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This work is concerned with the growth of age-structured populations whose vital 
rates vary stochastically in time and with the provision of confidence intervals. In 
this paper a model 

Y,, ,(w) =X,+ 1(w) Y,(w) 

is considered, where Y, is the (column) vector of the numbers of individuals in each 
age class at time /, X is a matrix of vital rates, and w refers to a particular 
realization of the process that produces the vital rates. It is assumed that IX ;I is a 
stationary sequence of random matrices with nonnegative elements nnd that there is 
an integer n0 SUCh that any prOdUCt X}+ •o • • • XI+ I X} haS all itS elementS positive 
with probability one. Then. under mild additional conditions, strong laws of large 
numbers and central limit results are obtained for the logarithms of the components 
of Y,. Large-sample estimators of the parameters in these limit results are derived. 
From these, confidence intervals on population growth and growth rates can be 
constructed. Various finite-sample estimators are studied numerically. The 
estimators are then used to study the growth of the striped bass population breeding 
in the Potomac River of the eastern United States. •<'J 198S Academic Press. Inc. 

I. INTRODUCTION 

To describe an age-structured population whose vital rates vary 
stochastically in time, let Y 1 be the (column) vector consisting of the 
numbers of individuals in each of K age classes at time t. Assume that 

Y1 + 1(w)=Xn 1(w) Y1(w), (I) 
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where X is a matrix of vital rates and w refers to a particular realization of 
the process that produces the vital rates. 

The model (I) emphasizes the effects of variations in the vital rates them­
selves. The formulation suppresses the variability of births and deaths 
conditional on given vital rates. 

A simple example of the use of (I) would involve confining attention to 
the females in the population and then taking the Xs as Leslie matrices. 
These have the age specific fertility rates in the first row, the age specific 
survival rates in the (i + I, i) elements, i = I, 2, ... , K- I, and all other 
elements zero. 

The model (I), under various conditions on the Xs, has been much 
discussed, particularly with a view to establishing asymptotic results on the 
long-term population growth rate. Tuljapurkar and Orzack ( 1980) give a 
comprehensive listing of earlier work. We shall treat (I) in greater generality 
and, for the first time, provide confidence intervals and a hypothesis testing 
framework for population growth rates and total population. 

A convenient approach to studying the long-term behaviour of (I) is via 
the asymptotic theory of subadditive processes. Let X 1 , X 2 , ... , be a stationary 
ergodic random sequence of K X K matrices with nonnegative elements and 
write MIJ for the i, j element of a matrix M. Suppose that 
E I log max(X 1 >u I < oo and also that there exists an integer n0 such that any 
prOdUCt X) +tlo "· Xj +I X) has all its elementS positive With probability one. 

Then (X"•' ... X nos+ ,)II> 0 and 

jx,, = -log(X"•' ... X"o•+ 1) 1" s < t! 

is a subadditive process and the Kingman ergodic theorem for subadditive 
processes (e.g., Hall and Heyde, 1980, Theorem 7.5, p. 215) leads to 

t-• log(X, ... X 1) 11 ~log ..t 

(say), which is a finite constant, as t--+ oo. This results continues to hold for 
all matrix entries i, j and, under mild additional conditions, can be 
augmented by a central limit theorem 

a- 1t- 112 jlog(X, ... X 1)/J -tlog ..tj-.!!..... N(O, I) 

(-.!!..... denoting convergence in distribution and N(O, I) the unit normal law) 
for some a > 0 and all I ~ i, j ~ K. The results extend those of Furstenberg 
and Kesten (1960), Ishitani (1977) and Tuljapurkar and Orzack (1980) and 
can readily be used on the model (I). In particular, it can be shown that the 
ergodic theorem gives for the total population size I' Y,, 

t-• log I'Y,~ log..t (=lim t- 1£ log I 'Y,) 
t~oo 

(2) 
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and the central limit theorem gives 

(3) 

This last result (in mixing form) provides a basis for the construction of 
confidence intervals for population projections. 

In Parts 2 and 3 of the paper we shall establish the above results and 
indicate how log ..t and a can be estimated in practice. An application to the 
striped bass population of the Potomac River is given in Part 5 to illustrate 
the usefulness of the methodology. 

The model (I) is closely related to the one which can be obtained from a 
formulation of the population process as a multitype Galton-Watson 
branching process with random environments. In this case the diiTerent types 
would correspond to the diiTerent age classes. The offspring probability 

generating functions 

l~,.(s) = (~~,,.(s), ... , ~K,,.(s)), n = 0, I, 2, ... f 

are chosen from a collection <P of probability generating functions according 
to a sequence of environmental variables (", 11 = 0, I, 2, ... , which are 
assumed to stationary and ergodic (or perhaps even independent and iden­
tically distributed). This process evolves in such a way that the conditional 

generating function of r;+ I= (Y,(t + I), ... , YK(t + I)) given Y, is 

Tanny ( 1981) has studied the growth of this process and obtained various 
results analogous to (2). Results like (3), on which confidence intervals and 
hypothesis tests must be based, are not available except in the 1-type case or 
the case of constant environment. 

2. THEORETICAL RESULTS 

The evolution of the system (I) depends crucially on properties of 
products of random matrices since iteration of (I) gives 

(4) 

We begin by specifying the kinds of matrices with which we shall deal. Let 
X 1, X 2 , ... , be a stationary ergodic random sequence of K X K matrices with 
nonnegative elements. For a matrix M denote by Mu the element in the ith 
row and jth column. We shall suppose that the matrices !X;I satisfy two 
assumptions: 
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(A I) There exists an integer n0 such that any product Xj, "" · · · X1 , 1 

of n0 of the matrices has all its elements positive with probability one. 

(A2) For some constant C, I < C < oo and each matrix X;, 

with probability one, where M(X) and m(X) are, respectively, the maximum 
and minimum positive elements of X. 

Assumption (A I) is standard within the theory of nonnegative matrices. It 
ensures that the effects of the initial composition of the population disappear 
in the limit (demographic weak ergodicity ). Both assumptions define an 
"ergodic set" in the sense of Hajnal ( 1976 ). For products of K X K Leslie 
matrices with no zero vital rates 11 0 = K and, in general, if n0 exists then 
n0 < 2K- 2 (Cohen and Sellers, 1982), the hound being sharp. 

Assumption (A2) is perhaps less familiar than the more restrictive version 
in which 

0 < p ~ m(X1) ~ M(X1) ~ y < oo 

for each matrix X 1 and some p, y used by Tuljapurkar and Orzack ( 1980); 
(A2) allows, for example, cases such as X1 = a1X, where the a1 > 0 are 
stationary (and unrestricted) while X is fixed. 

Next suppose that the process X 1 , X 2 , ... , is defined on a probability space 
(fJ,.~.P). Write ,f'~ for the a-field generated hy X0 , ... ,Xh and let 

,P(n)= sup IIP(BjA)-P(B)J;A E.A'~,BE.,f'f',n,P(A) > 0}. 
k;>O 

The condition ,P(n) __. 0 as n ~ oo (called uniform mixing) is one of a number 
of standard conditions of asymptotic independence (see, e.g., Hall and 
Heyde, 1980, Chap. 5). 

The basis for the inferential results of the paper is provided by the 
following theorem. 

