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ABSTRACT 

We estimate and interpret two forms of age- and season-specific malaria infection and 
recovery rates. Our analysis is based on a time series of two-wave panel surveys from the 
first longitudinal field study that allows for direct estimation of these quantities-a WHO 
malaria survey in Garki, Kane State, Nigeria. We present a strategy for deciding whether 
two-state, two-wave panel data could have been generated by continuous-time Markov 
chains or certain mixtures of such chains. The central idea, applicable to longitudinal 
surveys generally, is to test estimated conditional probabilities for membership in the set 
of conditional probabilities that can be generated by specific classes of models (e.g. 
inhomogeneous Markov chains). Our method assumes (I priori only that the observations 
arise by sampling some continuous-time stochastic process. 

1. INTRODUCTION 

The purpose of this paper is to estimate and interpret conversion (or 
incidence) and recovery rates in human populations exposed to the malarial 
parasite Plasmodium falciparum. Our estimates are based on a time series of 
two-wave panel surveys. These surveys are part of a longitudinal field study 
of malaria conducted in Garki, Kano State, Nigeria by the Government of 
the Federal Republic of Nigeria and the World Health Organization [21]. 

The basic objectives of the Garki project were to (1) study the epidemiol- 
ogy of malaria, (2) measure the impact of certain control measures, and (3) 
construct and test a mathematical model allowing simulation of the trans- 
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mission of malaria. Our primary concern is with (1). Objectives (2) and (3) 
are pursued elsewhere [22,8,10,11,2 11. 

The two forms of conversion and recovery rates presented here are 
estimated from baseline data collected prior to any attempts to control 
malaria. Our investigation was motivated by an interesting paper by Be- 
kessy et al. [4] on the estimation of one form of such rates; namely, the 
expected number of events (conversion or recovery) per unit time per 
person at risk of the event at a time t. We also estimate and interpret the 
expected numbers of conversions and recoveries per unit time per person in 
the survey population. These rates represent information complementary to 
that discussed by Bekessy et al. In particular, the rates per person in the 
survey population reflect the influence of the relative sizes of the reservoirs 
of positive and negative persons at the initial survey. A limiting form of 
these rates may be interpreted as steady-state epidemiological incidence 
rates. 

In Sec. 2 we review the characteristics of malarial infections and describe 
the role of the Garki project in the historical context of field studies of 
malaria. We also indicate the importance of conversion and recovery rates 
for an understanding of malaria in human populations and for the assess- 
ment of the impact of interventions aimed at either control or eradication of 
the disease. 

This work also contributes to the larger problem of developing concepts 
and models to analyze longitudinal data. For a prescribed event A, 
associated with a continuous-time counting process, natural formulations of 
the concepts “event rate at time s per individual in the total population” 
and “event rate at time s per individual at risk at time s” are, respectively, 

r”(s) = lim 
E(number of occurrences of A per individual in [s, t)) 

t-s (1.1) 
us 

and 

E (number of occurrences of A per individual in 

pA (s) = lim 
as 

[s, t) 1 individual is at risk of A at time s) 

t-s (1.2) 

In empirical applications, testing whether classes of counting processes 
describe the occurrence of events in a population and estimating (1.1) and 
(1.2) within such a class are best facilitated by observing, in full, N 
realizations of a counting process 

v( tv wi), O<t<T, 1 <i<N. (1.3) 
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For each individual i, v(t,wJ is the number of occurrences of event A by 
time t starting from zero occurrences at the initial time, N is the number of 
individuals in a survey, and T>>inf(t : v( 1, w) > 0) with high probability. 

In many longitudinal surveys, collecting the exact timing of each oc- 
currence of an event for each individual as in (1.3) is either impossible, 
economically infeasible, or both. Observations usually contain gaps and 
censoring relative to a continuously evolving process [27]. For example, in a 
multiwave panel survey, observations on characteristics of a population are 
taken in waves at discrete time points 0= to < t, < . . + < tn, and several 
events in a counting process v( t, w) could occur in time A = min,(t,+ , - ti). 

Section 3 describes the connection between hypothesis testing for two- 
wave panel data and the embedding problem for Markov chains. We 
present the first systematic treatment of sampling aspects of embeddability 
criteria. We study the variability of parameter estimators for two-state 
continuous-time homogeneous Markov chains based on two-wave panel 
data. These estimators are then used to estimate conversion and recovery 
rates within the class of Markov models, once the embeddability of the 
panel observations within this class of models is established. This is the 
prototype of a general strategy for testing whether proposed classes of 
stochastic processes could have generated given multi-wave panel data. 
Some unsolved problems of such a strategy and the related literature on 
inference for stochastic processes are discussed in Sec. 8. 

In Sec. 4 we apply our methods to data studied previously [4]. The 
Markovian parameter estimates are used in Sec. 5 to estimate the event 
rates (1.1) and (1.2) within this class of models. In Sec. 6 we interpret these 
rates in the context of the Garki baseline surveys. 

The measurement error that arises in parasitemia surveys from daily 
oscillations in parasite density in the blood of infected persons is modeled 
in Sec. 7. We show that this measurement error causes a downward bias in 
estimated equilibrium conversion and recovery rates. We illustrate some 
biases that can occur in the estimation of event rates due to model 
misspecification. Since the criterion for embedding two-wave panel data in 
continuous-time Markov chains is identical to the criterion for embedding 
such data in a wide class of nondegenerate mixtures of such chains, the 
estimation of conversion and recovery rates assuming a Markov-chain 
model could be severely biased if a nondegenerate mixture of such chains 
actually generated the data. 

2. QUANTITATIVE STUDIES OF MALARIA 

2.1. NATURAL HISTORY OF INFECTIONS 

Malaria is an acute and chronic infection caused by protozoa of the 
genus Plasmodium. Malarial infections are characterized by fever, 
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splenomegaly (enlargement of the spleen), anemia, and, in children, fre- 
quently fatal complications. Four species of Plasmodium occur naturally in 
man: P. falciparum, P. malariae, P. ovale, and P. vivax. The first three of 
these species are present in the Garki district of northern Nigeria. This 
paper concerns only infections due to the most prevalent species, P. 

falciparum. To clarify how parasitological measurements-the raw material 
for the estimation of conversion and recovery rates-relate to the infection 
history of an individual, we describe briefly the life cycle of P. falciparum. 

For details and scientific history, see [26] and [25]. For clinical aspects, see 

[301. 

The life cycle of malarial parasites consists of a sexual phase in certain 
anopheles mosquitoes-notably Anopheles gambiae in Garki-and an asex- 
ual phase with multiplication in man. The anopheline phase of the cycle 
begins when the mosquito ingests human blood containing the sexual forms 
of the parasite, called gametocytes. Once inside the mosquito’s stomach, the 
male cell extends and then detaches flagellum-like structures which migrate 
to and then fertilize the female cells. The fertilized cells penetrate the wall 
of the mosquito’s stomach and there grow into oocysts containing filament- 
like structures called sporozoites. Upon reaching maturity, the oocysts 
rupture, releasing up to several hundred thousand sporozoites to migrate 
throughout the mosquito’s body cavity. Some of these sporozoites reach the 
salivary glands and there remain dormant until injected into man. For P. 

falciparum this anopheline phase of the life cycle lasts between 7 and 14 
days. 

The sporozoites disappear from the peripheral blood within 30 minutes 
after injection into man, initiating the exoerythrocytic stage of the life cycle. 
The parasites develop in the liver parenchymal cells and reach maturity 
after about six days. The mature parasites are about 60 pm in their longest 
diameter and release approximately 40,000 merozoites into the peripheral 
blood to invade erythrocytes. At this stage of development parasites can 
first be detected in the blood. A minimum of 10 parasites per mm3 is 
normally required for detection by ordinary microscopic examination of a 
thick blood smear. 

The invasion of red blood cells by merozoites initiates the production of 
the next stage of asexual reproduction, trophozoites. In about 48 hours, 
each trophozoite releases from 8 to 24 new merozoites for further invasion 
of red blood cells. After several generations of this process, the parasitized 
blood cells release male and female gametocytes capable of infecting 
anopheles mosquitos. A series of trophozoite-gametocyte waves typically 
follows. As the gametocyte count rises, the trophozoite count falls, and 
clinical improvement or remission of symptoms frequently occurs. Parasite 
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counts in falciparum malaria fluctuate markedly. They often show alternat- 
ing high and low densities on successive days. 

2.2 FIELD SURVEYS 

For at least sixty years there have been international efforts to control 
malaria in Africa, Asia, and the Americas. Important ingredients in the 
planning of antimalarial programs are baseline data and quantitative esti- 
mates of the key factors governing transmission. A good quantitative 
understanding of the natural course of malaria requires longitudinal field 
surveys of the human population synchronized with mosquito surveys, Such 
investigations are very costly and difficult to organize and implement. 
Despite the widespread recognition that such studies are essential to esti- 
mate human incidence rates of infection and recovery and entomological 
inoculation rates, malaria surveys on humans from 1920 to 1970 were 
almost exclusively cross-sectional prevalence surveys. For a review of 
malaria prevalence surveys see [26]. 

