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BOOK REVIEWS 

The geometry of biological time, by Arthur T. Winfree, Biomathematics, vol. 8, 
Springer-Verlag, New York, Heidelberg and Berlin, 1980, xiii + 530 pp., 
$32.00. 

This book views biological periodicities through the lens of topology. It 
describes experiments on biological and biochemical rhythms. It interprets 
them in the light of topological constraints on continuous mappings between 
manifolds. It states only one theorem and very few equations. 

A central example will illustrate the book's thrust. 
A fruitfly of the species Drosophila pseudoobscura starts life as a fertilized 

egg. It develops into a larva, which eats until it matures into a pupa. The pupa 
acquires a hard outer cuticle, the pupal case. Within the pupal case, larval 
organs metamorphose into adult organs. When all is ready, a winged adult 
ecloses from the pupal case. The duration of eclosion is so short compared to 
the durations of the pupal and adult stages before and after it that eclosion is 
considered to occur at a discrete epoch in time. 

If a population of pupae is reared under constant conditions that include 
bright light, eclosion times are distributed over the 24-hour day. Suppose the 
pupae are reared in constant bright light for some time, and then suddenly 
plunged into darkness. Call the epoch of this transition from light to darkness 
T = 0 hours. Within an interval of one and a half hours around T = 17 hours, 
there will be a burst of eclosion. This peak of eclosions will be followed by no 
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eclosions for another 24 hours. At T = 17 + 24n, n = 1, 2, ... ,6, there will be 
additional peaks of eclosions. 

This observation suggests that, following a transition from bright light into 
steady darkness, eclosion happens under the control of a clock with a 24-hour 
periodicity, and that the light-dark transition sets the clock running at a phase 
of 7 j24 = (24 - 17) j24 of a cycle if phase 0 is defined to occur at a peak of 
eclosions. 

Now suppose that a population of fruitfly pupae reared in bright light is 
suddenly darkened at T = 0, and at some later T > 0 is exposed to a dim blue 
light of duration M seconds. Then the population again returns to darkness. 
The two controlled parameters of this experiment are the duration M and the 
epoch T of the blue light stimulus. (The light is so brief compared to 24 hours 
that it can be treated as occurring at a discrete epoch in time.) 

For some hours after the blue light, no eclosion occurs. Then at first 
eclosions occur scattered in time. After 4 or 5 days, sharp peaks of eclosions, at 
24-hour intervals, reappear. The peaks are shifted with respect to the peaks 

. that would have occurred at 17 + 24n hours in the absence of the blue light. 
The amount of the shift depends on MandT. 

Since a clock with 24-hour periodicity seems to govern eclosion before and 
after the blue light, the experiment can be described in terms of the blue light 
duration M and two phases: the phase If> of the clock (measured with respect to 
eclosion peaks in the absence of light) just prior to the epoch when the blue 
stimulus light goes on, and the phase If>' of the clock just after the blue light 
goes off (inferred from the interval to the next peak of eclosions). 

For almost every fixed duration M, experiments show that the new phase If>' 
varies smoothly as ~ function of the old phase cf>. When M = 0, that is, in the 
absence of any blue light, cf>' is proportional to If> with slope 1, since If>' =If>. 
Blue lights of up to 4 second durations cause minor perturbations to propor
tionality, but the average slope of cf>'( If>) over one cycle of If> remains 1. These 
curves can be plotted on a torus. If the torus lies on a table, cf> runs around the 
hole of the torus in a plane parallel to the table top, and If>' runs around one 
cross section through the torus made by a plane perpendicular to the table top. 
Then for small values of M, the curves cf>'( cf>) have winding number 1: their 
graph on the torus winds through the hole exactly once as cf> varies through one 
cycle. 

Recall, however, that the pupal eclosion clocks were synchronized in the first 
place by a sudden transition from bright light to darkness. It is not too 
surprising that a sufficiently long exposure to the dim blue light followed by 
darkness effectively resets all the clocks. When the duration M is between 8 
and 64 seconds, the winding number of </>' as a function of If> is 0. This means 
that as the old phase cf> increases through one 24-hour cycle, the new phase If>' 
passes through a cumulative total of zero cycles. For long stimuli, the graph of 
</>' as a function of If> either does not pass through the hole of the torus at all, or 
comes back as often as it passes through, for a net advance of 0 cycles. 

