links. However, the changes in 
the predicted asymptotic proportions are not very radical in any case. In 
particular, the estimate of c = 3.72 happens to fall very near where the curve for 
basal-intermediate and intermediate-top links is flattest. 

We conclude that the predicted asymptotic proportions of species and links of 
each kind are not so sensitive to the exact value of the observed ratio of links to 
species as to exclude the possibility of a somewhat greater effective density oflinks. 

Lumping 

Would lumping substantially alter the number of species and hence the propor
tions of interest in the cascade model? The same approach used to analyse lumping 
in model 0 shows that, fori <j, P(lump i andj) = (1-2pq)S+i-1- 1q2<J-i)-l while 
P(lump non-isolated i and j) = (1-2pq)S+i-1- 1q2<J-i)-l_qz<S-l)- 1 • The expected 
fraction of species that are not isolated and lost by lumping is then less than or 
equal to 

s J 
(1/S) ~ ~ P (lump non-isolated i andj) 

}~2 i~l 

= (q28- 3 j[Sr]) l(S-1) (1 +r)8 - 1 -{(1 +r) 8 - 1 -1}jr-S(S-1) r/2], (6.10) 

where r = (pjq) 2 • As s---_.oo, (6.10) approaches c2e-2C/3 = 0.003 when c = 3.72. In 
model 3 as in model 0, the effect of lumping non-isolated species is negligible. 



Food webs: stochastic models and data 441 

Effect of disconnected components 

The effect of weak components is essentially identical in models 0 and 3. The 
calculation based on (3.4) remains the same, with the parameter c of (3.4) still 
estimated by d = 1.86 rather than by 2d. As in model 0, asymptotically all but a 
negligible fraction of species belong to the largest weak component. 

So far, we have taken cas exogenously determined, for example, by the feeding 
apparatus or behavioural flexibility of species, and have attempted to predict other 
structural features of webs from that parameter. Why might c assume a value in 
the vicinity of3.72? Figure 5 shows that c = 3.72 is in the range around 2.69 where 
the predicted asymptotic proportions of basal-intermediate and intermediate-top 
species are maximal. It is tempting to speculate, but without theoretical or 
additional empirical support at the moment, that the effective density of links is 
adjusted to maximize the proportion of links between basal and intermediate 
species, and between intermediate and top species. 

7. CONCLUSIONS 

In this section, we shall first summarize the conclusions we draw from the four 
models we have considered. We then relate our results to some earlier efforts to 
model webs. Finally, we mention two important limitations on our results. 

Briand (r983), using 'unlumped' webs, first suggested, and Cohen & Briand 
(1984), using 'lumped' webs, demonstrated that the average total links of a web 
are nearly proportional to the total species of the web. Within the framework of 
the random digraph models considered here, this observation has the important 
implication that the probability of a given species eating or being eaten by another 
given species must vary as the reciprocal of the total number of species in the web. 
This has the further consequence that the number of predators or prey of a 
randomly chosen species is asymptotically independent of the total number of 
species in the web. 

The exclusion of cycles of finite lengths or of all lengths as S increases is 
insufficient to reproduce quantitatively the species scaling law, although an open 
mathematical question remains in the analysis of model 2. That question is: when 
c ~ 1, what is the asymptotic mean fraction of zero columns or of zero rows in a 
random S x S matrix whose elements are independently and identically distributed 
Bernoulli random variables with mean cj S, conditional on the matrix being 
acyclic? 

To explain the observed proportions of top and basal species, it appears to be 
necessary to suppose that there is an ordering, hierarchy, or cascade of species that 
constrains the possible predators and prey of each species. Under this assumption, 
it is possible to predict qualitatively, and to fair approximation quantitatively, 
the species scaling law and the link scaling law, by using a single parameter from 
the data, the ratio of total links to total species. 

In evaluating the quantitative discrepancies between the observed and predicted 
proportions of each kind of species and each kind of link, it is important to recall 
that no fitting is involved in generating the predicted proportions. The only 
numerical parameter taken from the data is the observed ratio of the total number 
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of links to the total number of species. In addition to its qualitatively correct 
predictions, model3 gives seven numbers for the price of one. (Of these seven, only 
five are independent: two of the three proportions of kinds of species, and three 
of the four proportions of kinds of links.) 

