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This paper points out a connection between random evolutions and products of random 
matrices. This connection is useful in predicting the long-run growth rate of a single-type, 
continuously changing population in randomly varying environments using only observations at 
discrete points in time. A scalar Markov random evolution is specified by the n x n irreducible 
intensity matrix or infinitesimal generator Q = (q;;) of a time-homogeneous Markov chain and by n 
finite real growth rates (scalars) s,. The scalar Markov random evolution is the quantity Mc(t) = 

exp0.:7~ 1 sigf(t)), where gf(t) is the occupancy times in state j up to timet. The scalar Markov 
product of random matrices induced by this scalar Markov random evolution is the quantity 
M 0 (t) = exp(L7~ 1 sigf (t)), where gf (t) is the occupancy time in state j up to and including t of 
the discrete-time Markov chain with stochastic one-step transition matrix P = e0 . We 
show that lim,_"' (1/t)E(log M 0 (t)) = lim,_00(1/t)E(log Mc(t)) but that in general 
lim,~"' (ljt) log E(Mc(t)) ¢lim,_"' (1/t) log E(M0 (t)). Thus the mean Malthusian parameter of 
population biologists is invariant with respect to the choice of continuous or discrete time, but the 
rate of growth of average population size is not. By contrast with a single-type population, in 
multitype populations whose growth is governed by non-commuting operators, the mean 
Malthusian parameter may be destined for a less prominent role as a measure of long-run growth. 

Products of random matrices Malthusian parameter 
single-type populations embedding 
multi-type populations 

1. Introduction 

Consider a homogeneous or single-type population such that, in a fixed environ
ment, the magnitude of the population at timet, M(t):;;. 0, changes geometrically (in 
discrete time) or exponentially (in continuous time). Suppose that the population 
may experience, at any instant t, one of n ;;.l, n finite, different environments. A 
distinct (discrete or continuous) growth rate occurs in each environment. Suppose 
that the sequence of environments that a population experiences is determined by an 
n-state time-homogeneous Markov chain (in discrete time or in continuous time). 

Certain products of random matrices and certain random evolutions may be 
viewed as descriptions in discrete and in continuous time, respectively, of such a 
stochastic growth process. We call this class of processes the "scalar Markovian 

245 



246 I.E. Cohen I Random evolutions and random matrices 

case" because the state of the population is specified by a scalar, which measures its 
total size, rather than by a vector, and because successive growth rates are 
Markovian, rather than determined by some other random process. 

In both the discrete-time and the continuous-time scalar Markovian case, it is easy 
to evaluate each of two plausible measures of the long-run growth rate. It happens 
that only one of the two measures remains the same whether time is viewed 
continuously or discretely. If the scalar Markovian case were used as a model of some 
real process, it would be desirable for any measure of long-run growth rate to be 
invariant with respect to the choice of the description of time. Consequently the 
measure of growth rate that is invariant is to be preferred when the scalar Markov 
case is used as a model in science. This measure coincides with what population 
biologists call the mean Malthusian parameter. 

We do not know of any previous systematic studies of the connection between 
products of random matrices and random evolutions. 

2. The Markov scalar case 

We define the Markov scalar case of a product of random matrices and of a random 
evolution. 

As a special case of the products of random matrices considered by Furstenberg 
and Kesten [5], let X be a set of n finite positive real numbers. Suppose an n-state 
discrete-time Markov chain has state space X. If {X(t), t = 1, 2, ... } is a sequence of 
members of X which occur as a sample path of this Markov chain, 

M 0 (t) =X(t)X(t-1) ... X(2)X(l) (1) 

is the scalar Markovian case of a product of random matrices. M 0 (t) may be thought 
of as the population size at time t. The superscript 0 refers to discrete time. Each 
additional instant of time multiplies the product M 0 (t) by a factor on the left. 

As a special case of the random evolutions considered by Griego and Hersh [6, p. 
407], we define a Markov scalar random evolution. Let S = {s1. ... , sn} be any n 
finite real (positive, zero or negative) numbers. Let vc = {v(t), t;;;;. 0} be a continuous
time stationary Markov chain with state space S, time-homogeneous transition 
probabilities p;i(t) = P[v(t) = si I v(O) = s;], and infinitesimal matrix Q = (q;i) = 
(dp;i(O)/dt). Fori ;e j, q;i;;;;. 0 and q;; = -Ii,.i qii· We assume Q is irreducible. v(t) is 
the state the chain is in at timet. For any sample path of vc, Ti is the time of the jth 
jump and N(t) is the number of jumps up to time t. Then 

