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Mathematical demography has flowered in many different gardens during
the past twenty years. Several reviews of mathematical demography are
available: Keyfitz (1968), Feichtinger (1971), Pollard (1973), Ludwig 6978),
Keiding (1975), Menken (1977), Smith and Keyfitz (1977), Kurtz (1981), and
Cohen (1984). This necessarily brief review deals only with stochastic models
for population projection developed since 1945.

POPULATION PROJECTION MODELS

Stochastic models are needed for population projection because
deterministic models fail to account for the varlability of historical
demegraphic data and to provide probabilistically meaningful estimates of the
uncertainty of demographic predictions. Stochastic population projection models
may include migration, mortality and fertility (Lee, 1978b; McDonald, 1981).

Among stochastic projection models, ‘one can distinguish, not always
sharply, between structural models and time-series models. Structural models
représent some underlying mechanism of population growth. Time-series models
apply to demographic data general techniques in which the form of the model
need not be based on demographic theory.

Structural projection models usually describe either or both of two
sources of random fluctuation: demographic variation and environmental
variation. Demographic variation arises from the stochastic operation of
mechanisms with fixed vital rates. Environmental variation  arises when the
demographic rates themselves are governed by a stochastic process.

Population Projection with Demographic Variotion

Deterministic projections (Siegel, 1972) of populations closed to migration
commonly use the recurrence relation

y(f+1) = L{t+1) y(t), t=0, 1, 2, ...

where y(t) is a vector in which the ith component is the number of females in
age class i at time t,1=1, .., k; y(0) is a given initial age census of the
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female population; and L(t) is a k x k non-negative matrix, conventionally
called a Leslie matrix. See Keyfitz (1968) or Pollard (1973) for details.

Taking L to be independent of t, l.e. constont in time, Pollard (1944)
reinterprets (1) as o multitype branching process. The survival and fertility of
each female are assumed independent of each other and of the survival and
fertility of oll other females. Then y(t) in (1) can be interpreted as the
expectation of the age census at time t . A linear recurrence relation that uses
the direct or Kronecker product of two matrices describes the variances and
covariances of each census of females. Goodman (1947) computes the
probability in Pollard's model that the line of descendants of an individual of
any given age will eventually become extinct.

Projections of the Norwegian population as a multitype branching process
give estimates of uncertainty that Schweder (1971) considers unrealistically low.

Independently of Pollard (1966), Staroverov (1976) considers exactly the
same model. Because the model varionces are implaousibly small compared to
the historical variation in Soviet birth rates, Staroverov replaces the assumption
that each individual evolves independently with the assumption that groups of
¢ individuals evolve as units, independently of other groups. As ¢ increases,
the varlance of numbers in each age group increases while the means remain
unaltered. A comparison of observed and projected births from 1960 to 1973
suggests that even ¢ = 100,000 is too small, and that it is necessary to allow
for temporal variation in the fertility and mortality parameters.

With a different interpretation of L(t) in (1) from the usual Leslie
matrix, Goodman (1968) describes two sexes; Breev and Staroverov (1977)
describe lobor force migration; Wu and Botkin (1980) describe elephants.
Deistler aond Feichtinger (1974) show that the multitype branching process
model may be viewed os o speclal case of o model of additive errors proposed
for population dynamics by Sykes (1949).

Mode (1976) develops population projection models using renewal theory
rather than matrix methods. The continuous-time stochastic theory analogous to
what has just been described is presented by Keiding and Hoem (1974) and
Braun (1978), with extensions to parity-dependent birth rates and multiregional
populations. Cohen (1984) discusses the merits of branching processes as models
of human and nonhuman populations.

Population Projection with Environmental Variation

In a large population, the effects of demographic variation are normally
negligible compared to those of apparent changes in vital rates. Sykes (1969)
supposes that, given L(t+1), y(t) determines y(t+1) exactly, but that there Is
no correlation between L(t) and L(s), s # t . Sykes computes the means and
covariances of the age censuses, allowing the means and covariances of the
sequence {(L(t)} to be inhomogeneous in time. Seneta (1972) pursues the
computation of variences in the models of Sykes (1969) and Pollard (1946). Lee
(1974) discusses the numerical example that Sykes gives.