The gross testing presented here demonstrates that the overall proportions of 
species or links are consistent with the predictions of model 3. The following paper 
(Cohen et al. 1985) examines how well model 3 describes individual webs. 

Cohen ( r 978, pp. 58-61) considered six stochastic models of webs that are similar 
to those considered here. His model 6 models the adjacency matrix ('food web 
matrix') of a web with m prey and n predators by constructing an m X n matrix 
in which each element equals 1 with probability L' j(mn) and equals 0 with 
probability 1-L' j(mn), where L' is the observed number of links, independently 
for all elements. This model 6 is similar to model 0 here, but model 6 limits the 
number of prey to m and the number of predators to n. Model 0 here allows the 
adjacency matrix to be S x S so that the numbers of prey and predators are limited 
only by S. None of the models of Cohen (1978) rules out cycles (like our models 
1 and 2) or imposes a cascade structure (like our model 3). 

Lawlor (1978) observed that in randomly constructed matrix models of eco
systems, when the probability of a non-zero entry in the matrix is independent of 
the number of species, an overwhelming majority have 3-cycles if the number of 
species increases beyond 20 (contrary to his and others' informal observations that 
omch cycles are rare in real webs). However, when the probability of a non-zero 
entry varies inversely as the number of species (as we suppose in this paper, on 
the basis of the link-species scaling law), Lawlor found (without giving the details 
of the calculations) that the proportion of random matrix models without 3-cycles 
increases with increasing numbers of species. He concluded that the usefulness of 
'random' models of ecosystems depends critically on whether the models possess 
the specific structural patterns characteristic of real ecosystems. This conclusion 
we share. 

We are aware of at least two major limitations of the scope of the models and 
data we have investigated here. First, we have dealt only with the combinatorial 
structure of webs, rather than with quantities of stocks and flows. Our approach 
is more like gross anatomy than like physiology. Second, we have dealt only with 
a static snapshot of webs, ignoring cyclical, successional, or other changes. That 
is, the gross anatomy is frozen, rather than in motion. In spite of these important 
limitations, we have provided, in the cascade model, a unifying perspective of 
simplicity and potential usefulness. 

Frederic Briand and a referee provided extremely helpful comments and 
criticisms. Theorem 1 was originally derived in response to a question raised by 
Larry Schulman in a non-ecological context. J. E. C. acknowledges with thanks the 
John D. and Catherine T. MacArthur Foundation Fellows Program, U.S. National 
Science Foundation grant BSR84-07461, and the hospitality of Mr and Mrs 
William T. Golden. C. M. N. acknowledges the support of U.S. National Science 
Foundation grant MCS80-19384. 
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APPENDIX 1: PROOF OF THEOREM 1 

In this proof, we shall omit the explicit dependence on S where possible; for 
example, we replace Y(S) by Y, M(S) by M. Let c<kl be the set of possible distinct 
k-cycles. For s E c<kl, let B~k) = 1 if cycle s occurs in (the web specified by) the 
random adjacency matrix A, B~k) = 0 if s does not occur. Then the number of 
k-cycles in A is Mk = Mk(S) = ~sEc<k> B~kl. 

Since the random variables {ai 1}f~ 1 are independent with E(ai1 ) = cjS, it is a 
standard fact that Y converges in distribution to a Poisson variable with mean C. 

Let # (.)denote the cardinality (number of elements) of the set in parentheses. 
Then 

#(C<kl) = S!j[(S-k) !k], E(B~kl) = (cjS)k 

so that 
# (C<kl) E(B~kl) --+ck jk as S--+ oo. 

The random variables {B~kl} sEc<k> are non-decreasing functions of the independent 
elements {aij} of A and hence are associated. (Recall that a finite family {X1 , ... , 

Xn} of random variables is defined to be associated if cov (f(X1 , ... , Xn), g(X1 , ... , 

Xn)) ~ 0 for any real functions f and g that are coordinate-wise increasing.) A 
theorem independently discovered by Wood (r982) and Newman et al. (r984) (and 
stated as theorem 11 by Newman (r984)) then implies that Mk converges in 
distribution to a Poisson variable with mean ck / k, for c ~ 0, k ~ 1, provided that 

lims-+co ~ cov (B~k), B~~)) = 0, (A 1) 

where the summation extends over pairs s, s' E Q(k) such that s =I= s'. 
Similarly, according to theorem 10 of Newman (1984), which is taken from 

Newman (r98o), (4.3) holds if, in addition, 

lims-+co cov ( Y, Mh) = 0, 

lims-+co cov (Mh, Mj) = 0, 

for all c ~ 0 and all h, j such that 1 ~ h =I= j ~ k. 
So we must prove (A 1) and (A 2). 