THEOREM I. Suppose that the stationary ergodic sequence of matrices 
IX,I is such that assumptions (AI) and (A2) are satisfied and 
EJlogM(X,)I < oo. Then,for alit ~i,j~K. 

t- 1 log(X1 ••• X1 ) 11~ log A. (5) 

(say), which is a finite constant, as 1 ~ oo. Furthermore, if 

E jlog M(X 1W < oo (6) 

and 

\' l~(n)ll/2 < oo (7) 
n I 

then 

lim t 112 Eilog(X1 ···X1)u-tlogA.j=a(2/n) 1n 
I •rfJ 

exists for 0 ~ a < oo and if a > 0, then 

(ta 2r 112 pog(X, .. · X 1 )u- t log A. I __!!__. N(O, I) (mixing), (8) 

as t __. oo, the convergence being mixing (in the sense of Renyi). 

The conditions imposed to obtain the central limit part of this theorem arc 
just indicative of the possibilities. Many variants on uniform mixing and (7) 
t.:ould equally be proposed. The present choice is merely a convenient one for 
dealing with the envisaged applications. Condition (7) easily covers the prac· 
tically important cases: (i) the matrices jX;} are m-dcpendent, meaning that 
for i < k < k + n < j the sets (X1 , ... , Xk) and (Xk 1 ", ... ,X) arc independent 
whenever 11 > m (in this terminology an independent sequence is 0 
dependent), and (ii) the matrices !Xtl are from a finite set and arc deter 
mined by an irreducible aperiodic Markov chain of fixed finite order. 

The mixing convergence in the sense of Rcnyi means that 

as t __. oo for any -oo < x < oo, where ct>(x) is the distribution function of 
the unit normal law, and for any E E.~ with P(E) > 0. 

Theorem I extends the corresponding result of Tuljapurkar and Orzack 
( 1980) which deals with the case where IXtl form a Markov chain and ~(11) 
decreases geometrically to zero. That the condition (A3) of Tuljapurkar and 
Orzack ( 1980) ensures uniform mixing with a geometric rate follows from 
Rosenblatt ( 1971, pp. 209-213 ). Furthermore, the mixing convergence in 
Theorem I allows the probability measure based on the stationary initial 
distribution to be replaced by any probability measure which is absolutely 
continuous with respect to it without perturbing the limit distribution. 

Now we apply the results of Theorem I to the system (I). 

TIIEOREM 2. Let Y, ~ 1 =Xu 1 Y,. t:;:;:, 0, and let z, =a' Y, where a is a 
nonzero vector of nonnegative elements. The11, under the same conditions as 
(5) of Theorem l, 

lim t - 1 log Z, = log A. a.s. 
t "ltl 
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and, if the additional conditions (6) and (7) of Theorem I hold, 

lim r 112£ I log Z,- I log A. I= a(2/n) 112 

t~oo 

exists for 0 ~ a < oo and if a > 0, 

as t-> oo, the convergence being mixing in the sense of Renyi. 
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A wide variety of other combinations of the Z1, I ~ j ~ t, also provide 
strongly consistent estimators of log A.. In particular, let !aj0

, l ~ j ~ t, 
t > II be a set of nonnegative weights such that for all I, a,= LJ= 1 ja;n > 0, 
and define the statistics 

I 

I 1 -I \' (I) I z 
og~~.,=a, L.. a1 og 1 • 

J=l 
lfa,- 1 max 1 , 1,,aj0 ->0 then under the same assumptions as (5) it is easily 
checked that 

log A.,~ log A. 

as t-> oo. However, the estimator t- 1 log z, has mm1mum asymptotic 
variance within a broad class of these combination estimators. 

Indeed, if in addition (6) holds and 

as t-> oo, where Aj'1 = :L:=J a)'1, I ~ j ~ t, then if a> 0 in Theorem 2, 

var(log A.,- log A.)"' aJ 

as t-> oo, where 

I 

aJ = (a 2/aJ) L (Aj'1)
2 > a2/t. 

}=I 

The m1mmum asymptotic variance is achieved when a:'' = I and ajn = 0, 
j < t; i.e., for the estimator 1 ~ 1 log Z 1 • We shall omit the (rather involved) 
proof since the result is of a supplementary nature. A result of similar 
character holds for the estimation of the criticality parameter of a 
supercritical branching process with random environments (Pakes and 
Heyde, 1982). 

126 llt'Yl>l' ANU COllEN 

The finite-sample variance of consistent estimators log A., with vari< 
of weights will be investigated numerically below (in Sect. 4) in an e 
provided by a real biological use of these methods. 

Theorem 2 gives a means by which approximate confidence inten 
log A. can be constructed if a(>O) can be estimated. We shall 
t- 1 log z, to estimate log A. while a consistent estimator for a is giver 
next theorem. 

THEOREM 3. Under the conditions (5), (6), and (7) we have 

I 

(log I) -I L jiog Z;- i log A. I i- 312 ~ a(2/n) 112 

;.,-J 

as t-> oo ( ~ denoting convergence in probability) and 

I 

(log I) -I _L jiog Z;- i log~ I i-J/2 ~ a(2/n) 112 

i- I 

as I-> oo, where log~= t- 1 log z,. 
For inferential purposes we would ordinarily use the case where Z 

total population size I' Y,. Then if o is the estimate obtained via The 
for a from a realization Y, ••... , Y,, where t is large compared with 
approximate I 00( I - a)% confidence interval for the growth rate log 

t- 1 logi'Y±z ot- 112 
I all • 

where 

p = (2n) -l/2 Joo e-ll/llul du =I- f/J(z
6

). 

'6 

Furthermore, the mixing convergence in Theorem 2 can be used to 
approximate confidence intervals for the logarithm of the population s 
later time r > I. We have, writing 

that 

as r-> oo for fixed 1 and hence for large I, 

P(l W,l < zP12 ,1 W,i < zq12 ) ~(I- p)(l- q). 
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P( rr 1 (log I' Y, - (to 1 
)

1/1 zq11 )- ( ro 1 
)

111 zP11 < log I' Yr 

< rt- 1(log I' Y, + (to 1
)

112 zq11 ) + (ra 1
)

111zPn) 

~ P(l Wrl < Zpn•i W,l < Zq;l). 
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Thus, an approximate 100(1- a)% confidence interual for the logarithm of 
the population size log I' Yr is 

The minimization in ( 10) is not straightforward in general but approximate 
results can easily be obtained numerically in particular cases. 

In practice the actual generation numbers 10 , ... , t will frequently be 
unknown so we must work with diiTerences from t0 • Using Theorem 2, 

(t- t0 )-
1(log I' Y1 -log I' Y

10
) =log 1 (I I) 

is a strongly consistent estimator of log). while to estimate o we can employ 

1-10 

.(n/2)+ 112 (log(/-t0 ))-
1 L ;- 312 llog l'Y,.+I-log l'Y,.-iloglj (12) 

I= I 

which is consistent for o in view of Theorem 3. Then in (9) and all but the 
first term of (I 0) we replace I by t- /0 , log I' Y, by log I' Y,- log I' Y,., and 
(in (I 0)) r by r- t to obtain approximate I 00( I -a)% confidence intervals 
for log). and log I' Y,, respectively. The theory, of course, has the great 
advantage that no specific information is required about the matrices X 1 of 
vital rates. However, such information is required to confirm the relevance of 
the model ( I ). 

3. PROOFS 

Proof of Theorem I. In the case of random matrices X 1 all of whose 
entries are positive with probability one, the result of Theorem I is known 
save for the mixing property of the convergence to normality (8 ). For the 
strong law (2) see the corollary of Furstenberg and Kesten ( 1960) while the 
remammg results involve a minor modification of Theorem 2 of 
lshitani (1977) (see Theorem 7.7 and the discussion in pp. 225, 226 of Hall 
and Heyde, 1980). We shall indicate the changes that are necessary in the 
proofs of these results to cope with the present context and to establish 
mixing convergence in (8). 