Arthur T. Winfree, the author of this book, was apparently the first to study 
experimentally the implication of a necessarily discontinuous transition, with 
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increasing M, from winding number 1 to winding number 0 in the graph of cp' 
as a function of cp: there must exist a stimulus time T* or phase cp* and a 
duration M* such that after an exposure to the dim blue light of M* seconds, 
no phase cp' can be assigned to the population of eclosion clocks. Winfree calls 
such a (T*, M*) a phase singularity. In a series of ingenious, simple experi
ments that used approximately one megafly, Winfree demonstrated that a 
phase singularity does exist. At a phase singularity, the subsequent pupal 
eclosions become arrhythmic, probably because the eclosion clocks enter or 
approach nonoscillating steady state. 

The theorem that lies beneath the existence of a phase singularity may be 
stated informally: the only continuous maps from a disk to a circle have 
winding number 0 around the border of the disk. If the winding number is 
other than 0, then the map cannot be continuous. (It is remarkable and yet 
unexplained that all observed winding numbers in Winfree's biological exam
ples are 0 or !-nothing else.) 

The two crucial ingredients in this theorem, and in the example of fruitfly 
eclosion, are smoothness (continuity) and periodicity (the disk boundary and 
the circle). In roughly the first half of this book, Winfree reviews model 
time-keeping mechanisms in biology that share these two ingredients and 
describes what is known about the topologically inevitable phase singularities 
in each. 

In the second half of the book, which Winfree calls his "Bestiary," he 
describes electronic, chemical, and biological examples of the various time
keeping mechanisms and their corresponding phase singularities. The biologi
cal examples include cellular anaerobic sugar metabolism, pacemaker neurons, 
slime-mold amoebae, amphibian limbs, roach legs, circadian rhythms both 
generally and in the eclosion of insects other than fruitflies, the flower of 
Kalanchoe, the cell mitotic cycle, and the female ovulatory cycle. 

Winfree occasionally interprets data in ways that are, and are labelled as, 
potentially controversial. The contributors to Aschoff [1981] offer other, more 
descriptive than analytical, views of biological rhythms. Winfree also indicates 
what experimentation could resolve controversy. For the mathematically trained 
reader, he provides enough biological background to make his descriptions and 
the contested issues intelligible. He offers opportunities for mathematical 
research in questions raised throughout the book (see "Queries" in the Index). 

In spite of the breadth of biological examples chosen, Winfree concentrates 
exclusively on periodic aspects of biological time. Linear biological time figures 
in the healing of wounds (Lecomte du Noiiy, [1937]), aging (Behnke et al., 
[1978]), and evolution (Blum, [1968]). See also Whitrow [1980] for an overview 
and Krudy et al. [1976] for a bibliography. In large part, the linear aspects of 
biological time still await a geometer like Winfree. 

At the transition (p. 276) from the theoretical part of the book to the 
"Bestiary," Winfree remarks that "topological notions are'in principle incapa
ble of rigorous application to empirical science." Perhaps I do not grasp his 
meaning of "rigorous," for I find the bulk of his clear-headed book to be a 
sound and constructive use of topological notions in biology. The evidence 
supports his introductory statement (p. 3): "It is my belief that the life sciences 
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in particular have much to gain from, and perhaps something to contribute to, 
mathematical developments in the general area of topology." 

REFERENCES 

Jiirgen Aschoff (ed.) [1981], Biological rhythms, Handbook of Behavioral Neurobiology, vol. 4, 
Plenum, New York. 

John A. Behnke, C. E. Finch and G. B. Moment [1978], The biology of aging, Plenum, New 
York. 

Harold F. Blum [1968], Time's arrow and evolution, 3rd ed., Princeton Univ. Press, Princeton, 
New Jersey. 

Elmer S. Krudy, B. Bacon and R. Turner (eds.) [1976), Time: A bibliography, Information 
Retrieval, London and Washington. 

Pierre Lecomte du Noiiy [1937], Biological time, Macmillan, New York. 
G. J. Whitrow [1980], The natural philosophy of time, 2nd ed., Clarendon Press, Oxford and 

Oxford Univ. Press, New York. 

JOEL E. COHEN 