(A2a) 

(A 2b) 

Fork= 1, as noted in the text, each B~k) is just an aii so that cov (aii' ajj) = 0 
for i =I= j and (A 1) holds. Also, for k = 1, cov (Y, M 1) = cov (aw all)= (c/S) 
(1-cjS) so that (A 2a) holds for h = 1. Similarly cov (M1 , Mj) = 0 for j =I= 1. We 
may henceforth assume k, h, j ~ 2. 

Unless the two cycles, sands' =I= s share some directed edge, B~k) and B~~l are 
independent. Similarly, ai1 and B~k) are independent unless the edge (i, 1) is ins. 
Since, fork> 1, all and B~k) are independent, 

s 
cov ( Y, Mk) = ~ ~ cov (ai1 , B~kl) 

i~l SEC(k) 
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where :2;' is over those cycles s that include the edge (2, 1 ). There are exactly 
(8-2) !j(S-2- (k-2))! such k-cycles. If i 1 = 2, i 2 = 1, i 3 , ..• , ik are the vertices 
of such a cycle, with ik+l = i 1 = 2, then 

k 

cov (a21 , B~k)) = cov(a21 , a 21 p aiiii+I) = (cj8)k-1 var (a21 ) = (cj8)k (1-c/8). 
J~2 

Thus 
cov ( Y, Mk) = [(S-1) !/(8-k) !] (cj8)k (1-c/8)--+0 as 8--+ oo, 

which proves (A 2a). 

(A 3) 

Suppose s is an h-cycle and s' is a j-cycle. Let fJ = (J(s, s') denote the number 
of edges shared in both sands'. Analogously to (A 3), we have 

jJ 

cov (B~h)' B~i)) = (c/ 8)h-fJ (cj 8)i-fJ var ( TI aiuiu+r) 
g~1 

= (cj 8)h+i-2fl [(cj 8)fl- (c/ 8) 2fl] 

= (c/ 8)h+i-fJ [1- (c/ 8)fl] = O(s-h-i+fl). (A 4) 

Then, for some fixed So E Q(k)' and for 01 = {(s, s') Is =F s'}, 02 = {s E Q(k) Is =F So}, 

~ cov (B~k), B~~>) = # (C<k>) ~ cov (B~~>, B~k>) 
c, c, 

# ( Q(k)) (:2;0 + :2;1 + ... + :2;k-1) 

# (C<k>) (:2;1 + ... + :2;k-2) (A 5) 

where :2;fl denotes :2; cov (B~~), B~k)) over those s E c<k) such that (J(s0 , s) = fl. The 
last equality in (A 5) holds because there can be no s E Q(k) with (J(s0 , s) = k-1 
and because each term in the :2;0 sum vanishes. 

Now the removal of k- fJ > 0 edges from a k-cycle s0 leaves some number rJ ~ 1 
of disconnected walks. A cycle s E :2;fl must reconnect these walks into a cycle (in 
an order that may differ from the order in s0 ). Thus sis specified by the order of 
the walks shared with s0 and by the 'fJ new walks leading from an end point of one 
shared walk to a starting point of another shared walk. If these rJ new walks have 
lengths Lv ... , L

11
, with L 1 + ... + L

11 
= k- (J, then for a given ordering of the 

shared walks, the number of such new walks is bounded above by sLct8L2 -
1 

••• 

SL1J-t = sk-fJ-1J and thus by sk-fl-1 • So for fJ < k the number of terms in any :2;fl 

is bounded by 8k-f1- 1 times a combinatorial coefficient that depends only on k and 
fJ but not on 8. By using (A 4) with h = j = k, we may bound (A 5) above by 

k-2 
# (C<k>) ~ O(S-2k+flsk-f1-1) = O(Sks-k-1) = O(S-1), (A 6) 

jJ=1 

which proves (A 1). 
We now prove (A 2b). As in (A 5), for h <j, 

cov (M, M.) = #(C<h)) ~ cov (B<h), BW) 
h } SEC(j) So S 

= # (C<h>) (:2;o + :2;1 + ... + :2;h) 