LeBras (1971, 1974) and Cohen (1974, 1977) develop demographic
applications of products of random matrices (Furstenberg and Kesten, 1940).
Under exactly stated conditions, Furstenberg and Kesten prove theorems that
imply that the census vector y(t) changes asymptotically exponentially and
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that the elements of y(t) , namely the numbers of females in each oge class,
are, for large t , asymptotically lognormal.

Cohen (1977) gives conditions under which the probability distribution of
age structure asymptotically becomes independent of initial conditions. This
weak stochastic ergodic theorem Is the probabilistic analog of the deterministic
weak ergodic theorem of Coale and Lopez (Pollard, 1973, pp. 51-55).

The theory of products of random matrices as models of environmental
variability in age-structured populations is developed by, among others, Cohen
(1980), Lange (1979), Tuljapurkar and Orzack (1980), and Tuljapurkar (1984).

An elementary but important observation emerging from these studies is
a distinction between two measures of the long-run rate of growth of a
population in a stochastic environment. One measure, studied by Furstenberg
and Kesten (1940), is the average of the long-run rates of growth along each

sample path, log A= lim¢ 4o f'iiE(log y(’r));Anofher measure is the long-run rate
of growth of the average population, log u = limyyq t7* log Ely; « (1) .

For deterministic models, A = y, but in general, in stochastic models, A <
p with strict inequality in most examples.

Products of random matrices provide a natural model of age-structured
populations of the game fish, striped bass (Cohen et al., 1983), and con be used
to estoblish a long-run decline in populations of the striped bass somples in the
Chesapecke Bay (Goodyear et al., 1984). Heyde and Cohen 5984) use
martingale limit theorems to estimate confidence intervals for demographic
projections based on products of random matrices assuming only ergodicity and
stationarity in the environment, and apply their methods to the striped bass.

When the models based on products of random matrices are applied to
human data, an updating of the serles of Swedish population sizes analyzed by
Sabola (1974), the confidence Intervals estimated according to the techniques of
Heyde and Cohen (1984) are broader, l.e., unnecessarily pessimistic, compared
to confidence intervals estimated empirically (Cohen, submitted).

Population Projection with Demographic and
Environmental Variation

Demographic variation and environmental variation con be modeled
together. If the probabilities of giving birth and. of surviving in a multitype
branching process are themselves random variables (Pollard, 1968; Bartholomew,
1975), the moments of the number of individuals in each age class can be

E:omp;:fed from a modification of a recurrence relation derived by Pollard
1948).

For a multitype branching process such that the offspring probability
generating functions at all times are independently and identically distributed,
Welssner (1971) gives some necessary and some sufficient conditions for almost
sure extinction of the population (see also Namkoong, 1972; Athreya and Karlin,
1971). Weissner, Athreya and Karlin do not discuss the opplication of these
results to age-structured populations.
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Time-Serles Models .

The application of modern stochastic time-series methods to demographic
data originates with Lee (1970) and Pollard (1970). Lee (1978q, for summary)
uses long time serles, for example, of births and marriages or of mortality and
wages, to test alternative historical theories of demographic and economic
dynamics. Pollard (1970) develop a second-order autoregressive model of the
growth rate of total population size for Australia.

Lee's (1974) analysis of births from 1917 to 1972 in the United States
demonstrates that the distinction between structural models and time-serles
models Is not sharp. Eq. (1) implies that each birth may be attributed to the
fertility of the survivors of some preceding birth cohort. Hence the sequence of
births {y.(t)} 1Is described by a renewal equation. By a sequence of
opproxl,mo‘ﬂons to this renewal equation, Lee transforms the residuals of births
from their long-run trend into an autoregressive process for which variations in
the net reproduction rate are the error term.

Independently of Lee, Saboia (1974) develops autoregressive moving
average (ARMA) models using Box-Jenkins techniques for the total population
of Sweden. Based on data from 1780 to 1960 at 5-year intervals, his projections
for 1965 compare favorably with some standard demographic projections.

Saboia (1977) relates ARMA models to the renmewal equation for fore-
casting births. In these models, the age-specific vital rates can vary over
time; migration is recognized. Using female birth time-series for Norway,
1919-1975, he gives forecosts with confidence intervals up to 2000. However,
Sabola's (1977) models are not the simplest required to describe the data
(McDonald, 1980).