The WHO surveys in Garki are the first to make possible direct estimates 
of the age-specific rates, r, and pA, where A may be either apparent new 
infection or apparent recovery. In the Garki project, sixteen villages were 
surveyed every ten weeks from the end of the wet season in November 1970 
to the end of the dry season in May 1972. There were no attempts at 
treatment or control of malaria during this period. The surveys are therefore 
called baseline surveys. The surveys aimed at complete coverage of each 
village and included the collection of a thick blood film, linked by a code 
number to the person’s identity. Blood films were stained with Giemsa stain 
and examined, under oil immersion, with 7 x oculars and 100 X objective, 
for 200 fields. Each person was classified as positive for P. falciparum 

parasitemia if trophozoites and/or gametocytes were observed in any of the 
200 fields. 

Data on the mosquito vector were collected in some of the 16 villages 
every 5 weeks in the dry season and every 2 weeks in the wet season. 
Man-biting rates and entomological inoculation rates, defined as the 
average number of sporozoite-positive bites per man per night, were ob- 
tained using human bait. For further details on the entomological surveys in 
Garki, see [21]. 

Entomological survey data provide estimates of inoculation rates, which 
have appeared as parameters in proposed models of malaria transmission 
dating from 1911 [24] to the present. Despite the substantial theoretical 
literature on the epidemiology of transmission [ 18,20,19,2], the lack of any 
data comparable to those of the Garki surveys has prevented systematic 
field testing of these proposals. Dietz et al. [lo] attempted to model the 
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transmission of malaria using data from the baseline surveys in Garki. They 
explicitly took account of the effect of immunity on transmission, of 
superinfection, and of recovery rates (expected number of recoveries per 
unit time at time s per person positive at time s). 

The development of an integrated stochastic model of the infection 
histories in a human population, coupled to a model of the dynamics of the 
mosquito vector, lies in the future. Our aim here is much more modest. 
Using a time series of two-wave panel surveys (Sec. 4) we ascertain whether 
or not the observations could have been generated by continuous-time 
Markov chains or certain mixtures of such chains. Having accepted a 
restricted class of processes (e.g. the time-homogeneous Markov chains) as 
consistent with the panel data, we estimate the rates r, and pA within this 
class. We then interpret their age- and season-specific values in the context 
of malaria dynamics in an unprotected population. 

Although we analyze only the baseline surveys in Garki, the age- and 
season-specific rates pA and r, can also be compared with the correspond- 
ing quantities estimated in some of the same villages during 1: years of 
interventions. Though we shall not attempt to use incidence rates to assess 
the impact of interventions, Sec. 3-6 sketch strategies basic to such evalua- 
tions. For data from the intervention and follow-up phases in Garki, see 

1211. 

3. SAMPLING ASPECTS OF THE SIMPLEST MARKOV 
EMBEDDING PROBLEM 

3.1. EMBEDDABILITY CRITERIA 

Consider a two-parameter family of finite r X r stochastic matrices P(s, t), 
0 <s < t < + cc, in which (a) each element p&s, t) of P(s, t) is continuous in 
(s,t), (b) P(s,r)=I if and only if s=t, and (c) P(s,t)=P(s,u)P(u,t) 
whenever s < u < t. 

Such a family P(s,Q may be thought of as describing a nonstationary 
continuous-time finite Markov chain. pij(s, t) gives the transition probability 
from state i at time s to statej at time t. We call a finite stochastic matrix P 
embeddable in a continuous-time Markov chain if there exists a two-param- 
eter family of stochastic matrices P(s,t) satisfying (a), (b), (c), and (d) 
P(0, 1) = P. 

Goodman [ 121 proved that any embeddable matrix P could, by a change 
of time scale, be embedded in a continuous two-parameter family of 
transition matrices P(s,t) satisfying, for almost all s and t, 

a+, t) 
~ =qs,qe<q, at 

P(t,t)=Z (3.la) 
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and 

aqs, q 
~ = - e<s)p<&t), as 

P(s,s) = I, (3.lb) 

where Q(s) is a bounded measurable function such that for all s > 0, 

Q is the set of all “intensity matrices.” Equations (3.la) and (3.lb) are 
known as the Kolmogorov forward and backward equations, respectively. 

THEOREM [ 121 

A 2 ~2 stochastic matrix P is embeddable in a continuous-time Markov 

chain if and on& if trace P > 1.’ 

This simple and very useful characterization was established by D. G. 
Kendall [16, p. 151 for homogeneous chains, i.e., those for which P(s, t)= 
P( t - s), and extended to inhomogeneous chains by Goodman [ 121. 

Although a 2 x 2 stochastic matrix P with trace P > 1 can be embedded 
in uncountably many inhomogeneous Markov chains, such a matrix is 
embeddable in a unique homogeneous chain. To see this, observe that the 
transition matrices for homogeneous chains solve (3.la) and (3.lb) with 
Q(s) = constant. The unique solution is 

Thus 

P(s, t) = P(t - s) = e@-‘)Q, O<s<t< +w. (3.2) 

P=eQ for some Q EQ, (3.3) 

or 

Q=logP= log(P,* +p22- 1) zJ11- 1 1 -PII 

PI, +pz2-2 1 -Pz2 Pzz- 1 ’ 
(3.4) 

‘Goodman proved that detP > 0 is a necessary condition for embeddability of a 
stochastic matrix P of any order. For 2 X 2 matrices, this is equivalent to trace P > 1. 
Sufficiency is an immediate consequence of (3.4), since trace P > 1 implies that P is 
embeddable in a time-homogeneous chain. 

Joel E. Cohen
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with p,, +pz2 = trace P > 1. Since the principal branch of the logarithm in 
(3.4) is the only determination of 1ogP which is a member of Q, this 
establishes the uniqueness of embeddability for 2 x 2 homogeneous chains. 
The uniqueness breaks down and the embeddability criteria become more 
complicated for matrices of homogeneous chains of order 3 or more [9,28]. 

In practical applications where it is natural to consider embedding a 
stochastic matrix P in a continuous-time family of such matrices, P must be 
estimated from sampled data. The estimated matrix P may fail to be 
embeddable even when P is. Moreover, log p is then only an estimate of 
log P, and it is important to know how much variation should be expected 
in log P given P and the sample size. We now develop a formal test for 
embeddability, assuming binomial sampling, based on the criterion trace 
P>l. 

3.2. TWO- WAVE PANEL DATA AND BINOMIAL SAMPLING 

For individuals evolving independently and observed at two points in 
time, we may describe their location in one of two states-e.g., not infected 
or infected in malaria parasitemia surveys-according to the following 
probability model. 

Let n,, be the number of individuals in state i at the initial observation 
time t = 0, i= 1,2, and introduce the independent, identically distributed 
random variables Y,,. .., Y,,, where 

1 with probabilityp,,, 

0 otherwise. 

Here p, 1 is the a priori unknown conditional probability Prob(w : w(A) = 
1 Iw(0) = l), where A is the time when the second wave of panel data is 
collected and {w(t), t > 0} is a parasitemia history, identified as a sample 
path of some stochastic process on the state space { 1,2}. 

Let zi,..., Z”,, be independent, identically distributed random variables, 
which are also independent of Y,, . . . , Y,,,, and set 

1 with probabilityp,,, 
0 otherwise. 

Here pz2 = Prob(w : w(A) = 21 w(0) = 2). 
If 

Joel E. Cohen
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q, may be interpreted as the number of individuals observed in state i at 
time t = A who were also observed in state i at time t = 0. 

The conditional probabilities Pii, i= 1,2, are not assumed to arise from 
any restricted class of stochastic processes such as the continuous-time 
Markov chains. The above formulation assumes only that individuals evolve 
independently and defers the specification of the underlying dynamics. In 
our procedure, a specification of the dynamics follows tests of hypotheses 
applied to the data. A similar approach is taken by Anderson and Good- 
man [ 11, who test multinomial frequencies-estimated from multiwave 

panel data-for consistency with conditional probabilities arising in 
Markov processes of order 1,2,. . ., . However, the sampling theory of the 
embeddability criterion for continuous-time processes has not been sys- 
tematically discussed before. 

By contrast to this approach, it is usually assumed at the outset that the 
observations are generated by independent realizations of a continuous-time 
Markov chain, or mixture of Markov chains, semi-Markov processes, etc. 
(e.g. [S], [15], and their references). 

In order to create a formal test of hypotheses based on the criterion 
traceP > 1, we introduce the null hypothesis 

H,:traceP>l, 

and the alternative hypothesis 

H, : traceP( 1. 

We propose a decision rule based on 6, and 6, to be defined as follows: 

If traceP > 1 + 6,, then accept H,. 