= #(C<h)) (:2;1 + ... + :2;h-1). (A 7) 
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In the last equality, ~h = 0 because no j-cycle can share hedges with the h-cycle 
s0 if h <j. As in the derivation of (A 6) as an upper bound for (A 5), we see that 
with h- fJ > 0, the number of terms in ~pis O(Sh1- 1). Then (A 4) implies that (A 7) 
is bounded by 

h-1 
#(C<hl) ~ O(s-h-j+fisj-P-1 ) = O(Shs-h-1 ) = O(S-1 ), 

P=1 

which proves (A 2b). 
The claimed limiting behaviour of ( Y(S), M(S)) for 0 ~ c < 1 now follows from 

(4.3) by approximating M(S) by MZ (S) = ~~=1 Mh (S) for large fixed k. For fixed 
k, (4.3) implies that ( Y(S), MZ (S)) converges in distribution as 8-+00 to a 2-vector 
with independent Poisson components and mean (c, ~~=1 ch /h). Moreover, 

00 

EIM(S)-M%(S)I = E(M(S)-M%(8)) = ~ #(C<h>)E(B~~>) 
h=k+1 

00 

~ ~ chjh 
h=k+l 

-+0 as k-+ oo for c < 1. 
Now for any real numbers rand t 

I E(exp{i(r Y(S) + tM(S))})-E(exp{i(r Y(S) +tMZ (S))}) I 
~ E(lexp{it(M(S) -MZ (s))}-11) 

~ Elt(M(S)-M%(8))1-+0 as k-+oo. 

Therefore, the limiting distribution of ( Y(S), M(S)) equals the limiting distribution, 
as k-+ oo, of the limiting distribution, for any fixed k, asS-+ oo, of ( Y(S), MZ (S) ). 
This proves the claimed results when 0 ~ c < 1. 

APPENDIX 2: NUMERICAL SIMULATION OF ACYCLIC 
RANDOM DIGRAPHS 

We have programmed three numerical approaches to investigating the fraction 
of zero rows or columns in a matrix that is "'i.i.d. B(cjS), conditional on being 
acyclic. 

The first, and most naive, approach is to generate matrices that are "'i.i.d. B(cjS) 
and reject those that have a cycle of any length. There are two difficulties with 
this approach. First, given a value of c, this approach generates acyclic webs very 
inefficiently. For example, with an arbitrarily chosen c = 2.1, the number of 
Bernoulli matrices that had to be generated to find 100 acyclic matrices of each 
size in a sample calculation was as shown in table A 1. 

We lack theory for what the numbers on the right of the table should be, either 
for finite S or in the limit as S-+ oo. (These results show, incidentally, first that 
the fraction of acyclic matrices among Bernoulli matrices, for fixed c, need not be 
a monotone decreasing function of S, and second that the fraction of 10-acyclic 
Bernoulli matrices, asymptotically as S-+ oo, according to theorem 1, bears no 
close relation to the fraction of 10-acyclic 10 x 10 Bernoulli matrices. According 
to (4.3), the former fraction is exp (- ~1'!..1 ck /k), which is less than 10-157 when 
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TABLE A 1. MATRICES GENERATED ACCORDING TO A FIRST NAIVE APPROACH 

size of matrix 
(S) 

3 
5 

10 
15 
20 

number of matrices generated 
to get 100 acyclic S x S matrices 

34972 
16113 
28726 
62825 

279401 

c = 2.1, while according to the numerical results above the latter fraction is 
approximately 100/28726.) 

A second difficulty with this first approach is that, so far, we lack theory to guide 
the choice of c when we want to compare the computed fractions of zero rows or 
columns with data. By throwing away the matrices with cycles, we change the 
expected number of matrix elements that equal1 from pS2 = cS to some (so far) 
unknown smaller function of c and S. For comparison with data, we want to choose 
c so that the 'effective density' of links, estimated as (average number of matrix 
elements equal to 1 )/ S, equals the observed d = 1.86. In the numerical simulations 
described above, with c = 2.1, the total number of elements equal to 1, summed 
over 100 acyclic matrices, and the average effective density per matrix, were as 
shown in table A 2. 