McDonald (1979) describes the relationships among the renewal equation
model, with migration added, structural stochastic econometric models, and
ARMA models. He suggests that exogenous, perhaps economic, variables wilil
have to be invoked to explain a sharp decline that occurred in the number of
Australian births aofter 1971. Land (1980) similarly suggests incorporating
exogenous variables in structural stochastic projection models with
environmental variation.

The forecasts of the time-series models have very wide confidence
intervals (e.g., McDonald, 1979; McNeil, 1974). In view of the uncertainty of
the demographic future, policy that depends on population size and structure
should be flexible enough to allow for different possible futures.

In addition to spectral methods and Box-Jenkins techniques, other recent
approaches to population time-series modelling include a stochastic version of
the logistic equation (McNeil, 1974) as a model of United States Census total
population counts; the Karhunen-Lodve procedure (Basilevsky and Hum, 1979)
for quarterly records of births in two Jomaican parishes, 1880 to 1938; and an
age- and density-dependent structural model, estimated by use of the
Kalman-Bucy filter (Brillinger et al., 1980), for age-aggregated counts of the
sheep blow-fly.

ASSESSMENT AND PROSPECTS
Hajnal (1957) raises profound doubts about the possibility of projecting
the future of populations (also see Hoem, 1973). There Is even a joke, not told

by demographers (Heaven forbid!), but by consumers of demographic projections.
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Question: What is the difference between a demographer and a
mathematical demographer ?

Answer: A demographer is somebody who guesses wrong about the future
of populations. A mathematical demographer is somebody who uses mathematics
and computers to guess wrong about the future of populations.

Greater effort needs to be made to evaluate quantitatively the merits
ond demerits of population projection techniques and the underlying models on
which they rest, following the path of Henry and Gutlerrez (1977), Ascher
(1978), Keyfitz (1982), Stoto (1983), Stoto and Schrier (1982), and Smith (1984).
If these efforts succeed, demographers can replace the old joke with a new one.

Questlon: What is the difference between a bad mathematical
demographer and a good one ?

Answer: A bad mathematical demographer uses mathematics and
computers to guess wrong about the future of populations. A good mathematical
demographer uses mathematics and computers to guess wrong about the future
of populations, but tells you reliably how far wrong you can expect him to be.

SUMMARY

Mathematical demography has flowered recently in more areas than can
be reviewed here. This review deals only with stochastic models for population
projection developed since 1945.

Stochastic models are needed for population projection because
deterministic models fall to account for the variability of historical
demographic -data. Deterministic models also fail to provide probabilistically
meaningful estimates of the uncertainty of demographic predictions.

Among stochastic projection models,” one can distinguish, not always
sharply, between structural models and time-series models. Structural models
represent some supposed underlying mechanism of population growth.
Time-series models apply to demographic data general techniques in which the
form of the model need not be based on demographic theory.

Structural projection models usually describe either or both of two
sources of random fluctuation: demographic variation and environmental
variation. Demographic variation arises from the stochastic operation of
mechanisms with fixed vital rates. Environmental variation arises when the
demographic rates themselves are governed by a stochastic process.

Deterministic projections of populations closed to migration commonly
use the recurrence relation y(t+1) = L{t+1)y(t), t = 0, 1, 2, ..., where y(t) is a
vector in which the ith component is the number of females in age class |
at time t , i =1, ..., k; y(0}) is a given Initial age census of the female
population; and L(t) is a k x k non-negative matrix, conventionally called a
Leslie matrix. To model demographic variation, this recurrence relation has
been interpreted in terms of multitype branching processes.
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However, the effects of demographic variction are normally negligible
compared to those of apparent changes in vital rates. To model environmental
variation, the projection matrix L(t) may be considered to be random. Under
reasonable conditions, the census vector y(t) changes asymptotically
exponentially and the elements of y(t) , namely, the numbers of females in each
age class, are, for large t , asymptotically lognormal. Moreover, the
probability distribution of age structure asymptotically becomes independent of
initlal conditions. This weak stochastic ergodic theorem is the probabilistic
analog of the deterministic weak ergodic theorem of Coale and Lopez.
Statistical methods for models with environmental variability exist.

The application of modern stochastic time-series methods to demographic
data begon in 1970. Some projections based on time-series methods compare
favorably with some standard demographic projections. The forecasts of the
time-series models have very wide confidence intervals. In view of the
uncertainty of the demographic future, policy that depends on demographic
forecasts should be flexible enough to allow for different possible futures.