If 1 - 6, < traceP < 1 + a,, then the evidence is inadequate to distinguish 
between Ho and H,.* 

If traceP < 1 - S,, then accept H,. 

?his is an instance of a three-decision rule of the kind discussed by Lehman [ 17,~. 

5491. The more common two-decision rules, which require acceptance or rejection of a 

proposed hypothesis, are excessively stringent. They fail to formalize the scotch verdict 

“not proven” when values of a test statistic lie close to the boundary of the set of values 

that are consistent with the hypothesized models. 
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Given error probabilities specified a priori as (or =Prob,,&reject H,) and 
(r2 = Prob,,(accept Ha), we define 6, by 

a, = sup Prob,( trace p < 1 - 6,) (3.5) 
P:PII+Pn> 1 

and define 8, by 

CYz= sup Prob,(tracef > 1 + 6,). 
P:PlI+P22< 1 

(3.6) 

trace p = & ‘2 Yi + & ,ns, Zj, 
i-1 ‘P 

and the probabilities in (3.5) and (3.6) are computed from the independent 
“I+ n2+ 

binomial distributions which describe 2 Vi and x Zi. For example, using 
i-1 j- 1 

1 x J to denote the integer part of a nonnegative real x, 

Prob,(trace P < 1 - 6,) 

(3.7) 

Although (3.7) and the analogous formula for Prob,(tracep > 1 + 6,) are 
unwieldy for solving (3.5) and (3.6) for Si, the central limit theorem yields 

-4 ( -26, 
aIN 

(?li,’ + tlFL)“’ 1 ’ 
(3.8) 

(3.9) 

As Table 1 indicates, these approximations are quite accurate for sam- 
ples where min(n,+,n2+)= 10. 



MALARIA INCIDENCE AND RECOVERY RATES 283 

TABLE 1 

Comparison of Asymptotic and Small-Sample Evaluations of 6,s 

Sample sixes Exact value of 6, 

“I+ n2+ 

10 11 

50 51 

51 74 

39 62 

44 407 

.050 

Not 
computed 

.057 
(.284) 

.049 
(294) 

.049 

(.317) 

.053 
(.254) 

.loO .150 .200 .250 

.087 .164 .I85 .273 
(.345) (.226) (.198) (.106) 

.lOO .163 .213 .308 
(.158) (.05 1) (.016) (.OOl) 

.102 .I45 .189 .241 
(.131) (.055) (.019) (.004) 

.lOO .151 .188 .246 

(164) (.070) (.033) (008) 

.lOO .147 .195 .245 

(104) (.032) W7) (001) 

.The exact value of S, given at the top of each column is to be compared with the 

asymptotic value of Sr given as the upper value in each cell. The asymptotic value of S, 

solved (3.8), given the sample sizes n,+ and n2+ for the row and the value of a, in 

parentheses in the same cell. a, is computed by estimating the supremum in (3.5) over 

the set of (pll,p22) pairs 

{(.5,.5), (.9,.1), (.9,.2), (.9,.4), (.9,.5), (.9,.6), (.9,.8), (.9,.9), (.8,.2), (.8,.4), (.8,.5), (.8,.6), 

(8, .8), (.6, .4), (.6, .5)). 

For a,+ = lO,n,+ = 11, the probabilities are computed exactly from the binomial distri- 

bution. For the remaining sample sizes, the probabilities are the sample proportions in 

1000 Monte Carlo evaluations of B(n,+,p,,)/n,+ + B(nz+,psJ/n2+ which are < 1 -S,, 
where B(n,+,p,,), i = 1,2, are independent binomial random variates with parameters 

ni + 9Pii’ 

This embeddability test is intended to assess whether 2-wave, 2-state 
panel data are consistent with some continuous-time Markov-chain model. 
However, interpreting an acceptance or rejection of Ho is not simple. For 
many non-Markovian processes with transition matrices P= P(O,A), it is 
true that traceP > 1 for many or all matrices P. Such processes are 
indistinguishable from the continuous-time Markov chains on the basis of 
two-wave panel data. Thus when H,, is accepted in the formal test described 
above and continuous-time Markov models are utilized for making further 
inferences (e.g. determining conversion and recovery rates from P. 
falciparum parasitemia), such models are tentative and require further 
validation utilizing 3 or more waves of panel data. Estimates of event rates 
may be biased if alternative but empirically indistinguishable processes 
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actually generate the data. For example, transition matrices for mixtures of 
continuous-time Markov chains 

where p is an arbitrary probability measure on the space Q of measurable 
intensity matrices Q, must satisfy trace P,,(O, t) > 1. Here P(o)(O, t) are transi- 
tion probabilities for a 2-state continuous-time Markov chain with intensity 
matrix function Q(t), t > 0. In Sec. 7.2 we discuss biases in event-rate 
estimates which can arise from the use of a simple Markov-chain model 
rather than a nondegenerate mixture (3.10). 

In contrast with the weakness of inferences associated with the accep- 
tance of Ha, a rejection of H,, leads to strong conclusions. If trace&O, A) < 1 
-S,, then no mixture of the form (3.10)-degenerate or not-could de- 
scribe the data. Surprisingly, this procedure eliminates large classes of 
models from contention as candidates to describe an evolving process, 
without directly testing dynamic characteristics such as the Markov prop- 
erty. Statistical tests based on characterizations of the conditional probabili- 
ties that can be generated by special models exhibit their greatest power as 
tools for model rejection. 

Our decision rule allows the possibility of no decision when tracep is 
sufficiently close to 1. The intuitively appealing properties of the probability 
of no decision, Prob,(l - 8, < trace f < 1 + S,), for the embeddability test 
are: (i) For each (p,,,p2J such that p,1+p22#1, and each (n,+,n*+), if 
q,i= 1,2 decrease, then the probability of no decision increases. (ii) For 
each q ~(0, i) andp, such thatp,, +pz2# 1, if min(nl+,nz+) increases, then 
the probability of no decision decreases. (iii) For each oi ~(0, f) and 

(n i+,n,+), if IP~~+P~~- 11 increases, then the probability of no decision 
decreases. 

To provide further insight, Table 2 illustrates numerically the relation- 

ships among LY~, p, (n , +,n,+), and the probability of no decision. 

3.3. HOMOGENEOUS CHAINS 

a. Estimation of Intensity Matrices. Following the acceptance of H, in 

the embeddability test of Sec. 3.2, the simplest stochastic models which 
describe two-wave panel data are the homogeneous Markov chains. We 
present the well-known maximum-likelihood estimator & of the unique 2 X 2 
intensity matrix 
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TABLE 2 

Probabilities of No Decision and Critical Values of 6 = 6, = SzD 

Sample size Main diagonal (pII.p& of P 

“I + n2+ c.9, .2) c.9, .9) C.8, .4) (.6, .6) 6 

10 

10 

25 

100 

500 

Probability of no decision using binomial distribution 

11 .995 .015 .936 904 

.93-I .003 .820 .I% 

.912 .OOl .693 .638 

Probability of no decision using normal approximation 

11 .996 .013 .942 .925 

.95 1 0 .I89 .I61 

.869 0 .651 .633 

51 .919 0 .I11 .I59 

.861 0 .503 .502 

.I32 0 ,349 .351 

501 ,142 0 .082 .088 

,401 0 .018 .020 

.240 0 .006 .008 

501 .118 0 0 0 

.016 0 0 0 

.004 0 0 0 

.5082 

.3594 

.2801 

.5082 

.3594 

.2801 

.2839 

.2008 

.1565 

.1214 

.0901 

.0102 

.0135 

.0520 

.0405 

aValues less than 0.0005 are shown as 0. In each cell, the upper, middle, and lower entries 

comespond to (I, = a2 = (I =0.01,0.05,0.10. For each a and 2ample size, 6 was obtained 
from (3.8). The probability of no decision, Prob(1 - 6 < traceP < 1 + 6), was obtained from 
binomial probabilities for R,+ = 10, n2+ = 11 and from a normal approximation for all 
sample sizes. 

which specifies the chain’s transition probabilities by (3.2). We also assess 

the variability of 0. 

Assuming binomial sampling, 

&O,A)=(nij/ni+)y ij= 1,2, (3.11) 

is the maximum-likelihood estimator of P(0, A). If (3.11) satisfies tracep > 1, 
then A-’ logs is the maximum-likelihood estimator of Q in the representa- 
tion (3.2) with A = f - S. 

Thus the maximum-likelihood estimators of q, and q2 for embeddable 
matrices B are 

A6,= (l-I&)lOg(traCep- 1) 
I 

a,, +JL-2 ’ 
i= 1,2. (3.12) 

These are consistent but not unbiased, asymptotically normal estimators 
of Q. 
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b. Variability of Estimators. The variance-covariance matrix 

(cov(&, $)) is given, asymptotically, by the inverse of the Fisher information 
matrix: 

a2iogL 

a4: 
a2iogL 

84, aq2 

a2i0gL 

a4, aq2 

a2i0gL 

ad 

’ -1 

7 
(3.13) 

where 

logL= 5 5 n,logPij+ &og( 2;) 
i-lj-1 

and 

Pii(O, A) = 1 - Pij(O, A), izj. 