Mc(t) = exp(Sv(o)'Tt) exp(Sv(T,)( 'Tz- 'T1)) · · · exp(Sv(N(t))(t- 'TN(t))) (2) 

is a Markov scalar random evolution. Mc(t) may be thought of as the population size 
at time t. The superscript c indicates continuous time. Each new jump of the chain 
changes the current instantaneous rate of growth of the random evolution. Collecting 
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the factors in (2) which share a common value of s yields 

(3) 

where g((t) is the Markov chain's occupation time in the jth state up to timet. 
Suppose now that a Markov scalar random evolution could be observed only at 

times t = 1, 2, ... and that at each time t of observation it were possible to measure 
only the infinitesimal growth rate S; in effect at that instant and the total magnitude 
Mc(t) of the random evolution. Deprived of information about the course of events 
between t- 1 and t, the observer attempts to construct a dynamic model of the 
trajectories of the infinitesimal generators {s;} that will explain the observed behavior 
of Mc(t). 

We shall suppose that the observer constructs the following Markov scalar product 
of random matrices induced by the Markov scalar random evolutions. Let X = 
{e'', ... , esn}. Let the stochastic process with state space X be ann-state stationary 
time-homogeneous Markov chain v 0 = {v0 (t), t = 1, 2, ... } with time-homogeneous 
one-step transition probability matrix P = P(1) = e0

. Since Q is irreducible, each 
q;; < 0 and P(t) = (pii(t)) = e0

' is positive (elementwise) for t > 0. Then 

(4) 

where g? (t) is the number of times v 0 (h) = e\ h = 1, ... , t. 
If 77'T is the (unique) row-vector whose elements 77'; (all positive) are the equili

brium probabilities of state i in the chain v c, then 1r T Q = 0 implies 1r T P = 1r T; the 
equilibrium probabilities of vc and v 0 are identical. 

However, a sample path of the discrete Markov scalar case M 0 (t) differs from a 
sample path of the inducing continuous Markov scalar case Mc(t). In Mc(t), the 
operator es'', once it occurs, applies for a duration with a probability density function 
q;; e -q"', t;;;;.: 0. In M 0 (t), e''', once it occurs, applies for a duration with a probability 
density function p:i 1 (1- Pii), t = 1, 2, .... 

Now define, for these particular Mc(t) and M 0 (t), 

(5) 

log A 0 =lim.!. E(log M 0 (t)), 
1-+00 t 

(6) 

log JL c =lim .!.log E(Mc(t)), 
l-+00 t 

(7) 

log JL 0 =lim .!.log E(M0 (t)). 
l-+00 t 

(8) 
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If these limits exist, they must be independent of the initial state of the discrete or 
continuous Markov chains because both chains are irreducible and aperiodic. 

Substituting (3) into (5) and (4) into (6) gives 

c . ~ (gf(t)) ~ log A = hm L. s;E -- = L. S;7T;, 
t-oo i=! t i=l 

(9) 

D . ~ (gP(t)) c logA =hm L. s;E -- =logA . 
r-oo i=! t 

(10) 

Thus a hypothetical observer restricted to discrete times of observation who con
structs the scalar Markov product of random matrices induced by a scalar Markov 
random evolution will predict exactly the growth rate A c by calculating the geometric 
mean A 0 on the basis of his construction. The log of the geometric mean I7= 1 S;7T;, 

familiar to population biologists [10] as the "mean Malthusian parameter", finds a 
new interpretation in the scalar Markovian case through (5), (6), (9) and (10). 

To calculate J.L c from (7), let E(exp[I sigT (t)] I v(O) = i) = u;(t), and let S = 
diag{s1, ... , Sn}. 

The Feynman-Kac formula for random evolutions with commuting families of 
operators developed by Griego and Hersh [6] asserts that if A== Q + S, i.e., a;;= 

qu + s;, a;i = q;i (i cf. j), and if u(t) is the n-vectorwith ith element u;(t), then u(t) is the 
unique solution of 

du/dt ==Au, U;(O) = 1. 

But it is well known that the unique solution of (11) is 

u(t)=eA1u(O), 

(11) 

(12) 

i.e., u;(t) = ith row sum of eA1
• We adopt the norm, for any complex matrix M = (m;i), 

IIMII =max; I7=I lm;J Then max; u;(t) = lleA1
11. Because Q is irreducible, A is irre

ducible. Hence so is eA. By the Jordan canonical form of A, the spectral radius r(A) 
of A satisfies r(A) =log r(eA). But r(eA) = lim1-oolleA1II 111 for any matrix norm, so 

r(A) =log lim lleA1II 111 =lim! log max E(exp[L sigi(t)J I v(O) = i) =log J.L c, 
t-+00 t-+00 ( I } 

since J.L c is independent of v (0). Collecting equalities, we have J.L c = r(e0
+

5
). (This 

argument also leads readily to the conclusion that if A is a non-negative n x n matrix 
and V is a real n x n diagonal matrix, then r(A + V) is a convex function of V. The 
additional requirement in [ 4, Theorem 3] that V be non-negative is evidently 
irrelevant.) 