IL!i IJI .. IIJI: /\l"'fl.l '-..VIIl.l"" 

Fundamental to the proof of the theorem are replacements dealing with 
matrices which may have zero entries for Lemmas 2 and 3 of Furstenberg 
and Kesten (1960) and these we shall denote below by Lemmas 2' and 3'. 
We write 

tys =X, ... Xs 

while Mu denotes the element in the ith row and jth column of M, and 

K 

M,,= L M,j, 
I-- J 

K 

M;= L Mu, 
i I 

1/MI/ = m~x M1 •• 
I 

LEMMA 2'. If(Al) and (A2) are satisfied, 

(n+mym)IJ > 0 

for n ~ n0 and all I ~ i, j ~ K and 

K K 

M = L L Mu, 
i c I j I 

1 ~ M(n+mym)/m("+mym) ~ (KC)ln 0 

for n ~ n0 • A !so, for all n, 

( 13) 

( 14) 

(15) 

Proof The result ( 13) follows by assumption. To prove (I 5) we first 
note that for any i, j for which it is positive, (" + m ym )u is a sum of (n + I)­
tuples numbering between I and K". Then, for (" + m ym)u > 0, 

K"M(Xn+m) "' M(Xm) ~ (n+mym)ij 

~ m(Xn+m) ... m(Xm) 

~ c-"M(X"~ ml ... M(X"'), 

using (A2) and (15) follows. This also gives (14) for n ~ 2n0 • 

To obtain ( 14) for 11 ~ 2n 0 + 2 we note that 

(n+mym).=\' (ntmyn-nolm).("-n0-l+mynu+ltm) ("otmym) _ 
iJ ........,. tr rs JJ 

r.s 

r ,J 

from two applications of the special case n = 1111 of ( 15 ). 
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Finally, for n = 2n 0 + l we have 

( 2n 0 +1+mym) "(2n0 +1+myn 0 +1+m). (n 0 +mym). 
/ 1,} 1 Lr 11r r1 1 

-:-('-2n:-0 .,-+'l+:-m::-c-y-=m-:-)..!.:.:...!=" (2n 0 +1+myno+l+m). (n 11 +mym). 
l2•h Lr t 2 r r1 1 

(2n 0 + I+ m yn 11 -f It m). 

C (KC)"" 'o. 
""' eno+ I I m yno+ I+ m);, 

Me"o<l+myno+ l+m) 

~ (KC)"• me"o+ I+ m Y"• I I 'm) 

~ (KC)2"o, 
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and similarly the lower bound is (KCr 2
"•. This completes the proof or 

Lemma 2'. 

LEMMA 3'. For n ~ 2n0 , 

where Rn = ( 1 - (KC)- 4
" 0)

1"1"• 1- 1
, ]x] denoting the integer part of x. 

Proof For m 1 ~ m, r ~ 1, we have upon writing 

A _ ((r+ lln 0 +m 1yrn0 + l+m 1) 
I}- lj• 

to simplify the expressions, 

But, for all i, 

( (r+ l)n 0 + m1 ym) 
I,J 

(I'+ lln 0+m 1ym) 
1,. 

B1,1(r + I) 
B1,.(r+l) 

= L A 1, s B._(r) B,1(r). 
s B 1,.(r +I) B._(r) 

L A1,B,_(r) = I 
• B;.(r +I) 

and all the summands in ( 17) are positive so that, using Lemma 2', 

( 16) 

( 17) 

( 18) 
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We have using ( 16) that 

B1,ir+l) B1,ir+l) 

B 1,.(r+ I) B1,.(r+ I) 

= \, l A 1,,B,(r) _ A 1,.B •. (r) 1 Bsi(r)' 
"':;'" B1,.(r + I) B1,.(r + I)\ B._(r) 

( 19) 

and if S' and S" are, respectively, the sets or indices S for which the 
summand on the right-hand side or ( 19) is positive or negative, 

(20) 

using ( 17) and ( 18 ). Consequently, using (20) in ( 19) and iterating, 

Bu(r +I) . Bu(r +I) max -mm___;:; __ _ 
; B;,(r+l) ; B 1.(r+l) 

~(1-(KC)- 4 " 0 ) )max Bu(r) -min Bu(r)l 
1 B;.(r) ; B1.(r)\ 

~(I- (KC)- 4""}' I max BiJ(I)- min Bu~)/ 
I I B,_(l) i B,,(l)\ 

from which the result or the lemma follows. 
Now we resume the proof or Theorem I. In order to establish (5) we begin 

by noting that 

is a subadditive process. Subadditivity follows since ror s < II < I, 
K 

(n0tyn0s+l) = \' ("otyn0u+l) .(n0uyn0<+l). 
II ....._. IJ .11 

j' I 

~ ("otynou+ 1)
11

(n 0 uyn 0 stl)
11 

and, upon taking logarithms, 
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so that 

-Exo, = E log("•' Y1 
) •• ~ E log II not Y1 II 

~ 11 0 /E log IIX1 11 

inf n- 1Ex0 " ~ -n 0 E log IIX 1 11 > -oo, 
n>O 

since E IJog M(X 1)1 < oo. Consequently, the Kingman ergodic theorem for 
subadditive processes (e.g., Theorem 7.5, p. 215 of Hall and Heyde, 1980) 
gives 

lim ,- 1x 0 , = -n 0 log A. 
/400 

a.s. (21) 

(say) which is finite and a constant since the stationary process l X;) is 
ergodic. Then, to obtain (5) for i = j = I we first note that for 0 ~ k ~ 11 0 , 

""' + k 
(KC)Z"o("•'YI)II J { M(XJ)~("o'+kYI)II 

}=not+ I 

K 

·= \' ("ot+kynot+l)lj("•'YI)il 
}~I 

n 0 t+k 

~ ("•'Y1
) 11 Jl m(X1) (22) 

n 0 t + k 

~c-*("•'Y 1 ) 11 rJ M(X1), 
}=n0 t+ I 

using Lemma 2' and (A2). Then taking logarithms and recalling that 
E IJog M(X 1)1 < oo, we find that 

lim n -• log(" Y1 ) 11 = lim (n 0 t) -• log("•' Y 1 
) 11 =log A. a.s. 

n-oo 1-oo 

To deal with other values of i, j note that 

(n+2n 0 yt) ~(n+Znoyn+n0 +1) (n+noyno+l) ("•Y') 
1}7 II II I}• (23) 

each term on the right-hand side being positive for n > n0 in view of (A I) 
while (5) for i = j = I and stationarity give 

lim n- 1 log(n+noyno+ 1) 11 =logA. a.s. 
n4oo 

Furthermore, 

n ~ 2n 11 

(nf2n 0yntn 11 11)
11 
~ K"• I J M(X;) 

}=n+no+ I 

no 

("oyl lu ~ K"• r I M(Xi) 
J~ I 

and, since E I log M(X 1 )I < oo, we have from (23) that 

lim inf n- 1 log("+ 2"•Y1 lu ~log A. 
" ..-.(1"_) 

a.s. 

Similarly, the inequality 

(n+2n 0 yl) ~ ("' 2n 0 yn+n 0 + I) ("+ nuyno+ I) .(""YI) .. II 7 II IJ tl 

with n > n0 together with (5) for i = j = I and stationarity leads to 

log A. ~ lim sup n -• log(" Y1 lu 
, ---fl(' 

a.s. 

and hence (5) follows. 
Now for the proof of the central limit result (8) it is convenient to use 

Theorem 7.7, p. 223 of Hall and Heyde (1980). Consequently, we shall begin 
by showing that their result on convergence to normality can be strengthened 
to mixing convergence. 