For embeddable matrices P, the explicit formulas are 

Var(B,) = (SdA2V+@2, ul[A2V+d2l VI* 

+ S,[ -p^,zv+j,,q[ -A2v+a,2~l*)(A2+P2d-4~ 

Var(G2) = (SJ -p12, V+P^2, VII -621 V+B21 W* 

+ S,[p^,, v+A2~l[a2, v+A2q*)(A2+1521)-4Y (3.14) 

Cov(4,,42)= -(~,[~,2~+p12,~1~-p121~+p^21~1* 

+ S,[ -pl,zv+j,2q[$2, v+812~l*)(B12+P^21)-4r 

where * is the complex conjugate and 

U= - log(traceP- l), 

v= p^12+p121 
traceP- 1 ’ 

s, = iij( l -Fij) 
I 

4, 
, j#i. 

To develop guidelines about the size of min(n, +,n2+) which ensures that 
Z -’ is a good approximation to (cov(& a)), we carried out some exploratory 
Monte Carlo calculations. Without describing the details here, we offer 
several generalizations. 
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(i) For small samples-max(n,+, 2+ n ) < 20-we have Var(&=2 X 

[asymptotic approximations of Var(Gi)]. 
(ii) If min(n,+,na+) < 100, compute cov(&@ from the binomial distri- 

bution or a Monte Carlo approximation based on binomial sampling, as 
described below. 

(iii) If min(n, +, nz+) > 1000, then the asymptotic maximum-likelihood 
approximation is very good. 

(iv) If lOO<min(n,+,n,+) < 1000, we recommend Monte Carlo evalua- 
tion of cov(&@. This suggestion is guided by the comparison (Table 5) of 
Monte Carlo calculations and maximum-likelihood approximations to 
cov(&$) in the WHO malaria data, where many of the tables have sample 
sixes in the range lOO<n,+ < 1000. 

For the Monte Carlo calculations of cov(&@ from two-wave panel 
data, we generated 1000 stochastic matrices from binomial samples of sizes 

nl+ and ns+ with parameters iii = n,,/n,+, i = 1,2, respectively. The binomial 
variates were generated from a subroutine of the International Mathemati- 
cal and Statistical Library, version 5, resident at the Computing Center of 
the City University of New York. We then computed 1000 values of & 
i= 1,2,using (3.12). Let (& denote the value of (3.12) computed from the 
kth matrix, k=l,..., 1000. Our Monte Carlo estimates are defined by 

VarMc(g) =O.OOl i? (@ii>:- [G4c(4i)123 

The Monte Carlo calculations were used instead of the exact sampling 
distribution of ai,, i = 1,2, since computation based on the exact distribution 
is prohibitively long except for very small sample sizes [max(n,+,n,+) < 151. 

4. A TIME SERIES OF TWO-WAVE PANELS 

Table 3 (adapted from [4,Table l] lists the number qj of persons in state 
i at one survey and in state j at the next, for five pairs of successive surveys 
3 to 4,..., 7 to 8. We define a positive person as being in state 2. A negative 
person, one without detectable parasitemia, is in state 1. We give ages in 
years of age at survey 1. These surveys span one year. The variation in 
numbers of persons in the consecutive 2x2 tables for a single age class 
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TABLE 3 

Malaria Parasitology Transition Data: Observed Numbers nij of Persons in State i 
at First Wave of Two-Wave Panel Survey and Statej at the Second Wave* 

Panel surveys 

3-4 
Dry season 

4-5 
Wet season 

5-6 
Wet season 

6-l 
Dry season 

7-8 
Dry season 

Age class 

<l 1-4 5-8 9-18 19-28 28-43 

‘For each two-wave panel survey and age class, the entries in the 2 X2 table are 

where 1 = negative, 2 =positive. Thus of individuals 5 to 8, 52 people 

survey 5 were infected at survey 6, and 68 infected at survey 5 were 
uninfected at survey 6. Source: Bekessy et al. [4]. 

results primarily from some people being absent from a village on the 
survey dates. Among infants, new births and aging from < 1 to l-4 
contribute to the variation. 

We apply the Markov embeddability test of Sec. 3.2 to each 2 x 2 array 
in Table 3. As indicated in Table 4, all but three of the 2X2 arrays are 
consistent with some continuous-time Markov process. The three exceptions 
justify no decision. One possible explanation for these exceptions is 
measurement error due to the daily fluctuations in parasite density in an 
infected individual (see Sec. 7.1). 

Table 5 gives the maximum-likelihood estimates 4, i = 1,2, of the parame- 
ters in the unique time-homogeneous chain that embeds each Markov- 
embeddable 2X2 table together with the variance-covariance matrix com- 
puted via the Monte Carlo method (Sec. 3.3) and the inverse of the Fisher 
information matrix (3.13). 

We interpret l/a, as the expected duration of a spell without patent 
parasitemia that is initiated during the lo-week period between the succes- 
sive surveys. Similarly, we interpret l/B as the expected duration of a spell 

Joel E. Cohen
Highlight



MALARIA INCIDENCE AND RECOVERY RATES 289 

TABLE 4 

Embcddabilitv Tests for Malaria Infection and Recovery Data in Table 3’ 

Sample sizes 6 for 

Surveys Age class R,+ n,+ a=O.Ol a=0.05 a=O.lO trace.; 

3-4 

4-5 

5-6 

6-7 

7-g 

<1 76 54 .207 ,146 .114 1.580 
l-4 59 494 .160 ,113 .088 1.551 
5-8 74 542 .144 ,102 .079 1.258 
9-18 181 357 .106 .075 .058 1.370 
19-28 418 191 .lOO ,070 .055 1.341 
29-43 1011 270 .080 .056 .044 1.197 
44+ 622 160 .103 .073 .057 1.200 

<1 87 30 .246 .174 .136 1.04lb 
l-4 91 490 .133 ,094 .073 1.157 
5-8 96 611 .128 .090 .070 1.138 

9-18 237 440 .094 Sk56 .052 1.283 
19-28 541 250 .089 .063 049 1.238 
29-43 1099 353 .07 1 .050 .039 1.149 
44+ 640 184 097 ,069 .054 l&W 

<1 39 62 .238 .168 .131 l.108b 
l-4 50 484 .173 .122 .095 1.212 
5-8 70 649 .146 .103 .081 1.152 
9-18 169 537 .103 .073 .057 1.240 
19-28 433 356 .083 .059 .046 1.189 
29-43 912 569 .062 .044 .034 1.127 
44+ 494 311 .084 .060 .046 1.106 

<1 39 79 .228 .161 .125 1.566 
l-4 45 454 .182 .129 .lW 1.285 
5-8 71 550 .147 .104 .081 1.190 

9-18 147 380 .113 .080 .062 1.306 
19-28 345 300 .092 .065 .051 1.232 
29-43 842 462 .067 .048 .037 1.171 
44+ 504 243 .091 .064 .050 1.147 

<1 69 71 
l-4 44 407 
5-8 80 534 

9-18 179 322 
19-28 436 179 
29-43 1014 262 

.197 .139 .108 1.674 

.185 .I31 .102 1.426 

.139 ,099 .077 1.239 

.108 .077 .060 1.419 

.103 .073 .057 1.328 

.081 .057 .044 1.219 

.llO .078 .061 1.161 44+ 636 136 

*The decision rule in Sec. 3.2 was implemented here by setting a, = cxs and 

computing 6 _from (3.8). 
bHere trace P < 1 + 6 for the 6 corresponding to at least one value of n. 
Therefore, with this value of a, the decision rule would recommend no 
decision regarding embcddability. There were no cases where traceP < 1. 
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TABLE 5 

Malaria Conversion Intensity 4, and Recovery Intensity 4s and Their Variances and 
Covariance Estimated by Maximum-Likelihood and Monte Carlo Simulation 

Intensityb Maximum-likelihood estimate’ Monte Carlo estimated 

(day- ‘) (lo-s day-q (10-s day-3 

Surveysa Age groups ir & Var(i,) Cov(i&) Varti3 Var(G,) ~v(i,&) Var(iz) 

