181-34. Eigenvalue Inequalities for Random Evolutions, Joel E. Cohen, Rockefeller University and Center for Advanced Study in the Behavioral Sciences, Stanford.

A random evolution is a model for a population whose growth is piecewise exponential, with a random growth rate that is a functional of a continuous-time discrete-state Markov chain. Suppose the population experiences $n \ge 2$ different environments, and grows exponentially at rate b_i in the ith environment, i = 1, ..., n. Suppose the succession of environments is determined by a continuous-time Markov chain with n x n infinitesimal generator A and N(t) is the positive scalar size of the population at time t. Suppose dN(t)/dt = b(t)N(t), N(0) = 1, where b(0) = b_1 say and P[b(s+t) = b_j |b(s) = b_i] = $(e^{At})_{ij}$ and $\{b_1, ..., b_n\}$ is a set of n finite real numbers. If A is irreducible and B = diag $(b_1, ..., b_n)$, then (1/t) log E(N(t))+log $r(e^{A+B})$ as t-m, where r = spectral radius. An upper bound is obtained on $r(e^{A+B})$ as one of several new inequalities of the form (*) $f(e^Ae^B) \ge f(e^{A+B})$, where A and B are n x n matrices of complex numbers and f is a real-valued continuous function of a matrix argument that is finite when all elements of the matrix are finite. Such inequalities (*)have arisen independently in statistical mechanics (Received April 12, 1982)

193