Following the notation of Theorem 7.7 and its proof we have that !x.,, 
s < t l is a subadditive process and there is a stationary uniform mixing 
process I Yk, -oo < k < oo I such that x,, = y,, + z sr• where Ysr = L~ ·_ ~ Yt 
and z.,, is a nonnegative subadditive process with z0 ,/t 112 

_.P 0 as t-> oo. 
Furthermore, Ey0 = y, y being the time constant of the process lx,,} and 
t- 1 E(y0,- ty) 2 -> a 2 as t-> oo. 

For any E E. 'T with P(E) > 0 and any e > 0 we have 

P(t - 112 IX111 - Yo 11 > r.l E)~ (P(E))- 1P(r 112 I Xo,- Yo, I> r.)-> 0 

as t -> oo so that in order to show that 

(ta 2 
)-

112 (x01 - ty) ~ N(O, l) (mixing), 

it suffices to show that 

(ta 2)- 112 (y 11,- t}') -.'!..... N(O, I) (mixing). 



Now suppose that E k belongs to the a-field generated by Yo, ... , Yk and 
P(E.) > 0. Then, with t: > 0 and writing 

11 1141 
F = 1 (tal)- 1/2 \' v &: t: ( I .i..- ., l "">:::: 1 

/=0 

where [ x] is the integer part of x, while F1 denotes the complement of F" we 
have that 

has the same limit behaviour as 

since 

as t __, oo. But, 

P ((to 2
)-

112 
( ~ y1 - ty) ~ x- t: I Ek) 

I= ltl/41+ 1 

~ P((ta 2
)-

112 (y01 - ty) ~ x, F,l Ek) 

~ P ((to 2
)-

112 
( I y 1 - ty) ~ x + t: I Ek) 

l=ltl/41f 1 

and, since l y;} is uniform mixing and k is fixed, I::~ 1,,141+ 1 y1 and Ek are 
asymptotically independent as t-+ oo and 

1'/J(x- t:) ~lim inf P((to 2
)-

112 (y01 - ty) ~ x, F,l Ek) 
t~oo 

~lim sup P((ta 2
)-

112 (Y01 - ty) ~ x, F,l Ek) ~ 1'/J(x + t:), 
I ~oo 

where 1'/J is the distribution function of the unit normal law. Since 1'/J(x) is 
continuous in x and t: can be chosen arbitrarily small we have that 

and this establishes the required mixing property using the general criterion 
of Renyi and Revesz ( 1958). 

Next we proceed to check the conditions of Theorem 7. 7 of Hall and 
Heyde ( 1980) in relation to the subadditive process 

We have 

x,1 = 1-log("•'Y"•s+ 1) 11 , s < tf. 

('"" yl) II 

('"• Y"" I I) II 

\'~ ('"• yno+ I) ("" y1). 
L...r~l II rl 

('"•Y"•'I)II 

~ (KC) 2
"• KM(""Y 1 

), 

using Lemma 2' and (A2). Similarly, for a lower bound we have 

and thus 

('"•YI) K 
----,-------,---c-1 -'--1 -~ (KC)- 2

"" \' ("" Y 1
) 

(
I no Y"" 1 1) r ~ ol II i c I 

> (KC)- 2""m("•Y 1
) 

> (KC)- 3
"" M("" Y 1

) 

I log('"• yl )II/('"" Y"• t I )II I= lxo,- x"l 

~I log M("• Y 1 )I + 3n0 log KC (24) 

which provides the bounded ness condition (7.55) of Hall and Heyde, since 
E I log M(X 1 W < oo ensures that 

E I log M("• Y 1 W ~ 2(n0 log K) 2 + 2£ jlog M(X ".) + · · · +log M(X 1 W 
~ 2(n0 log K) 1 + n0 2""E pog M(X 1)j 1 < oo. 

To deal with condition (7.56) we first observe that 

( (n+mlnoyl) /((ntmlnoynoll) =l1 +fJ 
II II tl n' 

where 

K 

l1 = \' ( nn 0 yn11 I I) ("• y I). /(""" yn 11 1 I) 
n "--' .I rl .I 

I I 



UI::MUUKI\t"fiiL .t"tlU.Jl:\.. J HJN:"; 

and 

fJ .. = 

K K [(""oyno+l) (""oyno+l) 1 ' 
Y' \.' (ln+minoy""o+l). Jl _ '11_ (""nynoJ ') .("•Y') 
L L IJ (""oyno+l) (""uynu+l) ·' II 
h·l J~ I .I .I 

K L (I"+ m)no Y""•+ I )I](""• ynol I )jl 
J~• 

Now, using Lemma 2' we have 

Also, using Lemmas 2' and 3' we have for n ~ 4, 

'<;'K '<;'K ('" + mln0 ynno+ I) .(""" Y"• +I) ·("• y1) lfJ I&.R L..l~lt...J~I I} .• II 
n "'=: (n-2ln0 '<;'K (ln+mllloy""•' I) .(""•Y"o11). 

L.}=l IJ Jl 

~ Rt,-2l,.K(KC)2"•("• Y')... 

Then, from (25) and (26 ), 

and, since 

log(a,. + fJ .. ) log a,. + log( 1 + fJ .. fa .. ) = log a .. + O(!fJ .. 1/a,.) 

as n -. co we have 

X _X = -Jogj(ln+ml110 Y') /(ln+mln0 yno+ ') } 
O,m t n l,m + n I I I I 

=-log a,.+ O(R,. .... ) 

uniformly in m and points w of the underlying probability space. 
Since log a,. is . .f'~"&,-measurable, we have from (27) that 

uniformly in t and wand condition (7.56) is satisfied. 

(25) 

(26) 

(27) 

Finally, upon taking expectations in (27) and writing g1 = Ex0 , we have 

(28) 

uniformly in m. Now the subadditive function g1 necessarily satisfies 

IJ(J 

t 1g
1
-. y = -n0 Jog J. as t .. , co (with y finite in view of (24)) and hence from 

(27), 

(2n) 1g2n (2n) 1 !(g2, g2n .,) 

+ (glrt I- g2n-2) + ... + (gn+ I- g .. )+ g,l 

= (2n) 1 {-nE log a .. + g .. }+ nO(R, .. ,) ·• y 

as n ... co which assures that -E log a .. -> y as n-> co. Furthermore, (28) 
gives in particular 

-E log a 11 + O(R .... ,,) = -E log an+m + O(R 1n+mtno) 

and letting m-. co, 

1-E log a,.- yj O(R,,..) (29) 

as n-. co. From (28) and (29) we then readily conclude that 
n 112 ( g, ny) _. 0 as n-. co. The conditions of Theorem 7. 7 of Hall and 
Heyde ( 1980) are then satisfied and the proof of (8) for i = j = I is 
completed by using (22). Other values of i, j may be dealt with by noting 
that for n ~ n0 , 

llog("Y 1)u -log("Y1
) 11 I ~ 2n0 log KC 

using Lemma 2'. This completes the proof of Theorem I. 

Proof of Theorem 2. From Lemma 2' we have for t ~ n0 , 

(KC) 2nn ~ (' yl )uf(' yl )" ~ (KC)2"o 

and hence 

satisfies 

Using (31 ), the result of Theorem 2 is then immediate from Theorem I. 

(30) 

The result of Theorem 3 is based on the following proposition which is of 
independent interest. 