3-4 

4-5 

5-6 

6-7 

l-8 

<l 
l-4 
5-8 
9-18 
19-28 
29-43 
44+ 

<l 
l-4 
5-8 
9-18 
19-28 
29-43 
44-k 

<l 
l-4 
5-8 

9-18 
19-28 
29-43 
44+ 

<l 
l-4 
5-a 

9-18 
19-28 
29-43 
44-l- 

<l 
l-4 
5-8 

9-18 
19-28 
29-43 
44+ 

.0038 .0042 103.8 

.0070 .0018 246.5 

.0171 .W29 880.2 

.0090 .0057 151.4 
XI050 .0108 36.8 
0359 .0179 36.8 
.0054 .0183 51.9 

.0323 .0085 37,439.0 

.0220 .0018 1,173.0 

.0233 .0021 1,359.0 

.0129 0333 180.7 

.0089 .0095 83.8 

.0102 .0141 98.6 

.0125 .0178 455.2 

.0245 .0030 5371.0 

.0175 .0017 1248.0 

.0204 .0029 1542.0 

.0123 .0053 285.0 

.0094 .0112 124.9 

.0089 .0166 88.4 
0388 .0190 195.1 

.0049 .0026 235.4 

.0149 .0016 986.8 

.0186 .0032 1222.0 

.0093 .0063 207.8 

.0@47 .0145 51.9 

.0042 .0191 24.2 

.0042 .0211 45.0 

.0015 .O@tl 38.8 

.Olll .OOll 597.9 

.0181 .0023 875.5 

.0071 .0054 104.1 

.0044 .0115 34.7 

.0046 .0171 22.4 

.CKl53 .0208 63.3 

36.8 162.2 118.9 
1.7 9.0 250.9 

86.5 23.8 1023.0 
43.3 49.1 157.9 
43.3 183.9 36.8 
84.3 314. I 43.3 
12.5 625.0 56.2 

14,072.O 5813.0 29,101.O 
78.9 14.8 1,345.0 

loo.2 18.1 1,616.O 
34.5 23.1 179.2 
78.9 157.8 87.1 

164.4 292.6 100.3 
708.4 1330.0 950.0 

812.4 257.6 18,262.0 
76.2 13.7 1463.0 

1574.0 28.9 2,164.o 
13.2 42.7 321.6 

109.7 178.3 150.9 
129.6 278.9 106.7 
326.2 756.0 307.9 

34.6 64.1 232.0 
58.9 12.1 1143.0 

141.9 32.9 1670.0 
61.5 60.6 211.2 
65.8 219.9 57.1 
50.2 244.1 24.2 

114.3 593.8 51.9 

12.2 106.1 38.8 
22.4 6.1 642.9 
71.4 18.4 1016.0 
30.6 46.9 112.2 
42.9 208.2 34.7 
55.1 308.2 24.5 

189.7 1012.0 73.5 

41.1 170.8 
15.1 9.0 

108.1 28.1 
43.3 49.1 
43.3 177.3 
99.5 413.1 

138.4 670.4 

9627.0-21831’ 4O33.F 
80.5 14.8 

121.6 19.7 
37.8 26.3 
85.5 166.0 

142.9 295.9 
1496.0- 14.8i 2604.P 

2881.0-216.41 632.5= 
102.1 16.8 
240.8 42.T 

80.8 45.7 
143.3 216.4 
160.0 342.9= 
539.6- 1.5i 1186.0= 

46.7 72.7 
67.5 12.1 

193.9 39.8 
65.8 62.3 
14.4 245.8 
55.4 277.0 

138.5 692.5 

12.2 114.3 
26.5 8.2 
87.8 20.4 
32.7 42.9 
44.9 212.2 
61.2 318.4 

232.6 1208.0 

*There were 68 days between surveys 3 and 4, 78 between 4 and 5, 81 between 5 and 6, 76 between 6 and 7, 

and 70 between I and 8. 

%&en from [4, Table 11. 
CCakulated from (3.14). 
dBased on 1000 trials for each age group in each survey. 
eNote substantial difference between the Monte Carlo and asymptotic maximum-likelihood estimates of at 

least one variance or covariance term. 
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of patent parasitemia that is initiated during the lo-week period between 

successive surveys. It is usual in the Garki district that persons have 
multiple spells of patent parasitemia and freedom from parasitemia. Initia- 
tion of a spell of freedom from patent parasitemia may be interpreted as an 
apparent recovery without treatment from P. falciparum parasitemia. We 
use the word “apparent” because the transition from “positive” to “nega- 
tive” may result either from a true recovery (getting rid of the infection) or 
from going into a state of latency (with very few or no parasites in the 
peripheral blood). The Garki data do not allow one to separate these two 
kinds of transitions from positive to negative. 

All of the two-wave panels in Table 3 are embeddable. In the Garki 
project there are some nonembeddable two-wave panels in the intervention 
and follow-up phases. For example, infants in village clusters 5 and 7 at 
surveys 21 and 22 (wet season, 1975) have transition counts and probabili- 
ties given, respectively, by 

(4.1) 

Thus 

trace P = 0.8988 < 1. 

We have chosen not to discuss the tables in the intervention and follow-up 
phases-such as (4.1)-that reject the class of continuous-time Markov 
models, since we are then confronted with the (yet unresolved) issue of 
providing simple non-Markovian models that describe those data. 

The extent of nonembeddable two-wave, two-state panel data generally 
is impossible to ascertain because of the very limited experience with 
stochastic modeling of such data. The effort by Bekessy et al. [4] is unique 
in the tropical-disease literature. 

5. EVENT BATES 

For a two-state homogeneous Markov chain we present formulas for the 
rates plz and ri2 of transition from state 1 to state 2 (conversion) and rates 
p2, and r2, of transition from state 2 to state 1 (recovery). 

Let w(t), t > 0, be a realization of a two-state continuous-time Markov 
chain, and Q(S, 1; w) be the number of transitions from state i to state j by 
w(e) in the time interval [s,t). It is well known that 

P(vij(s,s + h; w) = 11 w(s) = i) = qih + o(h) 

and 

P(v,(s,s+h; w) > l]w(s)= i)=o(h), i= 1,2, 
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where qi, i= 1,2, are the parameters in the intensity matrix Q in (3.3) and 
(3.4). Thus 

P~j=~~h~‘E(Vij(s,s+h;w)lw(s)=i)=qi, i= 1,2. 

The intensity qi may be interpreted as the expected number of transitions 
from state i to state j per unit time at time s per person at risk of such a 
transition-that is, in state i, at time s. For time-homogeneous chains, of 
course, qi does not depend on s. The seasonal variation in these rates in the 
Garki population is indicated by comparison of qi across successive two- 
wave panels for a given age class (Table 5). 

In terms of the counting process vij(s,t; .), 0 <s <t, the rates rij are 
defined as 

Evtj(ST t) 
rii(s) = lim ~ . 

as t-s (5.1) 

The expectation is calculated over the sample space of all paths w( 1) E ( 1,2} 
for all t > 0. The sample space is equipped with the u-algebras of subsets 
F, = a(w(s), s <t), t > 0, using the probability measure P on {F,, t a 0} 
associated with a homogeneous Markov chain. Goodman and Johansen [ 131 
give a nice construction of such measures P. 

Let D,=={w:w(O)=i}, i=1,2,and fori+j let 

Nij(t,w)= z(O,t;w) if WEDi, 
{ otherwise, 

~(O,f;w) if wEDi’ 
0 otherwise. 

Then EQ(s, Z) = Ev,(O, t) - EvJO,s) and 

= ( L$(o,r;w)dP(w)+( vij(O,t;W)dP(w). 
D, 4 

In terms of the random functions NJt, w), we have, for i +j, 

Epij(O, t) = EN,(O, t) P( Di) + ENj(O, t) P( Di). (5.2) 

The conditional expectations EN,.(O, t)= y,(t) satisfy the system of in- 
tegral equations 
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where G,(t)= 1 - e-*‘andya( t/h- 1 + l,-‘[pii(O,t)li++pi,(O,r)l,,]. Here $ 
is the mean recurrence time to statej, I, is the mean waiting time in state i, 

and p,,(O, t)=(e’Q)ij. Barlow and Proschan [3, pp. 136-1371 give a detailed 
derivation. Since the waiting times in state i are exponentially distributed 
with parameter qi, we have ~=l/q,+l/q,,.=1,2, and lij=l/qi, i=1,2, 
j#i. Thus 

b(t)= tq,q, 
41+q2 

- q,q2(q, + q2)-2(1 - e-(q1+q2)f), j= 1,2, (5.4) 

and, integrating (5.3), we obtain for i#j 

yij(t) = 2fLe- 
41+42 

+ qf(q, + q2)-2(1 - e-(q1+q2)‘). (5.5) 

Finally, substituting (5.4) and (5.5) in (5.2) we obtain for i#j 

r&s) = lim 
EVij(O, t) - EVij(O,S) 

Us t-s 

= - + e-(q’+q2)s [ q,ZP(Di)-q&P(Dj)]. q142 

q1+42 a+42 
(5.6) 

To estimate these event rates from two-wave panel data we use (3.12) for 
Q and the maximum-likelihood estimators 

4, P(Q)= , 
nl+ +n2+ 

i= 1,2. (5.7) 

Equations (5.6) and (5.7) are used to estimate conversion and recovery 
rates from P. falciparum parasitemia in the WHO malaria survey (Table 6, 
Sec. 6). For that table, we assume that the earlier survey in each pair of 
surveys corresponds to time t = 0. This is clearly an unrealistic assumption; 
however, the two-wave panel observations do not allow us to estimate the 
time between process initiation and the first survey. 