To compute J.L 
0

, we apply to the scalar Markov product of random matrices a 
discrete-time Feynman-Kac formula [1], which was not recognized as such when first 
reported. Since P = (p;i) = P(1) = e0

, e 0 e5 has i,jth element Pii e\ Then by [1], 

lim E(MD(t))/[r(e0 e5
)]

1 = c > 0, 
t-+00 
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where cis a constant independent of time. Taking (1/ t) log of both sides and moving 
the limit outside gives the recipe 1-t 

0 
= r(e 0 e5

). 

We wish to compare 1-t c = r(e0 +5
) with 1-t 

0 = r(e 0 e5
). A simple numerical exam

ple in the case n = 2 shows that, in general, one may have 1-t c < 1-t 
0

. When n = 2, e0 is 
easily written as an explicit function of Q and the spectral radius is the solution of a 
quadratic equation, so r(e0 +5

) = e'<O+Sl is easily found. Let 

0= (
-1 

2 s=(~ ~). 

Then r(e0 +5
) = 41.76 < r(e 0 e5

) = 43.41. Thus 1-t 
0

, the rate of growth of the average 
scalar Markov product of random matrices induced by a scalar Markov random 
evolution, may in general be strictly greater than 1-t c, the rate of growth of the 
average scalar Markov random evolution. 

3. Further problems: matrix operators; embedding 

A natural next case to consider is the matrix Markovian case. Suppose the positive 
scalars S; are replaced by elementwise positive non-commuting k x k matrices 
M;, k > 1 (possibly subject to suitable auxiliary conditions), and the induced product 
of random matrices has factors X(t) chosen from the non-commuting set X= 
{eM', ... eM"} by a Markov chain with P = e0 . Since M 0 (t) andMc(t) are now matrix 
rather than scalar functions of time, the definitions (5)-(8) must be modified, say, by 
replacing M(t) with IIM(t)ll. The question is: does the equality A c =A 0 still hold in 
general or in any interesting special cases? Exact equations for A 0 are known [2] and 
have been solved numerically [3] in particular cases. The problem is to compute A c. 

At least when X is a finite "ergodic set" [7] of non-negative matrices, almost every 
sample path of a matrix Markov product of random matrices has a long-run rate of 
growth given by A 0 [2,5]. If r; is the log of the spectral radius of the ith matrix in X 
(population biologists call r; the Malthusian parameter of a k-type population in 
environment i), in general L TT;r; ¥-A 0 [3]. This inequality is a significant difference 
between single-type and multitype populations. The mean Malthusian parameter 
L TT;r; is not interpretable as a measure of growth for multi type populations. 

Another interesting, and probably more difficult, problem is the embedding 
problem: given a Markovian product of a random matrices, when could it have been 
induced (in the sense defined) by a random evolution, and when could it have been 
induced by only one random evolution? Half of the question is: given a stochastic 
n x n positive matrix P, when does there exist an intensity matrix Q such that 
P = e0

, and when is Q unique? This is the embedding problem for Markov chains [9]. 
Kendall obtained a complete solution for n = 2, but the general case is recalcitrant. 
The other half of the question is: when can the matrices in X be written (uniquely) in 
the form eM', i = 1, ... , n with infinitesimal generators M; of some specified form? 
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4. Population biology and life histories 

Population biologists have modeled the life histories of various organisms. They 
have argued that evolution by natural selection would favor the life history or 
histories associated with the largest value of some characteristic of a population, such 
as growth rate or time to extinction. 

In one example [11, pp. 165-168; 8], a single-type population of annual plants is 
compared with a two-type population of perennial plants. Under certain assump
tions about the environment, one index of population growth favors an annual life 
history while another index of population growth favors a perennial life history. The 
questions arises, "Which index of growth (if any) should the biologist choose as a 
reliable guide to the life history that will evolve in an environment like the one 
assumed?" 

Rational argument cannot answer that empirical question. But if one desired an 
index of growth in population size that is invariant under equivalent discrete and 
continuous descriptions of time, (6) would be preferred for a single-type population. 
This index A 0 is described as Cohen's measure of growth in [11] and as the geometric 
mean of the growth rate in [8]. For multitype populations, see [3]. 
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