PROPOSITION I. Let IZ1} be a stationary uniform mixing process with 
EZ 1 = 0, EZi < co, and writes .. = L::7. 1 Z 1• Suppose that n · 1 ES! -• 0 1 and 
,- 112 E 1 S .. I_. a(2/n:) 112 , 0 ~a < co, as n-. co. Then, for a sequence lad of 
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positive constants, b,. 1 L:7~ 1 i-
112a1l S1j, where b,. = L:7 1 a1 is a consistent 

estimator of o(2/n) 112 if the following three conditions are satisfied: 

(i) a(n) = b;; 1 max 1 <;l<n a1 -+ 0 as n-+ oo. 

(ii) P(n) b;; 2 L:7 ~ 2 i -
112a1 L:}::: / 12a1 -+ 0 as n-+ oo. 

(iii) There exists p = p(n) < n with p(n) T oo as n ..... oo such that 

n 

y(n)=b;;2pll2 L ;-lna,bt_,.o, 
l=p+ I 

as n--+ oo. These conditions are satisfied, in particular, if a1 = i 1
• 

Proof. Since n 112£ IS,.I--+ o(2jn) 112 as n-+ oo we have from 
Kronecker's lemma (e.g., Hall and Heyde, 1980, p. 31) that 

n 

b;; 1 L i 112a 1EIS1j-+o(2/n) 112 

I= I 

and hence we need to establish that 

II 

b,. I L i-112ai(IStl- E IS; I) .....e._. 0 
I= I 

which is accomplished by showing that 

as n ..... oo when (i), (ii), and (iii) hold. Now 

n 

= 2.: r 1afE(!Stl EjS1W 
I I 

n /-1 

+2 L ;- 112a, L F 112 aj(EjSISjl EjS,IEISJI> 
1=2 J~ I 

and since ES! O(n) as n -+ oo, 

n 

b;; 2 L i 1afE(jS1!- EjS1!)
2 -+ 0 

1=1 

(32) 

(33) 

I 

' \ 

IJH til·. YIJI: 1\NU l.UIICf" 

as II--> 00 using (i), SO that (32) rollows from (33) if 

If i I 

b~ 2 L i 112a1 L j 112a;(E IS1S1l E IS11 E IS11)-+ 0 
i · 2 j • I 

as n-+ oo. 

Next we note that using stationarity we may write for i > j, 

say, where S!_1 has the same distribution as S 1_1• Then note that 

IEIS,Sj! EjS,IEISjl - E !S,St-jl + E ISt.Ji E !Sill 

~ E ISJIIISti-!S;*_J,, + E IS} IE liS; I IS;* ill 
~ ESJ + (E IS;I) 2 ~ 2ESJ O(j) 

as j ..... oo and hence, using (ii ), (34) may be replaced by establishing 

" /-1 

b;; 2 L ;-•na, L F 112aiE!St.JSJI-EIS;*_j,EISJI>· .... O 
h 2 J•l 

as n ..... oo. 

(34) 

(35) 

To deal with (35) we let p = p(n) < n be an integer with p(n) T oo as 
n--+ oo and for p > 2 decompose (35) into the components summed over 
L:f~2 L:j~:, L:7" p+l L:J · ;_1', and L:7-r+ 1 L:j:~--

1 which will be denoted by 
/ 1(n), / 2(n), and / 3(n), respectively. Using Schwarz' inequality, 

p i ·· I 

I (n) ~ b i '-' i 112a. '' ;·-· 112a (ES~ .ES~) 112 
I ""' II L., I L., } 1·.1 1 

i .• 1 j I 

as n--+ oo using (iii). Furthermore, since in the sum / 2(n) i ~j + p, 

" I I 

12(n) = blf 2 L i 112
al L r 112aj(ESJ_jESJ)' 12 

i pI I j- i· p 

as n--+ oo also using (iii). 



Finally, for I> j + p we have 

S(_1 Z141 +···+ZJ+p+ZnP+ 1+···+Z1 

= s; + s;·-J-p• 

say, where s; and Sj_1_P have, respectively, the distributions of Sp and 
S 1_1_p· Then, 

IE lSJSi-il- EISJI E ISt.Jll 

~IE !SJSi-JI E ISJI E !SI*-11 E ISJS;'-j-pl + E IS) IE ISi-i PII 
+ 1 E IS1S;'_1_p, E IS1I E 1Sf_1-pll 

~ E ISjiiiSt.Jl ISi-J-pll + E ISJI E IIStji-ISi j-pll 

+IE IS,Si--J-pi- EISA E ISi'-J-pil 

~ E ISiS; I+ E IS1I E IS; I+ IE ISJSl-1-PI- E IS1I E lSi'-) vii 

~ 2(ES 2ES 2
)

112 +IE ISS" I ""' j p j 1-}-p (36) 

Furthermore, the stationary sequence {Zd is uniform mixing so that, using a 
well-known mixing inequality (e.g., Theorem (A.6), p. 278 of Hall and 
Heyde, 1980), 

lElS-S" 1-EIS!E!S" ll~2.i 112 (p)(ES 2ES2 
)

112 
1 1-J--p J 1-J-p ""' 'f' J 1-J-p • (37) 

where {,(k)} with ,(k)-> 0 ask-> oo are the mixing coefficients. Thus, from 
(36) and (37) we have for i > j + p, 

IE IS}St-}1- E IS)l E ISi-JII O((jp) 112 + (,(p)j(i- j p)) 112
) 

so that 

II 1-p-1 

IJ(n)=b;; 2 L ;-lila/ L F 112aJIE!S,S(_J,_EISJ!E!S;*_jll 
/;p+l J~l 

-o(b-2112 ,:, --112 
1
-\.;

1
) 

- II P L., : a1 L., a1 
l=ptl }=1 

+ 0 (b;;2,1/2(p) ± r lila, 1-i:-1 ail- j- p)l/2) 
l=p+l }=I 

0 (b;; 2
p

112 I=~+ 
1 
;-lt2a1b1) + 0W 12 (p)) = o(J) 

as n-> oo in view of (iii) and the uniform mixing property. This completes 

the proof of (35) and hence that of Proposition I. Note that (ii) does not 
hold for a1 = i", a> I, while if a1 = i 1

, 

fJ(n) = O(log n) 1 a(n) O(log n)" 1
, 

y(n) = O(log p(log n) l) ~ O(log n)- 1, b(n) = O((log p) 1(1og 11) !) 

as n -• oo. 

Remarks (i) A more obvious estimator of a 2 of the form 
b~- 1 I:~_ 1 r 1a,s: is not adequate for the purposes of this paper. Consistency 
will be destroyed in the transition from additive processes to subadditive 
processes necessary for Theorem 3. 

(ii) The estimator 11 
1 I:? 1 i 

1 s: obtained by setting a1 I, i ~ I. in 
the expression discussed in (i) is not consistent for a'. Indeed, in the case 
where the Z 1 are independent and normally distributed with mean 0 and 
variance a 1

, var(n -I L7 1 j Is:)-> (] 4 as II-> 00. 