Indeed, the formal acceptance of homogeneous Markov chains in the 
embeddability test of Sec. 3.2 and the estimation of TJS) and qi are as far as 
one can go in characterizing event rates using 2-wave panel data and the 
simplest stochastic model consistent with those data. 

From (5.6), lim+,, ‘, r. .(s) = r&co) = q,q2/(q, + q2) is the equilibrium rate 
per unit time per individual for transitions from state i to state j+i. This 
result may also be derived very simply from the classical epidemiological 
steady-state relation: prevalence rate (per individual) = incidence rate (per 
individual per unit time) x mean duration of infection (time). If state 2 is the 
state of being positive, then in this continuous-time Markov chain the 
prevalence rate (or “expected equilibrium parasite rate,” in the language of 
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Bekessy et al. [4]) is well known to be q,/(q, + q2), and the mean duration of 
infection is l/q,. The quotient q1q2/(q, + q2) = r,2(co) is therefore the inci- 
dence rate. Since a steady state is assumed, r,*(co) = r*,(m). 

6. RESULTS FROM GARKI BASELINE SURVEYS 

Within each age class, recovery rates per positive individual exhibit 
seasonal variation. The minimum occurs in the early part of the wet season. 
A maximum occurs toward the middle of the dry season. The seasonal 
patterns are parallel across age classes, and the recovery rates increase with 
increasing age (Table 5). The only exception to this pattern is the infants 
(age < l), who have higher conversion and recovery rates than persons aged 
l-4. The increase in level of BZ with age can be attributed to a correspond- 
ing increase in immunity. As Bekessy et al. [4] point out, the recovery rate 
may decline from the infants to age group l-4 because of the loss of 
maternal immunity [6] or because of superinfection, which has more of an 
opportunity to occur in persons at least one year old. 

The conversion rates 8, are also roughly parallel across age classes. 
However, as indicated in Table 5, age class 5-8 has a higher rate of 
conversion than age class l-4. Above age 9, these rates tend to decrease 
with increasing age, as already suggested by the increasing immunity. 

The recovery rates per individual in the survey, f*,, exhibit the same 
seasonal patterns as & within each age class and across age classes when 
standardized to a common base. For example, Table 8 reflects the same 
patterns under both standardizations as Gi for the same age classes in Table 
5. The rates Pij(0) in Table 6 are not suitable for making comparisons across 
age classes in a given two-wave panel survey or across surveys for given age 
classes, because the rates depend on the initial distributions (5.7). Among 
the innumerable initial distributions which could be used for standardiza- 
tions, we apply three to the data from the first two two-wave panel surveys 
in Table 3, for all 7 age classes (Table 7). The standardizing initial 
distributions are the initial counts of the age class with the lowest propor- 
tion negative, the initial counts of the age class with the highest proportion 
negative, and the initial distribution between positive and negative of the 
entire population counting each individual equally. To compare time series 
of rates for age classes indexed by a variable a, let ni+(a,s) be the initial 
counts for survey s to s + 1 in age class a, and let p,(a) = 

P’ s,3ni+(a,s)]/~:s~ini+(a,s). For the age classes l-4 and 29-43, we calcu- 
lated the rates (5.6) using p,(u) in place of P(Q) (Table 8). 

The essential feature of the rates cj(0) and the various standardizations is 
that they reflect the influence of the relative sizes of the reservoirs of 
negative and positive persons at the initial survey on the conversion and 
recovery rates per individual. 
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TABLE 6 

Malaria Conversion and Recovery Rates at Equilibrium and 
Assuming t = 0 at the Earlier of Each Pair of Surveys’ 

Equilibrium Conversion Recovery 

Surveys Age class ;ii(m) i,,(O) ;,,(O) 

3-4 
4-5 
5-6 
6-7 
7-8 

3-4 
4-5 
5-6 
6-l 
7-8 

3-4 
4-5 
5-6 
6-l 
l-8 

3-4 
4-5 
5-6 
6-7 
7-8 

3-4 
4-5 
5-6 
6-7 
l-8 

3-4 
4-5 
5-6 
6-7 
7-8 

3-4 
4-5 
5-6 
6-7 
7-8 

<I 

1-4 

5-8 

9-18 

19-28 

29-43 

44+ 

1.995 2.222 1.745 
6.729 24.018 2.179 
2.613 9.460 1.842 
1.699 1.619 1.741 
1.098 0.739 2.079 

1.432 0.747 1.608 
I .664 3.446 1.518 
1.549 1.639 1.541 
1.469 1.344 1.463 
1.001 1.083 0.993 

2.419 2.054 2.552 
1.926 3.164 1.815 
2.539 1.986 2.618 
2.730 2.127 2.834 
2.041 2.358 2.000 

3.490 3.028 3.782 
2.628 4.516 2.145 
3.704 2.944 4.031 
3.756 2.594 4.543 
3.067 2.537 3.471 

3.418 3.572 3.083 
4.595 6.087 3.003 
5.111 5.159 5.053 
3.549 2.514 6.744 
3.182 3.119 3.347 

4.437 4.656 3.773 
5.919 7.720 3.428 
5.194 5.481 6.378 
3.443 2.712 6.761 
3.625 3.655 3.511 

4.170 4.295 3.744 
7.343 9.709 3.975 
6.014 5.400 7.340 
3.503 2.834 6.864 
4.224 4.366 3.664 

&Entries are 1OOOxrates. Rates are calculated using intensities in Table 5, ni+ in 

Table 4, and (5.6), (5.7). 

During the wet season, conversion rates are higher than recovery rates in 

every age class, because of the high mosquito man-biting rate then. How- 
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TABLE 7 

Standardized Malaria Conversion (r,& and Recovery (rz,) Rates per 1000 Daysa 

Age Group 

surveys Rates < 1 l-4 5-8 9-18 19-28 29-43 44+ 

Standardized by the minimum proportion uninfected 

3-4 P*2(0) 0.405 0.141 1.824 0.960 0.533 0.629 0.576 
%1(O) 3.752 1.608 2.591 5.092 9.648 15.990 16.348 

4-5 i,,(O) 4.386 2.981 3.164 1.752 1.208 1.385 1.697 
i,(O) 7.346 1.556 1.815 2.852 8.210 12.185 15.383 

Standardized by the maximum proportion uninfected 

3-4 j*(O) 3.023 5.568 13.601 7.159 3.977 4.693 4.295 
%1(O) 0.859 0.368 0.593 1.166 2.210 3.662 3.744 

4-5 i,,(O) 25.087 17.087 18.097 10.019 6.913 7.922 9.709 
1 
r2m 1.898 0.402 0.469 0.737 2.121 3.149 3.975 

Standardized by the weighted mean proportion uninfected 

3-4 k(O) 2.080 3.832 9.360 4.926 2.737 3.230 2.956 
1 
r2,(0) 1.901 0.815 1.313 2.580 4.888 8.102 8.283 

4-5 i,,(O) 17.508 11.925 12.630 6.992 4.824 5.529 6.776 
r2m 3.893 0.824 0.962 1.511 4.351 6.457 8.152 

‘In survey 3, the minimum ratio n,+/n2+ =0.119 occurred in the age group l-4; in 

survey 4, the minimum ratio rz, + /n2+ = 0.157 occurred in the age group 5-8. In 

survey 3, the maximum ratio n1+/n2+ = 3.888 occurred in the age group 44 + ; in 

survey 4, the maximum ratio n, +/n2+ - - 3.478 also occurred in the age group 44 + . 

The weighted mean proportion uninfected in survey 3 was 0.547, and in survey 4 was 

0.542. 

ever, when the rates are standardized to a minimum proportion negative 
(Table 7), the conversion rates are higher than the recovery rates only in age 
groups l-4 and 5-8. The older persons, who also have greater resistance to 
malaria and shorter spells of patent parasitemia, then tend to have higher 
recovery rates than conversion rates if they are members of a population 
with a high initial percentage positive. On the other hand, with a large 
reservoir of initially uninfected persons and the same & i = 1,2, all age 
classes have higher (standardized) conversion than recovery rates. 