Greater effort needs to be made to evaluate quantitatively the merits
and demerits of population projection techniques and the underlying models on
which they rest.

RESUME

DEMOGRAPHIE MATHEMATIQUE: APPLICATIONS RECENTES
DANS LE DOMAINE DES PROJECTIONS DEMOGRAPHIQUES

La démographle mathématique s'est développée récemment dans
tellement de domalnes qu'll est Imposslble de les passer en revue, seuls les
modéles stochastlques pour les projections démographlques élaborées depuls
1965 seront examlinées Icl.

Il est nécessalre d'avolr recours aux modeéles stochastlques pour
I'élaboratlon des projectlons démographlques parce que [es modéles
déterministes ne parvlennent pas & rendre compte de la varlabllité des données
démographlques dans le temps. Les modeéles déterministes ne parvlennent pas
non plus a fournlr des estlmations de [I'Incertltude des prédictions
démographlques qul ont un sens du polnt de vue probablilste.

Parml ces modéles stochastlques, 1l est possible de dlstinguer, quolque
pas toujours de manlere nette, les modéles structurels des modéles basés sur
des sérles chronologlques. Les modéles structurels représentent I'un ou l'autre
mécanlsme qul est supposé réglr la crolssance démographlque. Les modéles
basés sur des sérles chronologlques appllquent aux données démographlques des
technlques générales qul n'exlgent pas que la forme du modéle solt basée sur la
théorle démographlque.

Les modéles structurels de profectlon décrlvent généralement slnon les

deux sources de varlatlon aléatoire du molns l'une d'entre elles, & savolr: la
varlatlon démographlque et la varlatlon de I'environnement. La varlation
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démographlque résulte du Jeu de I'actlon stochastlque des mécanlsmes assoclés
a des taux démogqraphlques fixés au préalable. La varlation de l'environnement
Intervient lorsque les taux démographlques eux-mémes sont gouvernés par un
processus stochastique.

Les projectlons déterministes de populatlons fermées utllisent
communément la relatlon de récurrence y(t+1) = L{t+1)y(t) , t =0, 1, 2, ..., ou
y(t) est un vecteur sur lequel la 1ére composante est le nombre de femmes
appartenant a la classe d'age | au temps t , 1 = 1, ..., k; y(o) est la
distribution par &ge Inltlale de la populatlon féminine obtenue lors d'un
recensement donné; et L(t) est une matrice kxk non-négative, appelée par
convention la matrice de Leslle. Pour rendre la varlatlon démographlque sous
forme de modéles, I faut Interpréter la relatlon de récurrence en termes de
processus & dérlvations multiples.

Normalement, les effets de la varlatlon démographlque restent cependant
négligeables comparatlvement & ceux prodults par les changements apparents
des taux démographlques. Pour rendre compte de la varlatlon de
I'environnement sous forme de modéles, la matrice de projectlon L(t) sera
consldérée comme aléatolre. Sous certalnes conditlons ralsonnables, le vecteur
du recensement y(t) change (de manlére asymptotique et exponentlelle) et les
éléments de y(t) , & savolr les nombres de femmes appartenant & chaque classe
d'ages, sont asymptotiquement lognormaux pour une valeur de t .

De plus, la distributlon probabillste de la structure par &ges devlent
asymptotiquement Indépendante des conditlons Inltlales. Ce théoréme de falble
ergodicité stochastique est le correspondant probablliste du théoréme de falble
ergodicité déterministe. Enoncé par Coale et Lopez, Il exlste des méthodes
statistlques qul s'appliquent aux modéles Incorporant la varlabllité de
I'environnement.

C'est en 1970 que [I'applicatlon aux données démographiques, des
méthodes stochastlques modernes basées sur des sérles chronologlques a
commencé. Certalnes projectlons calculées selon des méthodes basées sur des
sérles chronologlques se comparent avantageusement & certalnes projectlons
démographlques courantes. Les prévislons de ces modéles bas€s sur des serles
chronologlques ont de trés grands Intervalles de conflance. Etant donné
I'Incertitude de I'avenlr démographique, toute politique qul se fonde sur des
prévisions démographlques devralt étre suffisamment flexible pour s'adapter &
différents avenirs possible.

Une attentlon plus grande devralt étre accordée a I'évaluation

quantitative du pour et du contre des différentes technlques démographiques
alnsl que des modéles qul les sous-tendent.
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