Proof of Theorem 3. As in the proof of Theorem I we let 

s < (, 

and then using the decomposition theorem for subadditive processes (e.g .. 
Theorem 7.6, p. 216 of Hall and Heyde, 1980) decompose x 51 into 

X" Yst + z.<t• (38) 

where I y,,. s < t I is an additive process with 

t lim u- 1 Exou 
u~oo 

and lzsl' s < t1 is a nonnegative subadditive process with 

lim t 1 Ex01 0. 
t -<'(il 

As indicated in the proof of Theorem 7. 7 of Hall and Heyde ( 1980) we may. 
under the conditions (5), (6), (7) choose )'51 L~- ~ Yk• where lYd is 
stationary, uniform mixing, and satisfies 

as t-> oo. 
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Using Proposition I we have 

I 

(log t) 1 L r 312 ly01 + n0 i log A. I __e_, (2n0 a 2/n) 112 

i o I 

as t-> oo. Also, from the proof of Theorem I we have 

as t _. oo and hence 

which implies 

I 

(logt)- 1 L ;- 312Ez 111 -•0 
I -~ I 

I 

(log t) 1 L rmz01 ~ 0 
i"" I 

as t-> oo. Combining (39) and ( 40) then gives, in view of (38 ), 

as t-> oo. 

I 

(log t)-' L i- 312 lx01 + n0 i log A. I~ (2n0 a 2fn) 112 

i- I 

141 

. (39) 

(40) 

(41) 

Furthermore, from (22) we deduce the existence of a finite constant A 
such that for 0 ~ k < n0 

and then 

I n0-l 

(logrr~~ 2.: 2..: ;- 312 1Joge"•ur')11 -log('"•Y1
) 11 klog..tj.L.O (42) 

hI k•O 

as I-> oo, since 

I lfo- I 

(logt) 1 2..: 2..: 112EIIog('"•+ky1
) 11 log(1""Y1) 11 -klogA.I->O 

; 1 k-o 
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as t-> oo. Consequently, from (41) and (42), 

I no J 

(log t) 1 2..: ;--m 2..: lloge"•ur') 11 (in0 + k) log A. I 
I I k ~ 0 

and hence 

t n 0 -- I 

(logtr 1 L L (in 0 +k) l
12 lloge"•uY1

) 11 -(ill0 +k)logA.I 
I -I k -0 

or, equivalently, 

not 

(log/) I L r 312 jlog(Y1)1,-ilogA.ILta(2/n) 112 

as t-> oo and 

hn0 

I 

(logt) 1 L i 312 llogZ1 ilogA.I~a(2/n) 111 

i I 

as I-> oo follows using (31 ). 
Finally, we have from Theorem 2 that 

{1 112 1og I) '(log Z 1 - I log A.)~ 0 

as 1-> oo and hence 

I 

(log 1) I L r J/2 pog z, it I log Z,j2-· a(2/n) 112 

i~ I 

as 1-> oo follows from (43 ). This completes the proof of Theorem 3. 

4. FINITE-SAMPLE ESTIMATORS 

(43) 

This section considers the problems of estimating log A. and a given a finite 
set of data. Recall that 1 Y1, 1 = 0, I, 2, ... 1 is a time-series or sample path of 
K -dimensional vectors generated by (I). Each vector Y, corresponds to a 
population census by age. Z1 =a' Y1 is a ponzero nonnegative linear 
functional of Y1 , e.g., the total population size, or the number of individuals 
in any age class or set of age classes, or in an economic context, if a is the 
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vector of labor force participation rates, the size of the labor force at time t. 
Suppose one is given T consecutive data points z,.+ 1 , ... , Z 101 P and /0 is 
unknown. 

The estimator (II) for log A. apparently fails to use most of the data.· Both 
estimators (II ) and ( 12) give a privileged role to z,. + 1 , and (II) also gives a 
privileged role to z,.+ T' It is clear from Theorem 2 that for large T, 

(T- I) '(log Zrtto -Jog Z,01 .) 

is a consistent estimator of log A, and similarly from Theorem 3 that for 
large T 

T -I 

(n/2) +1/l(log(T- I)) I L rmpog z,,.+ 11; -log z,., I i log X! 
i = I 

is a consistent estimator of a. Intuitively, one might hope that some 
averaging of such consistent estimators might produce estimators with lower 
finite-sample variance than those of the estimators (II) and (12). The 
numerical results to be presented in this section show that, at least for the 
example considered, this intuition fails for (II) but appears to be correct for 
( 12). 

For numerical investigations of possible estimators of log A and a, a time 
series of 1000 values W, =Jog Z,, t = I, ... , 1000 was constructed as follows. 
For all t, X was taken to be a 15 X 15 matrix with all elements equal to 0 
except 

X 1, 4 = 17,500, 

x1•7 = 265,000, 

X 1. IO = 500,000, 

X 1.1 J 900,000, 

X l.5 85,000, 

X I,B = 340,000, 

x,,,, = 600,000, 

X 1, 14 = 1,050,000, 

x1•6 = 175,000 

x 1,9 450,000 

x 1• 12 750,000 

X 1,1 ~ = I ,200,000 

x1f. 1,1 = 0.5, 2, ... , 14, 

and the values of x 2,1 were chosen independently over time with probability 
.'r from the following list of 13 numbers: . 

2.98 X 10- 7
, 3.23 X 10- 5

, 1.59 X 10-', 4.5 X 10- 6
, 7.39 X 10 6

, 

5.74 X 10 6
, 2.13 X 10- 5

, 8.32 X 10 6
, 5.84 X 10-\ 3.21 X 10 5 

9.82 X 10- 6
, 1.08 X 10-', 7.05 X 10- 6

• 

These numerical values define one version of the striped bass population 
model of Cohen, Christensen, and Goodyear ( 1983 ), which is described 
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brieny in the next section. Computations were carried out in BASIC on a 
Tektronix 4052 desk-top computer. 

An initial vector Y _ 100 was defined to have all 15 elements equal to I. 
One hundred random matrices X,, 1 = -99, -98, ... , 0 were generated as just 
described and vector Y0 was computed according to (I). The purpose of the 
procedure so far was to eliminate from Y0 any effects of the inevitably 
arbitrary choice of Y _100 • Then another 1000 random matrices X,, 
t = I, 2, ... , I 000 were generated as above, Y, was again computed from (I ), 
and W, log I' Y,, t = I, ... , 1000 were recorded for future analysis. In terms 
of the population model, W, is the logarithm of total population size, but the 
scale has no meaning. 

Let G = T- I be the "gap" between the epoch /0 + I of the first data 
point in the sample and the epoch /0 + T of the last data point. Values of G 
were chosen to cover the range likely to be observed in biological 
applications: G=3,9,27,81. For each G, and for all /0 0, 1,2, ... , 
1000- T, nine estimators L 1, i= 1, ... ,9 of togA and four estimators D;. 

I, ... , 4 of a were computed: 

L,(G, lo) (W,o+G+ I- w,.+ ,)/G. 

Ll(G, lo) = <DILI(G, lo) + (W,. Hi I I- w,.n)/(G I )j, 

L 1(G,t0 )=(HJ2L2(G,t0)+(W10 H; W,0 + 1)/(G-I)j, 

L 4(G, t0 ) (HIJL1(G, 10 ) + (W,o+G W,.n)/(G- 2)1, 

L5(G, to) (~)I4L4(G, to)+ (W,.+G+ I+ wlo+G·I w,.+J w, •• I)/(G 2)1. 

L6(G, lo) <DIL I(G, lo) + (W,.Hil I + w,.+ G- w,.,. I - w,,,, 2 )/(G I )j. 