The steady-state event rates ?V(co) (Table 6) may also be interpreted as 
classical epidemiological incidence rates. We will refer to an approximate 
equilibrium condition as one for which i,2(0)~~2,(O)~~V(co), i#j. As 
indicated in Table 6, approximate equilibrium occurred for age groups l-4 
through 29-43 at surveys 7-8. These surveys occurred near the end of a dry 
season, where superinfection was minimal. This approximate equilibrium is 
temporary, since a new generation of mosquitos arises at the onset of the 
wet season. For the age group l-4 there is also an approximate equilibriilm 
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TABLE 8 

Comparisons Across Surveys of Malaria Conversion (r& and 
Recovery (r2,) Rates per 1000 Days* 

~1269 i,CO) 
Surveys l-4 29-43 l-4 29-43 

Age classes l-4 and 29-43 standardized to age class l-4 

3-4 0.173 0.65 1 1.601 15.924 
4-5 2.429 1.126 1.601 12.544 
5-6 1.932 0.982 1.512 14.768 
6-7 1.645 0.464 1.450 16.992 
7-8 1.225 0.508 0.979 15.212 

Age classes l-4 and 29-43 standardized to age class 29-43 
3-4 5.026 4.236 0.508 5.048 
4-5 15.796 7.323 0.508 3.976 
5-6 12.565 6.390 0.479 4.681 
6-7 10.698 3.016 0.460 5.386 
7-8 1.970 3.303 0.310 4.822 

pAs defined in the text, p, (age class l-4)=0.1 10, p, (age class 

29-43)=0.718. 

at surveys 5-6, in the latter part of a wet season. This apparent equilibrium 
may result from the enormous imbalance in the ratio of positive to negative 
persons, 484/50, at survey 5. A high man-biting rate might lead to enough 
conversions among the 50 negative individuals to balance the recoveries 
among the many positive persons. 

7. SOURCES OF ERROR 

7.1. MEASUREMENT ERROR DUE TO DAILY FLUCTUATIONS IN PARASITE 

DENSITY 

An individual with patent P. falciparum parasitemia exhibits large daily 
oscillations in parasite density. A blood smear taken at a time of low 
density in that individual could be misclassified as negative. The distribu- 
tion of phases of these oscillations in a population of infected persons was 
not recorded in the Garki surveys. Thus we have no direct measurement of 
the proportion of infected persons who would be incorrectly classified by 
blood smears. 

Despite this lack of numerical information, we describe qualitatively the 
influence of this misclassification error on embeddability tests, estimates of 
the parameters qi, i = 1,2, and the event rates rii(s). 

Consider a model of blood-smear measurement in a two-wave panel 
study where (w(O), w(A)) represent the actual infection states at times 0 and 
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A and (Y(O), Y(A)) represent the observed states of infection. For k = 0, 1, 

suppose misclassification errors satisfy 

Prob( Y(kA) = 11 w(kA) = 1) = 1, 

Prob( Y( kA) = 1 ] w( kA) = 2) = P, 

Prob( w( kA) = 2) Y( kA) = 2) = 1. 

(7.1) 

O<P<l, (7.2) 

(7.3) 

Suppose also that misclassification does not alter the underlying dynamics 

of infection, so that 

Prob( w(A) = 1 / Y(0) = 1, w(0) = 1) 

=Prob(w(A)= l]w(O)= l)=~,, = 1 -p12, (7.4) 

Prob(w(A) = 1 I Y(O)= 1, w(O)=3 
=Prob(w(A)= l]w(O)=2)~~2i=l-~22. (7.5) 

The conditional probabilities pu are assumed only to be associated with 
some two-state continuous-time stochastic process., A routine calculation 
shows that the conditional probabilities for the observed process, Prob( Y(A) 
= i] Y(0) = i) =p*ii, obey 

P*ii <Pii* (7.6) 

Williams and Mallows [29] study more elaborate models of errors in the 
determination of pii due to differential nonresponse in two-wave, two-state 
panels surveys. 

The importance of (7.6) for Markov embeddability tests is that the trace 
of an estimated transition matrix p*(O, A), based on independent observa- 
tions (Y,(O), Y,(A)), 1 < i <N, can lead to no decision regarding, or rejection 
of, the null hypothesis He: traceP > 1, when the unobservable matrix 
&O, A) satisfies trace&O, A)> 1 + 6, in the formal test of Sec. 3. The diago- 
nal entries in the three matrices in Table 3 leading to no decision might very 
well underestimate pii because some infected persons with low parasite 
density at the survey times were misclassified as uninfected. 

If p*(O, A) is accepted as embeddable in a homogeneous Markov chain, 
then the maximum-likelihood estimator &* or (l/A)logf*(O, A) is related to 
&, up to terms of order 2 in the estimated measurement error EI, via 

& = d*i + Tji, (7.7) 

where 

+ji = logx 

[ 

q1 -$*ii) + $ 

-x+EI--I x-l x+EI-1 I 

+ q 1 -p*ii - S) 

x(x+El-1) ’ (7-g) 
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with x = tracef* - 1, jii =j*ii + $, and El= E^, + &. [By (7.6), for large sam- 
ples, $=q > 0 and ei > 0.1 Thus, to within sampling variability, the esti- 
mated expected durations in each state implied by $* are longer than those 
implied by &, i.e. 

$<-&. 
I I 

(7.9) 

The error in & in large samples is of smaller order of magnitude than (7.8). 
From (7.9), the estimated equilibrium event rates satisfy, for i+j, 

i*Q( cc) = [ -&+$--‘<~&m). (7.10) 

However, there is no analogous inequality between the nonequilibrium rates 
rii(s) and r*Js) valid for all s < + co. Indeed, sgn[rJs) - r*ii(s)] depends on 
the magnitude of 4 =dii -@jii, and on the proportions of individuals in each 
state at the first wave of observation. 

7.2. MODEL MISSPECIFICATION 

An important source of heterogeneity among individuals in Garki is 
differential immunity, even within the age classes used in the WHO malaria 
surveys. Homogeneous Markov chains treat these heterogeneous popula- 
tions as though they were homogeneous. 

To understand the biases which can arise from treating heterogeneous 
populations as if they were homogeneous, we describe some mixtures of 
Markov chains which have {P : trace P > 1) as their reachable set of condi- 
tional probabilities and compare expected event rates under these models 
with the same quantities calculated under a homogeneous Markov model. 

Let t =0 be the time of initiation of a mixture of continuous-time 
Markov chains. Then for every intensity-matrix-valued function at), t > 0, 
let pjQ), i 3: 42, be the probability distribution of type-Q individuals be- 
tween states at the initial survey, t = 0. Let piQ) be transition probabilities 
arising from (3.la,b) with intensity-matrix function Q(t), t > 0. The transi- 
tion probabilities piJO, t) for a mixture of such Markov chains are defined 

by 

s p,‘Q)p$Q)(O, t)du( Q) 

F$j(O,t)= Q , (7.11) 

I P,‘~‘WQ) 
Q 
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where da is a probability measure on the space Q of measurable intensity- 
matrix-valued functions Q(t), t > 0. We rewrite (7.11) in terms of the 
measures 

d&Q)= ~,"'da(Q) 

/ 

p!Q)du(Q) 
Q' 

(7.12) 

as 

(7.13) 

The two subclasses below of this family of heterogeneous population 
models have the same reachable set of conditional probabilities as would 
arise if da were a point mass at one intensity-matrix function. These 
mixtures are indistinguishable from the continuous-time Markov models 
using only two-wave panel data: 

Class (i) contains those mixtures for which dp, = dh. Here traceF(0, t) > 
1 for every probability measure dpl on Q. 

Class (ii) contains those intensity-matrix-valued functions Q(t) such that 
phQ)(O, t) > i for t > 0. Here trace&O,t) > 1 for every pair of probability 
measures (dp,,dp,) which are nonzero only at such Q(t). 

Arbitrary mixtures (7.13) of stochastic matrices P with trace P > 1 need 
not satisfy trace p > 1. For example, let 

0.7 0.3 PtQ1)PJ) = ( o.6 o.4)’ P(Qz)(O, A) = ( ;I; ;:; 
) 

. 

With the measures dp,( Q,) = s, = 1 - dp,( QJ and dp2(Q,) = s2 = 1 - dp2(Qz), 

O<si<l, i=1,2, we have traceF(O,A)<l whenever s,-ss,<-_. This ex- 
ample provides another possible explanation of the matrices in Table 3 
which led to no decision in the Markov embeddability test, namely, that 
these data arose from mixtures of homogeneous Markov chains. 

To illustrate the biases in event rates due to model misspecification, 
consider the homogeneous Markov chains with intensity matrices 

Q-h -; _;), ( h>O. (7.14) 

For each X, the equilibrium event rates are ro( w) = h/2. Let dpl(h) = dp&) 

be any probability measure on [0, + co). Then 

R,(O,A)= iirn(l -e-UA)dPr(h)~ (7.15) 

Joel E. Cohen
Highlight
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and for the mixture, the equilibrium event rates are am= f 
/ 

X$,(h). If 

an estimated transition matrix actually arises from a mixture’of the form 
(7.15) but, following an embeddability test, the Markov models based on 
(7.14) are used to calculate am, then the actual event rate fO(co) will 
always be overestimated. This bias due to model misspecification follows 
from Jensen’s inequality. If PiA)= (eQA)ii and Q is given by (7.14), then 

(7.16) 

For general homogeneous chains the event-rate biases depend strongly 
on the mixing measures dk. In the Garki study, if heterogeneity arises from 
differences in immunity, these mixing measures are estimable only from 

serological data [S]. 