TABLE A 2. NUMBER AND EFFECTIVE DENSITY OF LINKS IN NAIVELY GENERATED 

ACYCLIC MATRICES 

size of matrix number of is in effective 
(8) 100 acyclic matrices density 

3 239 0.80 
5 537 1.07 

10 1293 1.29 
15 2124 1.42 
20 3094 1.55 

Depending on the matrix sizeS, the effective density can be quite different from 
c in model 2. Again, we lack theory for what the numbers on the right should be, 
either for finite S or as S-+ oo. 

A second approach, based on the ideas of Erdos & Renyi ( 1960) avoids both of 
these difficulties, but encounters a subtler third difficulty. In this approach, to 
obtain an effective density c, we construct a random acyclic matrix with the integer 
part of cS (denoted int (cS)) edges. This is impossible if cS > S(S-1)/2 (or more 
generally if cS exceeds the maximum number of links possible in an S x S acyclic 
matrix). Provided int (cS) is sufficiently small, we add one edge at a time. We 
choose a 0 element of the matrix, with probability equal to 1 divided by the number 
of 0 elements that could be changed to 1 without creating a cycle. To identify the 
0 elements that are available to be changed to 1 without creating a cycle, we 
maintain in an auxiliary matrix the transitive closure of the adjacency matrix. We 
continue adding edges until int (cjS) edges have been added. If, because of the 
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sequence of edges chosen, the required number of 1 's cannot be added to the matrix, 
then the partly completed matrix is abandoned and a fresh start is made. This 
generates a random acyclic matrix with effective density close to c. 

The virtue of this second approach is that it guarantees LjS = c = d* = d 
approximately (recall that cis the model parameter with cj S being the probability 
of a random link, d* is the asymptotic (large S) effective ratio of links to species, 
and dis the observed ratio LjS of links to species in real webs). A drawback, which 
we overlooked at first, is that this approach does not generate all random digraphs 
with S vertices and, say, E (always directed) edges with equal probability. In the 
probability distribution over digraphs assumed by model2, any two digraphs with 
S vertices and E edges occur with equal probability. However, in the numerical 
approach just described, suppose S = 6 and we wish to choose randomly E = 3 
edges. There are 6 x 5 = 30 ways to choose the first directed edge without creating 
a loop. Suppose, without loss of generality, that the edges are labelled so that the 
first edge is (1, 2), that is, the edge goes from vertex 1 to vertex 2. There are then 
28 ways to choose the second edge (edge (1, 2) has already been chosen and edge 
(2, 1), which would create a cycle, is forbidden). If the second edge is, for example 
(3, 4), then there are 26 ways to choose the third edge. But if the second edge is 
(2, 3), then there are only 25 ways to choose the third edge because two edges have 
already been chosen and three edges are forbidden ( (2, 1 ), (3, 2) and (3, 1)). 

Our third approach modifies the procedure just described to avoid this difficulty. 
As each randomly chosen edge is added to a digraph, the number of available edges 
that could have been chosen at that stage is noted. The product of all the numbers 
of available edges is assigned to the generated digraph as a weight. This weight 
is the inverse of the probability of choosing the edges in the particular random 
digraph in the order in which the edges occurred. The weight assigned to a given 
digraph may vary depending on the order in which the edges are chosen. All the 
statistics (such as the mean or variance of the fraction of species that are top or 
basal) computed from the random digraphs generated according to this third 
approach incorporate the weights, so that all digraphs with a given number of 
vertices and edges are represented with equal probability. 

When the unweighted simulations based on the second approach are compared 
with the weighted simulations based on the third approach, the simulated mean 
fractions of 0 rows and columns were generally slightly larger when weighted, but 
usually not by more than 0.01 and never (for the range of parameters in table 2) 
by more than 0.04. A conjecture that for large Sand for c small compared to S 
the two approaches give identical mean proportions of 0 rows and columns seems 
plausible. 

The simulations based on the second and third approach are not identical to 
those based on the first, naive approach. There is no variation in the number of 
edges (links) per acyclic digraph generated according to the second or third 
approach, while there is variation in the number of edges per acyclic digraph 
generated naively by the first approach. As in the parallel case of undirected graphs 
considered by Erdos & Renyi (1960), we expect (but have not proved) that this 
difference in approach to simulating model 2 has no effect in the limit of large S. 
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