L7(G,to)=(2W,.+G+I + w,.+G- w,.+2 2W,.+,)/(3G-2), 

L 8(G, t0 ) = (012L 6(G, 10 ) + (W,o+G W,.+2)j(G- 2)], 

L9(G, to) <n< w,u+G + w,.H,' I - w,., I- w,.+ 2)/(G I), 
a 

DI(G,to)=(n/2)'12 !JogGI' 1 L rmlwtotitl w,oii-JLI(G,Iu)l, 
j I 

(i 

D2(G, lo) = (n/2) 112 jlog G, ... I L rl/21 w,o*lt I- wlnt I- JL~(G, lo)l. 
j I 

D
3
(G,t0 ) {!)ID 1 (G,t0)+D 1 (G~ l,t 0 + l)J, 

D4(G, t0 ) = (1}ID 2(G, t0 ) + D 2(G I, / 11 + l)j. 

L
1 

is identical to the estimator of togA in (II). L 2 , L 1 • L 4 • and L 5 

average increasing numbers of pairs of points. L 6 and L 7 are two other 
plausible ways of weighting the same pairs of data points that are used in 
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L J; similarly L 8 and L 9 are .two other ways of weighting the pairs of data 
points used in L 4 • 

D 1 and D 2 are identical to the estimator of a in (12) but use, respectively, 
L 1 and Ls as the estimator of log A. D3 and D4 use, loosely speaking, 'two 
initial epochs 10 and t0 + I, with D 3 based on L 1 and D 4 based on L

5
• 

The means and standard deviations for each estimator and each value of 
G were computed, for i I, 2, ... , 9, according to 

1000--G- I 

M(L 1(G)) L L 1(G, 10 )/(1000 G), 
lo=O 

S(L1(G)) G) • 
J 

1/2 

and similarly for D1 , i = I, 2, 3, 4. Table I gives the results. 
According to Table I, ror every value of G, except G 81, the estimator of 

log A with the smallest standard deviation is L 1 • For G 81, the standard 
deviation of L 5 is slightly smaller than that of L 1 • That L 1 has the smallest 
deviation is consistent with the asymptotic result in the remark following 
Theorem 2, but still surprisingly because L 1 is based on only one pair of data 
points. We recommend L 1 as the best among the estimators of log A that we 
have considered. 

For values of G greater than 3, the estimator of a with the smallest 
standard deviation is D 1 . For every G considered, the mean value of D 1 is 
never the largest or the smallest of the means of the four estimators of a. We 
recommend D1 as the best among the estimators of a that we have con­
sidered. 

It is possible to supply some heuristics to suggest why S(D1) < S(D
1

) is 
not uncommon. Write 

D 1(G-I,t0 + I) Dt, 

Then S(D 3 ) ~ S(D 1) means 

~IS 2 (D 1 ) + S2(Di) + 2pS(D 1) S(Dt)i ~ S 2(D 1), (44) 

where p denotes the correlation between D 1 and vr Clearly p will be 
positive and close to one. Now the inequality (44) holds if and only if 

(45) 

As G increases, p--. I. For G within the range to be expected in biological 
problems we have p < I and (3 + p 2

)
112

- p > I while S(Di) and S(D.) are 
likely to be around the same value. This suggests that (45) should hold more 
often than not, implying S(D1) ~ S(D 1) is more likely than S(D

3
) > S(D.). 
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TARLE I 

Means and Standard Deviations of Estimators 

Standard Standard 
Mean deviation Mean deviation 

T= 1000 G 3 T= 1000 G=27 

L, -0.083052 0.096232 -0.082667 0.021324 

L, -0.083051 0.102794 -0.082653 0.021412 

L, -0.083054 0.101017 -0.082658 0.021375 

L, -0.083058 0.107645 -0.082653 0.021502 
L, -0.083053 O.Q98562 -0.082650 0.021377 

L• --0.083054 0.099774 -0.082660 O.o21 339 
L, -0.083054 0.!00303 -0.082658 0.021.173 

L. -0.083058 0.109046 -0.08265) O.D21505 

1 .• --0.083056 0.1()3588 -0.082654 0.021493 

D, 0.124968 0.091676 0.141653 0.063425 

Dl 0.127451 0.092913 0.1442J4 0.067470 

D, 0.123544 0.072000 0.142212 0.057170 

D, 0.121388 0.071485 0.142823 0.059069 

T=IOOO G 9 T=IOOO G=81 
------ -~·-----·--· 

1., -0.082858 0.040897 -0.082730 0,011729 

L, -0.082853 0.041403 -0.082719 0.011729 

1., -0.082846 0.041256 -0.082725 0.011716 

L, -0.082839 0.042093 -0.082723 0.011730 

1., --0.082835 0.041809 -0.082721 0.011698 

L. -0.082849 0.041045 -0.082726 0.011715 

1., -0.082847 0.041217 -0.082725 0.011716 

L• -0.082838 0.042156 -0.082723 0.0117)0 

1 .• -0.082840 0.041912 -0.082123 0011729 

D, 0.153916 0.075175 0.132777 0.052168 

D, 0.164354 0.087292 0.133701 0.053555 

D, 0.157286 0.068402 0.133117 0.047462 

D, 0.160211 0.07.1828 0.133374 0.048048 

Note. Nine estimators (I.,. ... , L.) or log .t and four estimators (D,, ... , D,) of n in a 
simulation of length T = I ,000 for gaps G = 3. 9, 2 7, 81. 

The last part of Theorem 2, which describes a convergence in distribution 
to a normal law, suggests that the relationship between S(L 1 (G)), the 
standard deviation of L 1(G), and a, which is estimated by M(Dl(G)), would 
be, for large G, 

Consequently, for large G, the ratio M(D 1(G))G 112/S(l,,(G)) should 
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approximate to I, a result which can be rigorously established via the 
apparatus of the proof of Theorem I. For G 3, 9, 27, and 81. this ratio is 
0.75, 1.25, 1.30, and 1.23 according to the values of M(D1(G)) and S(L 1(G)) 
given in Table I. None of these ratios is very far from I. but even for G·= 81, 
Lhe ratio 1.23 differs from l enough to suggest that L 1(81, t0 ) is still some 
distance from normality. 

We have carried out the same numerical analysis of another example. not 
to be reported here, and obtained qualitatively similar results. Unfortunately. 
theory which could determine how general these conclusions are does not 
seem to be presently available. 

In summary, for log A, the simplest estimator (II) has the smallest 
variance in this numerical example. For a, one can reduce the variance of the 
estimator ( 12) by averaging over two initial epochs t 0 + I and t0 + 2, using 
( I I ) for log l, as in D 1 • 

5. STRIPED BASS IN THE PoTOMAC RIVER 

The Potomac River, which nows into the Chesapeake Bay on the east 
coast of the United States, has along its shores breeding sites of the striped 
bass (Marone saxatilis), an important sporting and commercial fish. The 
Maryland Department of Natural Resources has conducted annually a 
standardized seining procedure which has yielded the time series shown in 
Table II. The data for Chesapeake sites other than along the Potomac River 
are analysed by Goodyear, Cohen, and Christensen (in press). The numbers 
give the average number of fingerling striped bass caught per beach seine 
haul. These numbers are interpreted as the second element of the vector Y1• 

The first element corresponds to the striped bass eggs, which were not 
measured directly. 

Before employing the estimators presented above, it is important to verify 
that the model for which these estimators were developed is appropriate to 
the data. Otherwise the results of using the estimators have little meaning. 

Cohen, Christensen, and Goodyear ( 1983) derived estimates of the 
fecundity (female eggs laid per female) as a function of years of age of 
striped bass that ate given as the elements of the first row of the matrix X in 
the previous section. Since the first age class corresponds to eggs, 
X 1, 4 17,500 is the effective fecundity of a 3-year-old female striped bass, 
for example. 

For the annual probability of survival of a striped bass of age one year or 
more, Cohen et al. considered a range of values, one of which was 0.5. 
Goodyear et al. considered a wider range of post-egg survival probabilities 
and a refinement in the assumption of constant post-egg survival. 