8. REVIEW AND CONCLUSIONS 

The Garki project is the first longitudinal field survey of malaria with 
enough parasitological measurements to make possible direct estimates of 
age- and season-specific incidence rates of conversion and recovery. Formal 
embeddability tests showed that for each of seven age classes a time series 
of two-wave panel surveys were indistinguishable from samples of time- 
homogeneous Markov chains. The two estimated parameters of the inten- 
sity matrix associated with each two-wave panel were interpreted as conver- 
sion and recovery rates per person at risk of conversion or recovery, 
respectively. The conversion and recovery rates per person surveyed were 
computed from the intensities. 

Thus, for each age class, the two-state (positive,negative) parasitemia 
histories {X(t,w), 2A<f < 7A, Aal0 weeks}, which evolve during the time 
span of the baseline surveys in Table 3, are modeled by a time series of 
two-state continuous-time Markov chains { Z,(t, w), kA < t < (k + l)A, 2 <k 
< 7). Here Zk(t, *) is a Markov chain that represents the parasitological 
histories only during the IO-week interval between surveys k and k+ 1. 

Our discussion of embeddability in Sec. 3 serves to clarify the statement 
of Bekessy et al. [4]: “if trace P < 1 it could be suspected that the model did 
not fit well: either the process was not Markovian or the parameters were 
not constant between subsequent observations.” If traceP< 1, then the 
underlying continuous-time stochastic process must be non-Markovian. If 
the underlying process is inhomogeneous Markov, with time-varying inten- 
sities, then trace P > 1. Thus the second proposed explanation is incorrect if 
the nonconstant parameters occur in a Markov chain. 
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The estimated recovery rates per positive person increase with increasing 
age, reflecting a corresponding increasing immunity. Within each age class, 
conversion rates per negative person are high during the wet season and 
decrease during the dry season. The reverse pattern holds for recovery rates 
per positive person. 

When conversion and recovery rates per person surveyed in the wet 
season are standardized to a population with a small proportion of initially 
negative persons, then recovery rates are higher than conversion rates for all 
persons over age 8. When the same crude rates are standardized to a high 
proportion of initially negative persons, then all age classes have higher 
standardized conversion than recovery rates (Table 7). These standardiza- 
tions indicate the importance of a large reservoir of negative persons early 
in the wet season if the high mosquito man-biting rate is to lead to more 
conversions than recoveries, especially among older persons. On the other 
hand, in a population with a high proportion of persons initially positive, 
even the force of superinfection during the wet season is not adequate to 
overcome the high resistance of older persons to parasitemia. Their short 
spells of infection lead to more recoveries than conversions in such a 
population. 

Our principal methodological innovations are: (1) a sampling theory of 
an embeddability criterion, (2) a formal test for the embeddability of 2x2 
stochastic matrices, estimated from two-wave panel data, in the class of 
inhomogeneous continuous-time Markov chains, (3) the use of two-wave 
panel data to estimate incidence rates per person surveyed within the class 
of time-homogeneous Markov chains, (4) a qualitative description of biases 
in estimated rates which can arise from the misclassification of infected 
persons, and (5) an illustration of biases due to model misspecification that 
can arise in estimating event rates. 

Rates per person at risk were previously estimated by Bekessy et al. [4]. 
We also present some revised variability assessments for these estimates. 

The use of embeddability criteria to decide whether data sampled in 
discrete time from a continuous-time, discrete-state process are consistent 
with a proposed class of stochastic models is a fundamental feature of our 
investigation. This use of embeddability tests is largely undeveloped in the 
literature on stochastic modeling. In a (K+ I)-wave panel survey, data on a 
continuous-time process are of the form 

{ X(kA,i) = state of individual i at time kA, k =O, 1,2,. . . , K, 1 Q i Q N, 

N =number of individuals present for K+ 1 waves}. 

Here the natural extension of our strategy is to ask whether the estimated 
multinomial sequence frequencies 

pi, ,,_, i,=P(X(0)=i,,X(A)=i ,,..., X(KA)=i,) (8.1) 
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could have been generated by a proposed class of models. Here (iu, . . . , iu) is 
a sequence of states-e.g. positive, negative-in which an individual is 
observed at times t = 0, A,. . . , KA, respectively. For example, if the sequence 
frequencies (8.1) arise from a two-state inhomogeneous continuous-time 
Markov chain, it must be possible to write them as 

(8.2) 

where (m,,_,,,)= M((j-- l)AjA), 1 <j Q K, are 2 X 2 stochastic matrices such 
that 

trace M((j - l)A,jA) > 1, (8.3) 

and pi, is the initial distribution of persons among states. The entries m,/_ ,, G 

are interpreted as 

mi_,,i J I = P(X( jA) = i/lX(( j - 1)A) = &_ ,). 

The basic point in testing to see if sequence frequencies (8.1) can be 
represented by expressions such as (8.2) and (8.3) is that a priori we need 
only a sampling theory for the data. Specification of the dynamics follows 
tests of hypotheses such as embeddability in the class of inhomogeneous 
continuous-time Markov chains. This kind of strategy is discussed for fitting 
discrete-time Markov chains to gap-free data by Anderson and Goodman 
[ 11. However, papers on continuous-time modeling [5,15,14] estimate 
parameters and test hypotheses within an assumed class of stochastic 
processes. The fundamental question of whether any model in the proposed 
class can generate estimated sequence frequencies, such as (8. I), is bypassed 
entirely. 

The algebraic characterizations-analogous to (8.2) and (8.3)-necessary 
for testing the embeddability of sequence frequencies are largely undevel- 
oped, even for close relatives of the Markov processes such as restricted 
families of semi-Markov processes and nondegenerate mixtures of such 
processes. Developing such characterizations represents a major mathemati- 
cal challenge with an immediate practical payoff. In particular, the unpub- 
lished baseline parasitemia data from Garki include sequence frequencies 
(8.1) with K=7. A natural next step would be to test these data for 
consistency with (8.2) and (8.3) and, if necessary, carry out analogous tests 
for non-Markovian processes. As we indicated in (4.1), a non-Markovian 
representation of some of the sequence frequencies in the intervention and 
follow-up surveys in Garki will be essential. 
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Erratum 

B. Singer and J. E. Cohen, Estimating Malaria Incidence and 
Recovery Rates from Panel Surveys, Math. Biosci. 49:273-305 (1980) 

Dr. Jerry Nedelman kindly informed us that the inequality pz < p,,, (7.6) 
on p. 298 in our original text, is only correct under all circumstances for 
i = 2. This has important implications for the interpretation of the influence 
of measurement error on embeddability tests. Thus all the text starting with 
the last three words on line 13, p. 298 through the end of Section 7.1 on p. 
299 should be replaced with the following two paragraphs. 

Subject to (7.1)-(7.5) the conditional probabilities for the observed 
process, Prob( Y( A) = i 1 Y(0) = i) = Pz, are related to r, z = Prob( Y(0) = I), 
and p,, for i = 1, 2 via the formulas 

p:,=p,, l-5 +y-(l---)P**l ( 1 

and 

(7.6) 

(7.7) 

Observe that r/z < 1 is a consequence of the relation Prob( w(0) = 1) = (z - 
a)(1 -7))‘, where w(0) = actual infection status at time 0. Thus if T = 
trace P(0, A) and T* = trace P*(O, A), we have 

T*=T+;(I-T). (7.8) 

The importance of (7.8) for Markov embeddability tests is that it shows that 
the effect of measurement error is always to move the observed trace, T*, 
closer to a zone of no decision than the actual trace, T. Furthermore, if 
T > 1 + 6,. then T* can at worst lead to an interpretation of no decision 
concerning H, : trace P > 1. The opposite conclusion, namely T < 1 - 6,) can- 
not arise as a result of measurement error, since T* B 1 whenever T 2 1. 
Similarly, a reversal of conclusion via measurement error is impossible when 
T ( I- 6,. A modification of the formal embeddability test which takes 
account of Q and z is to replace 6, by SF = (1 - n/z)6, for i = 1,2. This 
guarantees that 

l+6F<T* iff 1+6,<T 
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and 

B. SINGER AND J. E. COHEN 

1-6;>T* iff I- 6, > T. 

If P*(O, A) is accepted as embeddable in a homogeneous Markov chain, 
then the maximum likelihood estimator $* = (l/A)log P*(O, A) is related to 
0, up to terms of order 2 in the estimated measurement error i = i, + i,, via 

log x 
4, = 4” - x_l 

( 
i, + -&(l-p::))+ts’ 

where x = trace @* - 1 and i, = fi,, -pE. 
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