Using the fixed matrix elements (all but x2, 1) given in the previous section 
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TABLE II 

Average catch (number or individuals or both sexes) 
per beach seine haul or fingerlm!l. striped bass in the 

f'otomac River breeding site or Chesapeake Bay 

Year Young or year" 

1954 5.2 
1955 5.7 
1956 6.2 
1957 2.6 

1958 8.4 
1959 1.6 
1960 4.3 
1961 25.7 
1962 19.7 
1963 1.1 

1964 29.2 
1965 3.4 
1966 10.5 
1967 1.9 
196!\ 0.7 
1969 0.2 
1970 20 I 
1971 !\.5 
1972 1.8 
1973 2. I 
1974 1.5 
1975 7.7 
1976 3.2 
1977 1.9 
1978 7.9 
1979 2.1 
1980 2.3 
1981 1.4 

Note: Based nn annual surveys conducted by the 
Maryland Department of Natural Resources (rrom 

Cohen et a/ .. 19R3 ). 
a young or year 1 is taken as an index of the 

number or I -year old remale fish at the time or the 
spawning season in calendar year l + I. Thus the 
average catch of 2.3 individuals in 1980 indexes the 
I year-old female population in 1981. Data courtesy 
or Maryland Department or Natural Resources (R. 

Florence). 



and the 'time series of 1-year-olds given in Table II. Cohen et al. obtained 13 
estimates for the annual probability of survival of eggs, which were given in 
the previous section as the values for x2, 1• Their detailed analysis of these 
values of x2• 1 failed to reject the hypothesis that they were independently· and 
identically distributed. Other assumptions of the model (I), such as the 
absence of density dependence, were also discussed and justified. The neglect 
of demographic nuctuations in the numbers of births and deaths, conditional 
on the rates of fecundity and survival, is appropriate in view of the very large 
numbers of fish in the striped bass populations. 

Cohen et al. adopted the model used in the previous section before the 
estimators and supporting theory presented here were available. Their 
estimator of log A (their Eq. (35)) is identical to our (I I). However, they 
were not able to estimate a. 

Table Ill presents the results of using all the proposed estimators, taking 
W, as the logarithms of the data in Table II and G = 27, since there are 28 
data points. According to L 1 , the asymptotic growth rate of population size 
is log l = -0.049. According to D_,, o = 0.42. Thus a 951lt, confidence 
interval for log A is -0.049 ± ( 1.96) X (0.42)/5.3 = -0.049 ± 0.155. The 
data are thus consistent with the possibility that the population is increasing, 

TABLE Ill 

Estimates of log A(L1) and a(D1) for the Striped Bass Data 
in Table II and for the Same Model Simulation on Which 

Table I Is Based 

Striped bass Model simulation 
data (G 27) (G = 999) 

--·--·--·-

T= 28 T= 1000 

L, -0.048599 -0.083135 
Ll -0.051300 -0.083126 
L, -0.044658 -0.083113 
L, -0.042569 --0.083101 
L, -0.044345 -0.083082 
L6 -0.045643 -0.083118 
L, -0.044708 -0.083113 
L. -0.042530 -0.083101 
L. -0.042687 -0.083101 
D, 0.387223 0.108699 
Dz 0.382306 0.109229 
DJ 0.421421 0.116829 
D, 0.418728 0.117357 

Note: Since G = T- 1 in these calculations, only one 
value was obtained for each estimator. 

decreasing, or stationary in the long run, a conclusion also reached by 

Cohen eta/. 
Suppose that the data continued to be collected in the future and that the 

values of log A and o remained at the values presently observed. The number 
of years of observation that would be required to demonstra!e at the 5% 
significance level that the population is declining is (z,.. 12 o/logA)

2 = 284. By 
that time, assuming the stock of striped bass continued to decline at nearly 
5% per year, there would hardly be any striped bass left to count. 

The estimate of log A -0.083 obtained from the simulation of I ,000 
years (Table III) falls well within the 95% confidence interval estim~ted fr?m 
the data. The 95% confidence interval estimated from the I ,000 _ stmulatJOn 
points is -0.083 ± 0.007. which includes the estimate log A = -0.086 
obtained by Cohen et a/. from a simulation of 1,000 points independently 
programmed on another computer in another language. Thus the two 
simulations are consistent with each other and with the data. 

Finally, supposing that no further information about the young of year 
becomes available after 1981, what is a 95% confidence interval for the 
young of year (average catch of fingerling striped bass per beach seine haul) 

in 1991? 
Given T data points z

10 1 1 
, ••• , z

1
, 1 1 without knowledge of the time origin 10 , 

( 10) can be modified to yield the following approximate I 00( I -a)% 
confidence interval for the WT =log ZT at epoch r > 10 + T: 

w,o+T+(r Ito+ TI)(T-1)-'(W,.,,l- w,(). ,) 
± 0 min ((r- Ito+ TI)(T- I r '12

zq!1 
a >q>O 

In the present example, 
wl954 =log 5.2, wl981 log 1.4, 
factor to be minimized above is 

t
0

+ I= 1954, 10 + T= 1981, r= 1991. 
and using D 3 we have o=0.421421. The 

This minimization is easily carried out numerically by scanning a grid of 
values of q and using a standard approximation for z11 (Abramowitz and 
Stegun, 1964, 26.2.22, p. 933). The resulting 9YYr, confidence interval for Wr 
is (-4.92, +4.62) which implies a 95% confidence interval for average young 
of year per beach seine haul from 0.007 to 101.42. 

Figure 1 shows the natural logarithms of the observed mean number of 
fingerlings per beach seine haul from 1954 to 1981 and the projected 95% 
confidence intervals (on the logarithmic scale) for the years from 1982 to 
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FIG. I. Natu~al logarithm of young of year of Potomac striped bass observed from 1954 
to 1981, and estimated 95% confidence intervals from 1982 to 1991. Observed values are 
loganthms of data m Table II. 
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~10. 2. Young of year (average number of individuals per beach seine haul) of Potomac 
stnped bass observed from 1954 to 1981, and estimated 95% confidence intervals from 1982 
to 1991. Observed values are the data in Table II. 
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1991. Figure 2 gives the observed mean number of fingerlings per beach 
seine haul and projected confidence intervals. 

While the observed annual means nuctuate between 0 and 30 fingerlings 
per beach seine haul, the projected confidence intervals expand rapidly. Ten 
years in the future, the confidence intervals include, with low probability. 
fingerling numbers that have not been seen since 1954 at least. 

These wide confidence intervals result from the conjunction of the data. 
our model of the population dynamics (based on stationary ergodic products 
of random nonnegative matrices), and the statistical estimators of log A. and 
a derived here. If one accepts the data and the model as defensible. one can 
interpret the width of the projected confidence intervals in two ways. 

First, the confidence intervals may be so wide because our estimator of o 
gives numerical values that are too large. Research in progress indicates that 
estimators, based on time-series methods, that are quadratic functions of the 
data may estimate a more efficiently than the estimators proposed here. If 
improved estimators lower our estimates of a, then the projected confidence 
intervals will also become narrower. 

Second, if improved estimators do not substantially change our numerical 
estimates of a, then the existing data and our model of population dynamics 
together may imply a very wide range of uncertainty about the numbers of 
fingerlings that can be anticipated even a few years in the future. In this case. 
both commercial planners and governmental managers of resources would do 
better to face this great uncertainty squarely than to be surprised constantly 
by unanticipated nuctuations. 
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